mirror of https://github.com/ollama/ollama.git
				
				
				
			
		
			
				
	
	
		
			1577 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			1577 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			Go
		
	
	
	
| package ggml
 | |
| 
 | |
| // #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
 | |
| // #include <stdlib.h>
 | |
| // #include <stdint.h>
 | |
| // #include "ggml.h"
 | |
| // #include "ggml-cpu.h"
 | |
| // #include "ggml-backend.h"
 | |
| import "C"
 | |
| 
 | |
| import (
 | |
| 	"context"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"io"
 | |
| 	"log/slog"
 | |
| 	"maps"
 | |
| 	"os"
 | |
| 	"runtime"
 | |
| 	"slices"
 | |
| 	"strconv"
 | |
| 	"strings"
 | |
| 	"sync"
 | |
| 	"sync/atomic"
 | |
| 	"unicode"
 | |
| 	"unsafe"
 | |
| 
 | |
| 	"github.com/ollama/ollama/format"
 | |
| 	"github.com/ollama/ollama/fs"
 | |
| 	fsggml "github.com/ollama/ollama/fs/ggml"
 | |
| 	"github.com/ollama/ollama/logutil"
 | |
| 	"github.com/ollama/ollama/ml"
 | |
| 	ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
 | |
| 	"github.com/ollama/ollama/ml/nn/rope"
 | |
| 	"golang.org/x/sync/errgroup"
 | |
| )
 | |
| 
 | |
| var (
 | |
| 	cpus, accels, gpus []C.ggml_backend_dev_t
 | |
| 	backends           map[C.ggml_backend_dev_t]C.ggml_backend_t
 | |
| )
 | |
| 
 | |
| var initDevices = sync.OnceFunc(func() {
 | |
| 	ggml.OnceLoad()
 | |
| 
 | |
| 	backends = make(map[C.ggml_backend_dev_t]C.ggml_backend_t)
 | |
| 	for i := range C.ggml_backend_dev_count() {
 | |
| 		d := C.ggml_backend_dev_get(i)
 | |
| 
 | |
| 		switch C.ggml_backend_dev_type(d) {
 | |
| 		case C.GGML_BACKEND_DEVICE_TYPE_CPU:
 | |
| 			if len(cpus) == 0 {
 | |
| 				// only the first cpu device should be used
 | |
| 				cpus = append(cpus, d)
 | |
| 			}
 | |
| 		case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
 | |
| 			accels = append(accels, d)
 | |
| 		case C.GGML_BACKEND_DEVICE_TYPE_GPU:
 | |
| 			gpus = append(gpus, d)
 | |
| 		}
 | |
| 
 | |
| 		backends[d] = C.ggml_backend_dev_init(d, nil)
 | |
| 	}
 | |
| })
 | |
| 
 | |
| type layerDevice struct {
 | |
| 	d  C.ggml_backend_dev_t
 | |
| 	bt C.ggml_backend_buffer_type_t
 | |
| }
 | |
| 
 | |
| type Backend struct {
 | |
| 	// modelPath is the location of the model data
 | |
| 	modelPath string
 | |
| 
 | |
| 	meta *fsggml.GGML
 | |
| 
 | |
| 	// allocMemory means that memory should be allocated for tensors and not
 | |
| 	// just a dry run
 | |
| 	allocMemory bool
 | |
| 
 | |
| 	// tensorLoadTargets maps from the name of the tensor in the file
 | |
| 	// to the name that is used by the model definition
 | |
| 	tensorLoadTargets map[string][]string
 | |
| 
 | |
| 	sched         C.ggml_backend_sched_t
 | |
| 	schedBackends []C.ggml_backend_t
 | |
| 	schedBufts    []C.ggml_backend_buffer_type_t
 | |
| 
 | |
| 	tensors map[string]*C.struct_ggml_tensor
 | |
| 
 | |
| 	// input is the backend buffer type used for inputs
 | |
| 	input C.ggml_backend_buffer_type_t
 | |
| 
 | |
| 	// output is the backend device used for outputs
 | |
| 	output C.ggml_backend_dev_t
 | |
| 
 | |
| 	// layers is the backend used for repeating layers
 | |
| 	layers map[int]layerDevice
 | |
| 
 | |
| 	// requiredMemory is the cumulative memory allocations needed by the backend
 | |
| 	requiredMemory *ml.BackendMemory
 | |
| 
 | |
| 	// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
 | |
| 	btDeviceMemory map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory
 | |
| 
 | |
| 	flashAttention bool
 | |
| 
 | |
| 	// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
 | |
| 	maxGraphNodes int
 | |
| 
 | |
| 	// weightBuffers are the GGML contexts and buffers for allocating weights
 | |
| 	weightBuffers map[*C.struct_ggml_context]C.ggml_backend_buffer_t
 | |
| }
 | |
| 
 | |
| var once sync.Once
 | |
| 
 | |
| func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
 | |
| 	r, err := os.Open(modelPath)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	defer r.Close()
 | |
| 
 | |
| 	meta, err := fsggml.Decode(r, -1)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	once.Do(func() {
 | |
| 		slog.Info(
 | |
| 			"",
 | |
| 			"architecture", meta.KV().Architecture(),
 | |
| 			"file_type", meta.KV().FileType(),
 | |
| 			"name", meta.KV().String("general.name"),
 | |
| 			"description", meta.KV().String("general.description"),
 | |
| 			"num_tensors", len(meta.Tensors().Items()),
 | |
| 			"num_key_values", len(meta.KV()),
 | |
| 		)
 | |
| 	})
 | |
| 
 | |
| 	initDevices()
 | |
| 
 | |
| 	var requiredMemory ml.BackendMemory
 | |
| 	btDeviceMemory := make(map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory)
 | |
| 
 | |
| 	type deviceBufferType struct {
 | |
| 		d   C.ggml_backend_dev_t
 | |
| 		bts []C.ggml_backend_buffer_type_t
 | |
| 	}
 | |
| 
 | |
| 	blocks := int(meta.KV().BlockCount())
 | |
| 
 | |
| 	// create list of buffer types for the cpu
 | |
| 	cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
 | |
| 	for _, d := range append(accels, append(gpus, cpus...)...) {
 | |
| 		switch C.ggml_backend_dev_type(d) {
 | |
| 		case C.GGML_BACKEND_DEVICE_TYPE_CPU,
 | |
| 			C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
 | |
| 			bt := C.ggml_backend_dev_buffer_type(d)
 | |
