mirror of https://github.com/ollama/ollama.git
63 lines
1.7 KiB
Go
63 lines
1.7 KiB
Go
package gemma3
|
|
|
|
import (
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/ml/nn/pooling"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type embedModel struct {
|
|
model.Base
|
|
model.SentencePiece
|
|
|
|
*TextModel
|
|
poolingType pooling.Type
|
|
|
|
Dense [2]*nn.Linear `gguf:"dense"`
|
|
}
|
|
|
|
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
|
|
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
|
|
for _, dense := range m.Dense {
|
|
hiddenStates = dense.Forward(ctx, hiddenStates)
|
|
}
|
|
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
|
|
return hiddenStates, nil
|
|
}
|
|
|
|
func newEmbedModel(c fs.Config) (model.Model, error) {
|
|
m := &embedModel{
|
|
SentencePiece: model.NewSentencePiece(
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Scores: c.Floats("tokenizer.ggml.scores"),
|
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
EOS: append(
|
|
[]int32{
|
|
int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
|
int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
|
|
},
|
|
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
|
),
|
|
},
|
|
),
|
|
TextModel: newTextModel(c),
|
|
poolingType: pooling.Type(c.Uint("pooling_type", 0)),
|
|
}
|
|
|
|
m.Cache = kvcache.NewWrapperCache(
|
|
kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift),
|
|
kvcache.NewCausalCache(m.Shift),
|
|
)
|
|
|
|
return m, nil
|
|
}
|