mirror of https://github.com/ollama/ollama.git
231 lines
7.5 KiB
Go
231 lines
7.5 KiB
Go
package qwen3
|
|
|
|
import (
|
|
"cmp"
|
|
"math"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/ml/nn/fast"
|
|
"github.com/ollama/ollama/ml/nn/rope"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type Options struct {
|
|
hiddenSize, numHeads, numKVHeads int
|
|
eps float32
|
|
ropeBase, ropeScale float32
|
|
|
|
keyLength, valueLength int
|
|
|
|
numExperts, numExpertsUsed int
|
|
normTopKProb bool
|
|
}
|
|
|
|
func (o Options) headDim() int {
|
|
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
|
|
}
|
|
|
|
type Attention struct {
|
|
Query *nn.Linear `gguf:"attn_q"`
|
|
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
|
|
Key *nn.Linear `gguf:"attn_k"`
|
|
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
|
|
Value *nn.Linear `gguf:"attn_v"`
|
|
Output *nn.Linear `gguf:"attn_output"`
|
|
}
|
|
|
|
func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
|
batchSize := hiddenStates.Dim(1)
|
|
|
|
query := sa.Query.Forward(ctx, hiddenStates)
|
|
key := sa.Key.Forward(ctx, hiddenStates)
|
|
value := sa.Value.Forward(ctx, hiddenStates)
|
|
|
|
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
|
|
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
|
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
|
|
|
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
|
|
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
|
|
|
|
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
|
|
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
|
|
|
|
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
|
|
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
|
|
return sa.Output.Forward(ctx, attention)
|
|
}
|
|
|
|
type MLP interface {
|
|
Forward(ml.Context, ml.Tensor, *Options) ml.Tensor
|
|
}
|
|
|
|
type sparse struct {
|
|
Router *nn.Linear `gguf:"ffn_gate_inp"`
|
|
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
|
|
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
|
|
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
|
|
}
|
|
|
|
func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
|
|
hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
|
|
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
|
|
routerLogits := mlp.Router.Forward(ctx, hiddenStates)
|
|
|
|
routingWeights := routerLogits.Softmax(ctx)
|
|
selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
|
|
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, selectedExperts)
|
|
if opts.normTopKProb {
|
|
routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
|
|
routingWeights = routingWeights.Div(ctx, routingWeights.SumRows(ctx))
|
|
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
|
|
}
|
|
|
|
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
|
|
|
|
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates, selectedExperts))
|
|
|
|
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
|
|
experts = experts.Mul(ctx, routingWeights)
|
|
|
|
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
|
|
for i := 1; i < opts.numExpertsUsed; i++ {
|
|
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
|
|
}
|
|
|
|
return nextStates
|
|
}
|
|
|
|
type dense struct {
|
|
Gate *nn.Linear `gguf:"ffn_gate"`
|
|
Up *nn.Linear `gguf:"ffn_up"`
|
|
Down *nn.Linear `gguf:"ffn_down"`
|
|
}
|
|
|
|
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor {
|
|
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).
|
|
SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
|
|
return mlp.Down.Forward(ctx, hiddenStates)
|
|
}
|
|
|
|
type Layer struct {
|
|
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
|
*Attention
|
|
|
|
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
|
MLP
|
|
}
|
|
|
|
func (d *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
|
residual := hiddenStates
|
|
hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
|
|
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
|
|
|
|
if outputs != nil {
|
|
hiddenStates = hiddenStates.Rows(ctx, outputs)
|
|
residual = residual.Rows(ctx, outputs)
|
|
}
|
|
|
|
hiddenStates = hiddenStates.Add(ctx, residual)
|
|
|
|
residual = hiddenStates
|
|
hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
|
|
hiddenStates = d.MLP.Forward(ctx, hiddenStates, opts)
|
|
return hiddenStates.Add(ctx, residual)
|
|
}
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.BytePairEncoding
|
|
|
|
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
|
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
|
|
|
Layers []Layer `gguf:"blk"`
|
|
|
|
*Options
|
|
}
|
|
|
|
// Forward implements model.Model.
|
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
|
|
|
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
|
|
|
for i, layer := range m.Layers {
|
|
m.Cache.SetLayer(i)
|
|
|
|
var outputs ml.Tensor
|
|
if i == len(m.Layers)-1 {
|
|
outputs = batch.Outputs
|
|
}
|
|
|
|
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
|
|
}
|
|
|
|
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
|
|
return m.Output.Forward(ctx, hiddenStates), nil
|
|
}
|
|
|
|
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
|
return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil
|
|
}
|
|
|
|
var _ model.Model = (*Model)(nil)
|
|
|
|
func New(c fs.Config) (model.Model, error) {
|
|
layers := make([]Layer, c.Uint("block_count"))
|
|
for i := range layers {
|
|
if c.String("general.architecture") == "qwen3moe" {
|
|
layers[i].MLP = &sparse{}
|
|
} else {
|
|
layers[i].MLP = &dense{}
|
|
}
|
|
}
|
|
|
|
m := Model{
|
|
BytePairEncoding: model.NewBytePairEncoding(
|
|
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
EOS: append(
|
|
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
|
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
|
),
|
|
},
|
|
),
|
|
Layers: layers,
|
|
Options: &Options{
|
|
hiddenSize: int(c.Uint("embedding_length")),
|
|
numHeads: int(c.Uint("attention.head_count")),
|
|
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
|
keyLength: int(c.Uint("attention.key_length")),
|
|
valueLength: int(c.Uint("attention.value_length")),
|
|
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
|
ropeBase: c.Float("rope.freq_base"),
|
|
ropeScale: c.Float("rope.scaling.factor", 1),
|
|
numExperts: int(c.Uint("expert_count")),
|
|
numExpertsUsed: int(c.Uint("expert_used_count")),
|
|
normTopKProb: c.Bool("norm_top_k_prob", true),
|
|
},
|
|
}
|
|
|
|
m.Cache = kvcache.NewCausalCache(m.Shift)
|
|
return &m, nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("qwen3", New)
|
|
model.Register("qwen3moe", New)
|
|
}
|