| 			cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, bt)
 | |
| 			C.ggml_backend_buft_set_alloc(bt, C.bool(params.AllocMemory))
 | |
| 
 | |
| 			btDeviceMemory[C.ggml_backend_dev_buffer_type(d)] = &requiredMemory.CPU
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	requiredMemory.CPU.Name = C.GoString(C.ggml_backend_dev_name(cpuDeviceBufferType.d))
 | |
| 	var props C.struct_ggml_backend_dev_props
 | |
| 	C.ggml_backend_dev_get_props(cpuDeviceBufferType.d, &props)
 | |
| 	requiredMemory.CPU.ID = C.GoString(props.id)
 | |
| 	requiredMemory.CPU.Weights = make([]ml.Memory, blocks+1)
 | |
| 	requiredMemory.CPU.Cache = make([]ml.Memory, blocks+1)
 | |
| 
 | |
| 	// create list of buffer types for each gpu
 | |
| 	var gpuDeviceBufferTypes []deviceBufferType
 | |
| 	requiredMemory.GPUs = make([]ml.DeviceMemory, len(gpus))
 | |
| 	for i, d := range gpus {
 | |
| 		bt := C.ggml_backend_dev_buffer_type(d)
 | |
| 		gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
 | |
| 			d:   d,
 | |
| 			bts: append([]C.ggml_backend_buffer_type_t{bt}, cpuDeviceBufferType.bts...),
 | |
| 		})
 | |
| 		C.ggml_backend_buft_set_alloc(bt, C.bool(params.AllocMemory))
 | |
| 
 | |
| 		btDeviceMemory[bt] = &requiredMemory.GPUs[i]
 | |
| 		requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d))
 | |
| 		var props C.struct_ggml_backend_dev_props
 | |
| 		C.ggml_backend_dev_get_props(d, &props)
 | |
| 		requiredMemory.GPUs[i].ID = C.GoString(props.id)
 | |
| 		requiredMemory.GPUs[i].Weights = make([]ml.Memory, blocks+1)
 | |
| 		requiredMemory.GPUs[i].Cache = make([]ml.Memory, blocks+1)
 | |
| 	}
 | |
| 
 | |
| 	// inputs always use cpu
 | |
| 	input := cpuDeviceBufferType
 | |
| 
 | |
| 	assignLayer := func(layer int) deviceBufferType {
 | |
| 		for _, p := range params.GPULayers {
 | |
| 			for _, l := range p.Layers {
 | |
| 				if l == layer {
 | |
| 					for i := range requiredMemory.GPUs {
 | |
| 						if requiredMemory.GPUs[i].ID == p.ID {
 | |
| 							return gpuDeviceBufferTypes[i]
 | |
| 						}
 | |
| 					}
 | |
| 
 | |
| 					return cpuDeviceBufferType
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		return cpuDeviceBufferType
 | |
| 	}
 | |
| 
 | |
| 	// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
 | |
| 	layers := make([]deviceBufferType, blocks)
 | |
| 	for i := range layers {
 | |
| 		layers[i] = assignLayer(i)
 | |
| 	}
 | |
| 
 | |
| 	// outputs are assigned iff allowed by splits and configured number of gpu layers
 | |
| 	output := assignLayer(blocks)
 | |
| 
 | |
| 	maxTensors := len(meta.Tensors().Items())
 | |
| 	maxTensors += 1
 | |
| 	// each layer has at most 2 extra tensors for rope operations
 | |
| 	maxTensors += blocks * 2
 | |
| 
 | |
| 	type tensor struct {
 | |
| 		source *fsggml.Tensor
 | |
| 		target string
 | |
| 	}
 | |
| 
 | |
| 	// some tensors are mapped to different names so keep a list
 | |
| 	targets := make(map[string][]string)
 | |
| 
 | |
| 	// contexts are shared by tensors of the same buffer type
 | |
| 	ctxs := make(map[C.ggml_backend_buffer_type_t]*C.struct_ggml_context)
 | |
| 	createTensor := func(t tensor, bts []C.ggml_backend_buffer_type_t, layer int) *C.struct_ggml_tensor {
 | |
| 		for _, bt := range bts {
 | |
| 			if _, ok := ctxs[bt]; !ok {
 | |
| 				ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
 | |
| 					mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
 | |
| 					no_alloc: true,
 | |
| 				})
 | |
| 			}
 | |
| 
 | |
| 			targets[t.source.Name] = append(targets[t.source.Name], t.target)
 | |
| 
 | |
| 			name := t.source.Name
 | |
| 			if t.target != "" {
 | |
| 				name = t.target
 | |
| 			}
 | |
| 
 | |
| 			cname := C.CString(name)
 | |
| 			defer C.free(unsafe.Pointer(cname))
 | |
| 			if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
 | |
| 				return tt
 | |
| 			}
 | |
| 
 | |
| 			kind := t.source.Kind
 | |
| 			if t.source.Kind == 4 {
 | |
| 				// transform raw mxfp4 stream to ggml mxfp4 format
 | |
| 				kind = 39
 | |
| 			} else if t.source.Kind == uint32(fsggml.TensorTypeBF16) && strings.HasSuffix(t.source.Name, "_exps.bias") {
 | |
| 				// transform "_exps.bias" from bf16 to fp32; add_ids only supports fp32 tensors
 | |
| 				kind = uint32(fsggml.TensorTypeF32)
 | |
| 			}
 | |
| 
 | |
| 			tt := C.ggml_new_tensor(ctxs[bt], kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
 | |
| 			C.ggml_set_name(tt, cname)
 | |
| 
 | |
| 			slog.Log(context.TODO(), logutil.LevelTrace, "created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
 | |
| 
 | |
| 			size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
 | |
| 			if layer == -1 {
 | |
| 				// Assume that InputWeights can be allocated - they're always in system memory and can't be moved in any case
 | |
| 				if params.AllocMemory {
 | |
| 					requiredMemory.InputWeights.Status = ml.Allocated
 | |
| 				}
 | |
| 				requiredMemory.InputWeights.Size += uint64(size)
 | |
| 			} else {
 | |
| 				btDeviceMemory[bt].Weights[layer].Size += uint64(size)
 | |
| 			}
 | |
| 
 | |
| 			//nolint:staticcheck // TODO: check if buffer type supports this tensor
 | |
| 			return tt
 | |
| 		}
 | |
| 
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	contains := func(s string, parts ...string) bool {
 | |
| 		split := strings.Split(s, ".")
