mirror of https://github.com/ollama/ollama.git
				
				
				
			
		
			
				
	
	
		
			358 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			358 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
//go:build linux || windows
 | 
						|
 | 
						|
package gpu
 | 
						|
 | 
						|
/*
 | 
						|
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
 | 
						|
#cgo windows LDFLAGS: -lpthread
 | 
						|
 | 
						|
#include "gpu_info.h"
 | 
						|
 | 
						|
*/
 | 
						|
import "C"
 | 
						|
import (
 | 
						|
	"fmt"
 | 
						|
	"log/slog"
 | 
						|
	"os"
 | 
						|
	"path/filepath"
 | 
						|
	"runtime"
 | 
						|
	"strconv"
 | 
						|
	"strings"
 | 
						|
	"sync"
 | 
						|
	"unsafe"
 | 
						|
 | 
						|
	"github.com/ollama/ollama/format"
 | 
						|
)
 | 
						|
 | 
						|
type handles struct {
 | 
						|
	nvml   *C.nvml_handle_t
 | 
						|
	cudart *C.cudart_handle_t
 | 
						|
}
 | 
						|
 | 
						|
const (
 | 
						|
	cudaMinimumMemory = 457 * format.MebiByte
 | 
						|
	rocmMinimumMemory = 457 * format.MebiByte
 | 
						|
)
 | 
						|
 | 
						|
var gpuMutex sync.Mutex
 | 
						|
 | 
						|
// With our current CUDA compile flags, older than 5.0 will not work properly
 | 
						|
var CudaComputeMin = [2]C.int{5, 0}
 | 
						|
 | 
						|
// Possible locations for the nvidia-ml library
 | 
						|
var NvmlLinuxGlobs = []string{
 | 
						|
	"/usr/local/cuda/lib64/libnvidia-ml.so*",
 | 
						|
	"/usr/lib/x86_64-linux-gnu/nvidia/current/libnvidia-ml.so*",
 | 
						|
	"/usr/lib/x86_64-linux-gnu/libnvidia-ml.so*",
 | 
						|
	"/usr/lib/wsl/lib/libnvidia-ml.so*",
 | 
						|
	"/usr/lib/wsl/drivers/*/libnvidia-ml.so*",
 | 
						|
	"/opt/cuda/lib64/libnvidia-ml.so*",
 | 
						|
	"/usr/lib*/libnvidia-ml.so*",
 | 
						|
	"/usr/lib/aarch64-linux-gnu/nvidia/current/libnvidia-ml.so*",
 | 
						|
	"/usr/lib/aarch64-linux-gnu/libnvidia-ml.so*",
 | 
						|
	"/usr/local/lib*/libnvidia-ml.so*",
 | 
						|
 | 
						|
	// TODO: are these stubs ever valid?
 | 
						|
	"/opt/cuda/targets/x86_64-linux/lib/stubs/libnvidia-ml.so*",
 | 
						|
}
 | 
						|
 | 
						|
var NvmlWindowsGlobs = []string{
 | 
						|
	"c:\\Windows\\System32\\nvml.dll",
 | 
						|
}
 | 
						|
 | 
						|
var CudartLinuxGlobs = []string{
 | 
						|
	"/usr/local/cuda/lib64/libcudart.so*",
 | 
						|
	"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
 | 
						|
	"/usr/lib/x86_64-linux-gnu/libcudart.so*",
 | 
						|
	"/usr/lib/wsl/lib/libcudart.so*",
 | 
						|
	"/usr/lib/wsl/drivers/*/libcudart.so*",
 | 
						|
	"/opt/cuda/lib64/libcudart.so*",
 | 
						|
	"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
 | 
						|
	"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
 | 
						|
	"/usr/lib/aarch64-linux-gnu/libcudart.so*",
 | 
						|
	"/usr/local/cuda/lib*/libcudart.so*",
 | 
						|
	"/usr/lib*/libcudart.so*",
 | 
						|
	"/usr/local/lib*/libcudart.so*",
 | 
						|
}
 | 
						|
 | 
						|
var CudartWindowsGlobs = []string{
 | 
						|
	"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
 | 
						|
}
 | 
						|
 | 
						|
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
 | 
						|
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
 | 
						|
var CudaTegra string = os.Getenv("JETSON_JETPACK")
 | 
						|
 | 
						|
// Note: gpuMutex must already be held