 | |
| 		for _, part := range parts {
 | |
| 			if slices.Contains(split, part) {
 | |
| 				return true
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	for _, t := range meta.Tensors().Items() {
 | |
| 		switch {
 | |
| 		case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
 | |
| 			createTensor(tensor{source: t}, input.bts, -1)
 | |
| 			if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
 | |
| 				createTensor(tensor{source: t, target: "output.weight"}, output.bts, blocks)
 | |
| 			}
 | |
| 		case contains(t.Name, "cls", "output", "output_norm",
 | |
| 			"altup_proj", "altup_unembd_proj",
 | |
| 			"per_layer_token_embd", "per_layer_model_proj", "per_layer_proj_norm"):
 | |
| 			createTensor(tensor{source: t}, output.bts, blocks)
 | |
| 		case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
 | |
| 			// TODO: assign vision tensors to the gpu if possible
 | |
| 			createTensor(tensor{source: t}, output.bts, blocks)
 | |
| 		case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
 | |
| 			// these tensors should be repeated per layer
 | |
| 			for i, layer := range layers {
 | |
| 				createTensor(tensor{
 | |
| 					source: t,
 | |
| 					target: "blk." + strconv.Itoa(i) + "." + t.Name,
 | |
| 				}, layer.bts, i)
 | |
| 			}
 | |
| 		default:
 | |
| 			layerIndex := -1
 | |
| 			if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
 | |
| 				if i, err := strconv.Atoi(fields[0]); err == nil {
 | |
| 					layerIndex = i
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if layerIndex >= 0 {
 | |
| 				createTensor(tensor{source: t}, layers[layerIndex].bts, layerIndex)
 | |
| 			} else {
 | |
| 				// load all other tensors on the cpu
 | |
| 				createTensor(tensor{source: t}, input.bts, -1)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// allocate buffers for each context
 | |
| 	bbs := make(map[*C.struct_ggml_context]C.ggml_backend_buffer_t, len(ctxs))
 | |
| 	for bt, c := range ctxs {
 | |
| 		if C.ggml_get_first_tensor(c) == nil {
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
 | |
| 		if params.AllocMemory {
 | |
| 			for i := range btDeviceMemory[bt].Weights {
 | |
| 				if btDeviceMemory[bt].Weights[i].Size != 0 {
 | |
| 					if b != nil {
 | |
| 						btDeviceMemory[bt].Weights[i].Status = ml.Allocated
 | |
| 					} else {
 | |
| 						btDeviceMemory[bt].Weights[i].Status = ml.Failed
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if b == nil {
 | |
| 			for _, b := range bbs {
 | |
| 				C.ggml_backend_buffer_free(b)
 | |
| 			}
 | |
| 
 | |
| 			for _, ctx := range ctxs {
 | |
| 				C.ggml_free(ctx)
 | |
| 			}
 | |
| 
 | |
| 			panic(ml.ErrNoMem{BackendMemory: requiredMemory})
 | |
| 		}
 | |
| 
 | |
| 		C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
 | |
| 		bbs[c] = b
 | |
| 	}
 | |
| 
 | |
| 	for bs := range maps.Values(bbs) {
 | |
| 		slog.Log(context.TODO(), logutil.LevelTrace, "model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)),
 | |
| 			"size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
 | |
| 	}
 | |
| 
 | |
| 	// map tensor names to tensors for easy lookup later
 | |
| 	tensors := make(map[string]*C.struct_ggml_tensor)
 | |
| 	for _, c := range ctxs {
 | |
| 		for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
 | |
| 			tensors[C.GoString(C.ggml_get_name(t))] = t
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// map devices to backend buffer types so new tensors can be assigned to the correct device
 | |
| 	deviceBufferTypes := make(map[C.ggml_backend_dev_t]C.ggml_backend_buffer_type_t)
 | |
| 
 | |
| 	// create backends and buffer types used for the compute graph scheduler
 | |
| 	var schedBackends []C.ggml_backend_t
 | |
| 	var schedBufts []C.ggml_backend_buffer_type_t
 | |
| 	for _, d := range append(gpus, append(accels, cpus...)...) {
 | |
| 		b := backends[d]
 | |
| 		bt := C.ggml_backend_get_default_buffer_type(b)
 | |
| 
 | |
| 		// Always include CPU as a fallback but otherwise, just use the devices where we assigned layers
 | |
| 		if !slices.Contains(cpuDeviceBufferType.bts, bt) {
 | |
| 			if c, ok := ctxs[bt]; !ok || C.ggml_get_first_tensor(c) == nil {
 | |
| 				continue
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		deviceBufferTypes[d] = bt
 | |
| 
 | |
| 		schedBackends = append(schedBackends, b)
 | |
| 		schedBufts = append(schedBufts, bt)
 | |
| 
 | |
| 		if C.ggml_backend_is_cpu(b) {
 | |
| 			// set number of threads for cpu backend
 | |
| 			C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
 | |
| 	return &Backend{
 | |
| 		modelPath:         modelPath,
 | |
| 		allocMemory:       params.AllocMemory,
 | |
| 		flashAttention:    params.FlashAttention,
 | |
| 		meta:              meta,
 | |
| 		tensorLoadTargets: targets,
 | |
| 		tensors:           tensors,
 | |
| 		sched: C.ggml_backend_sched_new(
 | |
| 			(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
 | |
| 			(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
 | |
| 			C.int(len(schedBackends)),
 | |
| 			C.size_t(maxGraphNodes),
 | |
| 			C._Bool(false),
 | |
| 			C._Bool(false),
 | |
| 		),
 | |
| 		schedBackends: schedBackends,
 | |
| 		schedBufts:    schedBufts,
 | |
| 		input:         deviceBufferTypes[input.d],
 | |
| 		output:        output.d,
 | |
| 		layers: func() map[int]layerDevice {
 | |
| 			m := make(map[int]layerDevice)
 | |
| 			for i, layer := range layers {
 | |
| 				m[i] = layerDevice{
 | |
| 					d:  layer.d,
 | |
| 					bt: deviceBufferTypes[layer.d],
 | |
| 				}
 | |
| 			}
 | |
| 			return m
 | |
| 		}(),
 | |
| 		requiredMemory: &requiredMemory,
 | |
| 		btDeviceMemory: btDeviceMemory,
 | |
| 		maxGraphNodes:  maxGraphNodes,
 | |
| 		weightBuffers:  bbs,
 | |
| 	}, nil
 | |
| }
 | |
| 
 | |
| func init() {
 | |
| 	ml.RegisterBackend("ggml", New)
 | |
| }
 | |
| 
 | |
| func (b *Backend) Close() {
 | |
| 	if b == nil {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	for ctx, b := range b.weightBuffers {
 | |
| 		C.ggml_backend_buffer_free(b)
 | |
| 		C.ggml_free(ctx)
 | |
| 	}
 | |
| 
 | |
| 	C.ggml_backend_sched_free(b.sched)
 | |
| }
 | |
| 
 | |
| func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
 | |
| 	if !b.allocMemory {
 | |
| 		return errors.New("cannot load model without memory allocation")
 | |
| 	}
 | |
| 
 | |
| 	// Mimic llama runner logs summarizing layers and memory
 | |
| 	gpuLayers := 0
 | |
| 	for layer := range maps.Values(b.layers) {
 | |
| 		if C.ggml_backend_dev_type(layer.d) == C.GGML_BACKEND_DEVICE_TYPE_GPU {
 | |
| 			gpuLayers++
 | |
| 		}
 | |
| 	}
 | |
| 	slog.Info(fmt.Sprintf("offloading %d repeating layers to GPU", gpuLayers))
 | |
| 
 | |
| 	switch C.ggml_backend_dev_type(b.output) {
 | |
| 	case C.GGML_BACKEND_DEVICE_TYPE_CPU:
 | |
| 		slog.Info("offloading output layer to CPU")
 | |
| 	case C.GGML_BACKEND_DEVICE_TYPE_GPU:
 | |
| 		slog.Info("offloading output layer to GPU")
 | |
| 		gpuLayers++
 | |
| 	case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
 | |
| 		slog.Info("offloading output layer to ACCEL")
 | |
| 	}
 | |
| 	slog.Info(fmt.Sprintf("offloaded %d/%d layers to GPU", gpuLayers, len(b.layers)+1))
 | |
| 
 | |
| 	var doneBytes atomic.Uint64
 | |
| 	totalBytes := uint64(b.meta.Length) - b.meta.Tensors().Offset
 | |
| 
 | |
| 	g, ctx := errgroup.WithContext(ctx)
 | |
| 	g.SetLimit(runtime.GOMAXPROCS(0))
 | |
| 	for _, t := range b.meta.Tensors().Items() {
 | |
| 		t := t
 | |
| 		g.Go(func() error {
 | |
| 			tts := make([]*C.struct_ggml_tensor, max(1, len(b.tensorLoadTargets[t.Name])))
 | |
| 			for i := range tts {
 | |
| 				target := b.tensorLoadTargets[t.Name][i]
 | |
| 				if target == "" {
 | |
| 					target = t.Name
 | |
| 				}
 | |
| 
 | |
| 				tt, ok := b.tensors[target]
 | |
| 				if !ok {
 | |
| 					return fmt.Errorf("unassigned tensor: %s", t.Name)
 | |
| 				}
 | |
| 
 | |
| 				tts[i] = tt
 | |
| 			}
 | |
| 
 | |
| 			// Create a new FD for each goroutine so that each FD is read sequentially, rather than
 | |
| 			// seeking around within an FD shared between all goroutines.
 | |
| 			file, err := os.Open(b.modelPath)
 | |
| 			if err != nil {
 | |
| 				slog.Warn("file open error", "file", b.modelPath, "error", err)
 | |
| 				return err
 | |
| 			}
 | |
| 			defer file.Close()
 | |
| 			sr := io.NewSectionReader(file, int64(b.meta.Tensors().Offset+t.Offset), int64(t.Size()))
 | |
| 
 | |
| 			if t.Kind == 4 && tts[0]._type == 39 {
 | |
| 				// source is mxfp4, target is ggml mxfp4
 | |
| 
 | |
| 				const BS = 17                             // MXFP4 block size
 | |
| 				bts := make([]byte, 8*BS*format.KibiByte) // ~128k block aligned
 | |
| 				var s uint64
 | |
| 				for s < t.Size() {
 | |
| 					// Stop if either the parent context has been canceled or if any of the other tensors returned an error
 | |
| 					if err := ctx.Err(); err != nil {
 | |
| 						return err
 | |
| 					}
 | |
| 					n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
 | |
| 					if err != nil {
 | |
| 						slog.Warn("file read error", "file", b.modelPath, "error", err)
 | |
| 						return err
 | |
| 					}
 | |
| 					for j := range n / BS {
 | |
| 						for i := 1; i < BS; i++ {
 | |
| 							// swap nibbles
 | |
| 							t_lo := bts[j*BS+i] & 0x0F
 | |
| 							t_hi := bts[j*BS+i] & 0xF0
 | |
| 							bts[j*BS+i] = (t_lo << 4) | (t_hi >> 4)
 | |
| 						}
 | |
| 						// transform aaaa...bbbb... to abababab...
 | |
| 						oi := 0
 | |
| 						tmp := [16]byte{}
 | |
| 						for i := 1; i < 9; i++ {
 | |
| 							blk_a0 := bts[j*BS+i] & 0xF0
 | |
| 							blk_a1 := bts[j*BS+i] << 4
 | |
| 							blk_b0 := bts[j*BS+i+8] >> 4
 | |
| 							blk_b1 := bts[j*BS+i+8] & 0x0F
 | |
| 							// swap once more
 | |
| 							out0 := blk_a0 | blk_b0
 | |
| 							out1 := blk_a1 | blk_b1
 | |
| 							out_h0 := out0 & 0xF0
 | |
| 							out_l0 := out0 & 0x0F
 | |
| 							out_h1 := out1 & 0xF0
 | |
| 							out_l1 := out1 & 0x0F
 | |
| 							out0 = (out_h0 >> 4) | (out_l0 << 4)
 | |
| 							out1 = (out_h1 >> 4) | (out_l1 << 4)
 | |
| 							tmp[oi] = out0
 | |
| 							oi++
 | |
| 							tmp[oi] = out1
 | |
| 							oi++
 | |
| 						}
 | |
| 						for i := range tmp {
 | |
| 							bts[j*BS+i+1] = tmp[i]
 | |
| 						}
 | |
| 					}
 | |
| 
 | |
| 					for _, tt := range tts {
 | |
| 						C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
 | |
| 					}
 | |
| 
 | |
| 					s += uint64(n)
 | |
| 
 | |
| 					if progress != nil {
 | |
| 						done := doneBytes.Add(uint64(n))
 | |
| 						progress(float32(done) / float32(totalBytes))
 | |
| 					}
 | |
| 				}
 | |
| 				return nil
 | |
| 			} else if strings.HasSuffix(t.Name, "_exps.bias") && t.Kind == 30 && tts[0]._type == 0 {
 | |
| 				// source is bf16, target is ggml fp32
 | |
| 
 | |
| 				// data is bf16 but we need to convert to fp32
 | |
| 				bts := make([]byte, 128*format.KibiByte)
 | |
| 				var e uint64
 | |
| 				for e < t.Elements() {
 | |
| 					// Stop if either the parent context has been canceled or if any of the other tensors returned an error
 | |
| 					if err := ctx.Err(); err != nil {
 | |
| 						return err
 | |
| 					}
 | |
| 					n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Elements()-e)*2)])
 | |
| 					if err != nil {
 | |
| 						slog.Warn("file read error", "file", b.modelPath, "error", err)
 | |
| 						return err
 | |
| 					}
 | |
| 					fp32 := ConvertToF32(bts, uint32(fsggml.TensorTypeBF16), uint64(n/2))
 | |
| 
 | |
| 					for _, tt := range tts {
 | |
| 						C.ggml_backend_tensor_set(tt, unsafe.Pointer(&fp32[0]), C.size_t(e*4), C.size_t(n*2))
 | |
| 					}
 | |
| 					e += uint64(n / 2)
 | |
| 					if progress != nil {
 | |
| 						done := doneBytes.Add(uint64(n))
 | |
| 						progress(float32(done) / float32(totalBytes))
 | |
| 					}
 | |
| 				}
 | |
| 				return nil
 | |
| 			}
 | |
| 
 | |
| 			bts := make([]byte, 128*format.KibiByte)
 | |
| 
 | |
| 			var s uint64
 | |
| 			for s < t.Size() {
 | |
| 				// Stop if either the parent context has been canceled or if any of the other tensors returned an error
 | |
| 				if err := ctx.Err(); err != nil {
 | |
| 					return err
 | |
| 				}
 | |
| 
 | |
| 				n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
 | |
| 				if err != nil {
 | |
| 					slog.Warn("file read error", "file", b.modelPath, "error", err)
 | |
| 					return err
 | |
| 				}
 | |
| 
 | |
| 				for _, tt := range tts {
 | |
| 					C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
 | |
| 				}
 | |
| 
 | |
| 				s += uint64(n)
 | |
| 
 | |
| 				if progress != nil {
 | |
| 					done := doneBytes.Add(uint64(n))
 | |
| 					progress(float32(done) / float32(totalBytes))
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			return nil
 | |
| 		})
 | |
| 	}
 | |
| 
 | |
| 	if err := g.Wait(); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (b *Backend) BackendMemory() ml.BackendMemory {
 | |
| 	return *b.requiredMemory
 | |
| }
 | |
| 
 | |
| func (b *Backend) Config() fs.Config {
 | |
| 	return b.meta.KV()
 | |
| }
 | |
| 
 | |
| func (b *Backend) Get(name string) ml.Tensor {
 | |
| 	if t, ok := b.tensors[name]; ok {
 | |
| 		return &Tensor{b: b, t: t}
 | |
| 	}
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (b *Backend) NewContext() ml.Context {
 | |
| 	return b.NewContextSize(b.maxGraphNodes)
 | |
| }
 | |
| 
 | |
| func (b *Backend) NewContextSize(n int) ml.Context {
 | |
| 	if n > b.maxGraphNodes {
 | |
| 		panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
 | |
| 	}
 | |
| 
 | |
| 	var allocatedBuffers []C.ggml_backend_buffer_t
 | |
| 
 | |
| 	return &Context{
 | |
| 		b:             b,
 | |
| 		maxGraphNodes: n,
 | |
| 		ctx: C.ggml_init(C.struct_ggml_init_params{
 | |
| 			mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
 | |
| 			no_alloc: true,
 | |
| 		}),
 | |
| 		allocatedBuffers: &allocatedBuffers,
 | |
| 		layer:            -1,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (b *Backend) CacheConfig() ml.CacheConfig {
 | |
| 	if b.flashAttention {
 | |
| 		return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
 | |
| 	} else {
 | |
| 		return ml.CacheConfig{CachePadding: 32, PermutedV: true}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| type Context struct {
 | |
| 	b *Backend
 | |
| 
 | |
| 	ctx   *C.struct_ggml_context
 | |
| 	graph *C.struct_ggml_cgraph
 | |
| 
 | |
| 	// buft is the buffer type used for new tensors
 | |
| 	buft C.ggml_backend_buffer_type_t
 | |
| 
 | |
| 	// allocatedBuffers are buffers for tensors that we have allocated in this context
 | |
| 	// so that we can free them when we close the context
 | |
| 	allocatedBuffers *[]C.ggml_backend_buffer_t
 | |
| 
 | |
| 	// maxGraphNodes is the maximum allowed number of graph nodes in this context
 | |
| 	maxGraphNodes int
 | |
| 
 | |
| 	// layer is the graph layer that this context is allocating for - assumed to be cache
 | |
| 	layer int
 | |
| }
 | |
| 
 | |
| func (c *Context) Input() ml.Context {
 | |
| 	if c.b.input != nil {
 | |
| 		return &Context{
 | |
| 			b:                c.b,
 | |
| 			ctx:              c.ctx,
 | |
| 			buft:             c.b.input,
 | |
| 			allocatedBuffers: c.allocatedBuffers,
 | |
| 			maxGraphNodes:    c.maxGraphNodes,
 | |
| 			layer:            -1,
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| func (c *Context) Layer(i int) ml.Context {
 | |
| 	if layer, ok := c.b.layers[i]; ok {
 | |
| 		return &Context{
 | |
| 			b:                c.b,
 | |
| 			ctx:              c.ctx,
 | |
| 			buft:             layer.bt,
 | |
| 			allocatedBuffers: c.allocatedBuffers,
 | |
| 			maxGraphNodes:    c.maxGraphNodes,
 | |
| 			layer:            i,
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
 | |
| 	if c.graph == nil {
 | |
| 		c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
 | |
| 	}
 | |
| 
 | |
| 	for _, tensor := range tensors {
 | |
| 		C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
 | |
| 	}
 | |
| 
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| func (c *Context) Compute(tensors ...ml.Tensor) {
 | |
| 	if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS {
 | |
| 		panic(fmt.Errorf("error computing ggml graph: %v", status))
 | |
| 	}
 | |
| 	C.ggml_backend_sched_reset(c.b.sched)
 | |
| 
 | |
| 	needSync := true
 | |
| 	sync := func() {
 | |
| 		if needSync {
 | |
| 			C.ggml_backend_sched_synchronize(c.b.sched)
 | |
| 			needSync = false
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for _, t := range tensors {
 | |
| 		if C.ggml_nbytes(t.(*Tensor).t) > 0 {
 | |
| 			t.(*Tensor).sync = sync
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (c *Context) Reserve() {
 | |
| 	reserved := C.ggml_backend_sched_reserve(c.b.sched, c.graph)
 | |
| 
 | |
| 	slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
 | |
| 
 | |
| 	// Reserve may get called multiple times for different graphs - we just want the last run, which will contain the max allocations
 | |
| 	for _, bt := range c.b.schedBufts {
 | |
| 		c.b.btDeviceMemory[bt].Graph = ml.Memory{}
 | |
| 	}
 | |
| 
 | |
| 	for i := range c.b.schedBackends {
 | |
| 		bufferStatus := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i])
 | |
| 
 | |
| 		graph := &c.b.btDeviceMemory[c.b.schedBufts[i]].Graph
 | |
| 		graph.Size += uint64(bufferStatus.size)
 | |
| 		if c.b.allocMemory {
 | |
| 			if bufferStatus.allocated && graph.Status != ml.Failed {
 | |
| 				graph.Status = ml.Allocated
 | |
| 			} else {
 | |
| 				graph.Status = ml.Failed
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		slog.Log(context.TODO(), logutil.LevelTrace, "compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])),
 | |
| 			"buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])), "size", format.HumanBytes2(uint64(bufferStatus.size)))
 | |
| 	}
 | |
| 
 | |
| 	if !reserved {
 | |
| 		panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (c *Context) MaxGraphNodes() int {
 | |
| 	return c.maxGraphNodes
 | |
| }
 | |
| 
 | |
| func shapeToGGML(shape []int) *C.int64_t {
 | |
| 	sh := make([]C.int64_t, len(shape))
 | |
| 	for i, s := range shape {
 | |
| 		sh[i] = C.int64_t(s)
 | |
| 	}
 | |
| 
 | |
| 	return &sh[0]
 | |
| }
 | |
| 
 | |
| func pad(length, pad C.size_t) C.size_t {
 | |
| 	return ((length + pad - 1) / pad) * pad
 | |
| }
 | |
| 
 | |
| func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
 | |
| 	if c.buft == nil {
 | |
| 		panic("set Input or Layer before creating tensors")
 | |
| 	}
 | |
| 
 | |
| 	var cdtype uint32
 | |
| 	switch dtype {
 | |
| 	case ml.DTypeF32:
 | |
| 		cdtype = C.GGML_TYPE_F32
 | |
| 	case ml.DTypeF16:
 | |
| 		cdtype = C.GGML_TYPE_F16
 | |
| 	case ml.DTypeQ80:
 | |
| 		cdtype = C.GGML_TYPE_Q8_0
 | |
| 	case ml.DTypeQ40:
 | |
| 		cdtype = C.GGML_TYPE_Q4_0
 | |
| 	case ml.DTypeI32:
 | |
| 		cdtype = C.GGML_TYPE_I32
 | |
| 	case ml.DTypeMXFP4:
 | |
| 		cdtype = C.GGML_TYPE_MXFP4
 | |
| 	default:
 | |
| 		panic("unsupported dtype")
 | |
| 	}
 | |
| 
 | |
| 	if len(shape) < 1 || shape[0] == 0 {
 | |
| 		var shape C.int64_t = 0
 | |
| 		return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
 | |
| 	} else if len(shape) > 4 {
 | |
| 		panic("unsupported number of dimensions")
 | |
| 	}
 | |
| 
 | |
| 	for _, dim := range shape {
 | |
| 		if dim < 1 {
 | |
| 			panic("invalid shape")
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
 | |
| 	size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
 | |
| 
 | |
| 	b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
 | |
| 	if c.layer >= 0 {
 | |
| 		cache := &c.b.btDeviceMemory[c.buft].Cache[c.layer]
 | |
| 
 | |
| 		cache.Size += uint64(size)
 | |
| 		if c.b.allocMemory {
 | |
| 			if b != nil {
 | |
| 				cache.Status = ml.Allocated
 | |
| 			} else {
 | |
| 				cache.Status = ml.Failed
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if b == nil {
 | |
| 		panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
 | |
| 	}
 | |
| 
 | |
| 	*c.allocatedBuffers = append(*c.allocatedBuffers, b)
 | |
| 	C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
 | |
| 	return &Tensor{b: c.b, t: t}
 | |
| }
 | |
| 
 | |
| func (c *Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
 | |
| 	return c.newTensor(dtype, shape)
 | |
| }
 | |
| 
 | |
| func (c *Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
 | |
| 	t := c.newTensor(dtype, shape)
 | |
| 	if c.b.allocMemory {
 | |
| 		C.ggml_set_zero(t.(*Tensor).t)
 | |
| 	}
 | |
| 	return t
 | |
| }
 | |
| 
 | |
| func checkShape[S ~[]E, E any](s S, shape ...int) {
 | |
| 	n := len(s)
 | |
| 
 | |
| 	if n == 0 {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	for _, v := range shape {
 | |
| 		n /= v
 | |
| 	}
 | |
| 
 | |
| 	if n != 1 {
 | |
| 		panic(fmt.Errorf("invalid shape: %v", shape))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (c *Context) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
 | |
| 	checkShape(s, shape...)
 | |
| 
 | |
| 	t := c.newTensor(ml.DTypeF32, shape)
 | |
| 
 | |
| 	if c.b.allocMemory && len(s) > 0 {
 | |
| 		C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
 | |
| 	}
 | |
| 
 | |
| 	return t
 | |
| }
 | |
| 
 | |
| func (c *Context) FromIntSlice(s []int32, shape ...int) ml.Tensor {
 | |
| 	checkShape(s, shape...)
 | |
| 
 | |
| 	t := c.newTensor(ml.DTypeI32, shape)
 | |
| 
 | |
| 	if c.b.allocMemory && len(s) > 0 {
 | |
| 		C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
 | |
| 	}
 | |
| 
 | |
| 	return t
 | |
| }
 | |
| 
 | |
| func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
 | |
| 	switch dtype {
 | |
| 	case ml.DTypeF32:
 | |
| 		// ggml_arange creates a float32 tensor
 | |
| 		return &Tensor{
 | |
| 			b: c.b,
 | |
| 			t: C.ggml_arange(c.ctx, C.float(start), C.float(stop), C.float(step)),
 | |
| 		}
 | |
| 	case ml.DTypeI32:
 | |
| 		// ggml_cast does not support float32 to int32 conversion
 | |
| 		arange := make([]int32, 0, int((stop-start)/step))
 | |
| 		for i := start; i < stop; i += step {
 | |
| 			arange = append(arange, int32(i))
 | |
| 		}
 | |
| 
 | |
| 		return c.Input().FromIntSlice(arange, len(arange))
 | |
| 	default:
 | |
| 		panic("unsupported dtype for arange")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (c *Context) Close() {
 | |
| 	if c != nil {
 | |
| 		for _, b := range *c.allocatedBuffers {
 | |
| 			C.ggml_backend_buffer_free(b)
 | |
| 		}
 | |
| 		*c.allocatedBuffers = nil
 | |
| 
 | |
| 		C.ggml_free(c.ctx)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| type Tensor struct {
 | |
| 	b    *Backend
 | |
| 	t    *C.struct_ggml_tensor
 | |
| 	sync func()
 | |
| }
 | |
| 
 | |
| func (t *Tensor) LogValue() slog.Value {
 | |
| 	return slog.GroupValue(
 | |
| 		slog.String("name", C.GoString(C.ggml_get_name(t.t))),
 | |
| 		slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
 | |
| 		slog.Any("shape", t.Shape()),
 | |
| 	)
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Dim(n int) int {
 | |
| 	return int(t.t.ne[n])
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Stride(n int) int {
 | |
| 	return int(t.t.nb[n])
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Shape() []int {
 | |
| 	shape := make([]int, C.ggml_n_dims(t.t))
 | |
| 	for i := range shape {
 | |
| 		shape[i] = t.Dim(i)
 | |
| 	}
 | |
| 
 | |
| 	return shape
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Bytes() (data []byte) {
 | |
| 	if t.sync != nil {
 | |
| 		data = make([]byte, C.ggml_nbytes(t.t))
 | |
| 
 | |
| 		t.sync()
 | |
| 		C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
 | |
| 	}
 | |
| 
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Floats() (data []float32) {
 | |
| 	if t.sync != nil {
 | |
| 		data = make([]float32, C.ggml_nelements(t.t))
 | |
| 
 | |
| 		t.sync()
 | |
| 		C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
 | |
| 	}
 | |
| 
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (t *Tensor) DType() ml.DType {
 | |
| 	switch t.t._type {
 | |
| 	case C.GGML_TYPE_F32:
 | |
| 		return ml.DTypeF32
 | |
| 	case C.GGML_TYPE_F16:
 | |
| 		return ml.DTypeF16
 | |
| 	case C.GGML_TYPE_Q8_0:
 | |
| 		return ml.DTypeQ80
 | |
| 	case C.GGML_TYPE_Q4_0:
 | |
| 		return ml.DTypeQ40
 | |
| 	case C.GGML_TYPE_I32:
 | |
| 		return ml.DTypeI32
 | |
| 	case C.GGML_TYPE_MXFP4:
 | |
| 		return ml.DTypeMXFP4
 | |
| 	default:
 | |
| 		return ml.DTypeOther
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_neg(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Sub(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_sub(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
 | |
| 	if dim < 0 || dim >= C.GGML_MAX_DIMS {
 | |
| 		panic("invalid dimension")
 | |
| 	}
 | |
| 
 | |
| 	shape := make([]C.int64_t, C.GGML_MAX_DIMS)
 | |
| 	for i := range C.GGML_MAX_DIMS {
 | |
| 		if i == dim {
 | |
| 			shape[i] = C.int64_t(t.Dim(i) * n)
 | |
| 		} else {
 | |
| 			shape[i] = C.int64_t(t.Dim(i))
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape))
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
 | |
| 	if len(s) > 0 {
 | |
| 		return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
 | |
| 	}
 | |
| 
 | |
| 	return t
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Contiguous(ctx ml.Context, shape ...int) ml.Tensor {
 | |
| 	switch len(shape) {
 | |
| 	case 0:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_cont(ctx.(*Context).ctx, t.t),
 | |
| 		}
 | |
| 	case 1:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_cont_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
 | |
| 		}
 | |
| 	case 2:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_cont_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
 | |
| 		}
 | |
| 	case 3:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_cont_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
 | |
| 		}
 | |
| 	case 4:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_cont_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
 | |
| 		}
 | |
| 	default:
 | |
| 		panic("unsupported number of dimensions")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Div(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_div(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 | |
| 	mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
 | |
| 	C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
 | |
| 
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: mul,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) MulmatID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_mul_mat_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) AddID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_add_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
 | |
| 	tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
 | |
| 	if w != nil {
 | |
| 		tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
 | |
| 		if b != nil {
 | |
| 			tt = C.ggml_add(ctx.(*Context).ctx, tt, b.(*Tensor).t)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return &Tensor{b: t.b, t: tt}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
 | |
| 	tt := C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))
 | |
| 	if w != nil {
 | |
| 		tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
 | |
| 	}
 | |
| 
 | |
| 	return &Tensor{b: t.b, t: tt}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
 | |
| 	if len(shape) != 4 {
 | |
| 		panic("expected 4 dimensions")
 | |
| 	} else if shape[3] != 0 {
 | |
| 		panic("cuda does not support 4d tensors")
 | |
| 	}
 | |
| 
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
 | |
| 	if len(shape) != 4 {
 | |
| 		panic("expected 4 dimensions")
 | |
| 	}
 | |
| 
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
 | |
| 	switch len(shape) {
 | |
| 	case 1:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
 | |
| 		}
 | |
| 	case 2:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
 | |
| 		}
 | |
| 	case 3:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
 | |
| 		}
 | |
| 	case 4:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
 | |
| 		}
 | |
| 	default:
 | |
| 		panic("unsupported number of dimensions")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) SumRows(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_sum_rows(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Sin(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_sin(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Cos(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_cos(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Sigmoid(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_sigmoid_inplace(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
 | |
| 	switch len(shape) {
 | |
| 	case 1:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
 | |
| 		}
 | |
| 	case 3:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
 | |
| 				C.int64_t(shape[0]), C.int64_t(shape[2]),
 | |
| 				C.size_t(shape[1]),
 | |
| 				C.size_t(offset)),
 | |
| 		}
 | |
| 	case 5:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
 | |
| 				C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
 | |
| 				C.size_t(shape[1]), C.size_t(shape[3]),
 | |
| 				C.size_t(offset)),
 | |
| 		}
 | |
| 	case 7:
 | |
| 		return &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
 | |
| 				C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
 | |
| 				C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
 | |
| 				C.size_t(offset)),
 | |
| 		}
 | |
| 	default:
 | |
| 		panic("unsupported number of dimensions")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase, ropeScale float32, options ...func(*rope.Options)) ml.Tensor {
 | |
| 	// Default options
 | |
| 	opts := rope.Options{
 | |
| 		Factors:               &Tensor{},
 | |
| 		OriginalContextLength: 131072,
 | |
| 		ExtrapolationFactor:   0.,
 | |
| 		AttentionFactor:       1.,
 | |
| 		BetaFast:              32.,
 | |
| 		BetaSlow:              1.,
 | |
| 	}
 | |
| 
 | |
| 	// Apply any provided options
 | |
| 	for _, option := range options {
 | |
| 		option(&opts)
 | |
| 	}
 | |
| 
 | |
| 	dequant := t.t
 | |
| 	if C.ggml_is_quantized(t.t._type) {
 | |
| 		dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
 | |
| 	}
 | |
| 
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_rope_ext(
 | |
| 			ctx.(*Context).ctx,
 | |
| 			dequant,
 | |
| 			positions.(*Tensor).t,
 | |
| 			opts.Factors.(*Tensor).t,
 | |
| 			C.int(ropeDim),
 | |
| 			C.int(opts.Type),
 | |
| 			C.int(opts.OriginalContextLength),
 | |
| 			C.float(ropeBase),
 | |
| 			C.float(ropeScale),
 | |
| 			C.float(opts.ExtrapolationFactor),
 | |
| 			C.float(opts.AttentionFactor),
 | |
| 			C.float(opts.BetaFast),
 | |
| 			C.float(opts.BetaSlow),
 | |
| 		),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) QuickGELU(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_gelu_quick_inplace(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) RELU(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_relu_inplace(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) SwiGLU(ctx ml.Context, up ml.Tensor, alpha, limit float32) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_swiglu_oai(ctx.(*Context).ctx, t.t, up.(*Tensor).t, C.float(alpha), C.float(limit)),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
 | |
| 	var tt *C.struct_ggml_tensor
 | |
| 	switch len(strides) {
 | |
| 	case 0:
 | |
| 		tt = C.ggml_set_1d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset))
 | |
| 	case 1:
 | |
| 		tt = C.ggml_set_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset), C.size_t(strides[0]))
 | |
| 	default:
 | |
| 		panic("unsupported number of dimensions")
 | |
| 	}
 | |
| 
 | |
| 	return &Tensor{b: t.b, t: tt}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask, sinks ml.Tensor, scale float64) ml.Tensor {
 | |
| 	var kqMask *C.struct_ggml_tensor
 | |
| 	if mask != nil {
 | |
| 		kqMask = mask.(*Tensor).t
 | |
| 	}
 | |
| 
 | |
| 	query := t.Permute(ctx, 0, 2, 1, 3)
 | |
| 	key = key.Permute(ctx, 0, 2, 1, 3)
 | |
| 
 | |
| 	if t.b.flashAttention {
 | |
| 		value = value.Permute(ctx, 0, 2, 1, 3)
 | |
| 
 | |
| 		kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
 | |
| 		if sinks != nil {
 | |
| 			C.ggml_flash_attn_ext_add_sinks(kqv, sinks.(*Tensor).t)
 | |
| 		}
 | |
| 		C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
 | |
| 		return &Tensor{b: t.b, t: kqv}
 | |
| 	} else {
 | |
| 		kq := key.MulmatFullPrec(ctx, query)
 | |
| 		kq = &Tensor{
 | |
| 			b: t.b,
 | |
| 			t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
 | |
| 		}
 | |
| 		if sinks != nil {
 | |
| 			C.ggml_soft_max_add_sinks(kq.(*Tensor).t, sinks.(*Tensor).t)
 | |
| 		}
 | |
| 
 | |
| 		kqv := value.Mulmat(ctx, kq)
 | |
| 		return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_dup(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Mean(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_mean(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Variance(ctx ml.Context) ml.Tensor {
 | |
| 	return t.Add(ctx, t.Mean(ctx).Scale(ctx, -1)).
 | |
| 		Sqr(ctx).
 | |
| 		SumRows(ctx).
 | |
| 		Scale(ctx, 1/float64(t.Dim(0)))
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Stddev(ctx ml.Context) ml.Tensor {
 | |
| 	return t.Variance(ctx).Sqrt(ctx)
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Sqr(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_sqr(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Sqrt(ctx ml.Context) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_sqrt(ctx.(*Context).ctx, t.t),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *Tensor) Clamp(ctx ml.Context, min, max float32) ml.Tensor {
 | |
| 	return &Tensor{
 | |
| 		b: t.b,
 | |
| 		t: C.ggml_clamp(ctx.(*Context).ctx, t.t, C.float(min), C.float(max)),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (c Context) FromBytes(dtype ml.DType, s []uint8, shape ...int) ml.Tensor {
 | |
| 	// Unchecked to handle quantized types
 | |
| 	t := c.newTensor(dtype, shape)
 | |
| 	if c.b.allocMemory && len(s) > 0 {
 | |
| 		C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
 | |
| 	}
 | |
| 
 | |
| 	return t
 | |
| }
 |