 | 
						|
func initGPUHandles() *handles {
 | 
						|
 | 
						|
	// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
 | 
						|
 | 
						|
	gpuHandles := &handles{nil, nil}
 | 
						|
	var nvmlMgmtName string
 | 
						|
	var nvmlMgmtPatterns []string
 | 
						|
	var cudartMgmtName string
 | 
						|
	var cudartMgmtPatterns []string
 | 
						|
 | 
						|
	tmpDir, _ := PayloadsDir()
 | 
						|
	switch runtime.GOOS {
 | 
						|
	case "windows":
 | 
						|
		nvmlMgmtName = "nvml.dll"
 | 
						|
		nvmlMgmtPatterns = make([]string, len(NvmlWindowsGlobs))
 | 
						|
		copy(nvmlMgmtPatterns, NvmlWindowsGlobs)
 | 
						|
		cudartMgmtName = "cudart64_*.dll"
 | 
						|
		localAppData := os.Getenv("LOCALAPPDATA")
 | 
						|
		cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)}
 | 
						|
		cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...)
 | 
						|
	case "linux":
 | 
						|
		nvmlMgmtName = "libnvidia-ml.so"
 | 
						|
		nvmlMgmtPatterns = make([]string, len(NvmlLinuxGlobs))
 | 
						|
		copy(nvmlMgmtPatterns, NvmlLinuxGlobs)
 | 
						|
		cudartMgmtName = "libcudart.so*"
 | 
						|
		if tmpDir != "" {
 | 
						|
			// TODO - add "payloads" for subprocess
 | 
						|
			cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)}
 | 
						|
		}
 | 
						|
		cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
 | 
						|
	default:
 | 
						|
		return gpuHandles
 | 
						|
	}
 | 
						|
 | 
						|
	slog.Info("Detecting GPU type")
 | 
						|
	cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns)
 | 
						|
	if len(cudartLibPaths) > 0 {
 | 
						|
		cudart := LoadCUDARTMgmt(cudartLibPaths)
 | 
						|
		if cudart != nil {
 | 
						|
			slog.Info("Nvidia GPU detected via cudart")
 | 
						|
			gpuHandles.cudart = cudart
 | 
						|
			return gpuHandles
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// TODO once we build confidence, remove this and the gpu_info_nvml.[ch] files
 | 
						|
	nvmlLibPaths := FindGPULibs(nvmlMgmtName, nvmlMgmtPatterns)
 | 
						|
	if len(nvmlLibPaths) > 0 {
 | 
						|
		nvml := LoadNVMLMgmt(nvmlLibPaths)
 | 
						|
		if nvml != nil {
 | 
						|
			slog.Info("Nvidia GPU detected via nvidia-ml")
 | 
						|
			gpuHandles.nvml = nvml
 | 
						|
			return gpuHandles
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return gpuHandles
 | 
						|
}
 | 
						|
 | 
						|
func GetGPUInfo() GpuInfo {
 | 
						|
	// TODO - consider exploring lspci (and equivalent on windows) to check for
 | 
						|
	// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
 | 
						|
	gpuMutex.Lock()
 | 
						|
	defer gpuMutex.Unlock()
 | 
						|
 | 
						|
	gpuHandles := initGPUHandles()
 | 
						|
	defer func() {
 | 
						|
		if gpuHandles.nvml != nil {
 | 
						|
			C.nvml_release(*gpuHandles.nvml)
 | 
						|
		}
 | 
						|
		if gpuHandles.cudart != nil {
 | 
						|
			C.cudart_release(*gpuHandles.cudart)
 | 
						|
		}
 | 
						|
	}()
 | 
						|
 | 
						|
	// All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX
 | 
						|
	cpuVariant := GetCPUVariant()
 | 
						|
	if cpuVariant == "" && runtime.GOARCH == "amd64" {
 | 
						|
		slog.Warn("CPU does not have AVX or AVX2, disabling GPU support.")
 | 
						|
	}
 | 
						|
 | 
						|
	var memInfo C.mem_info_t
 | 
						|
	resp := GpuInfo{}
 | 
						|
	if gpuHandles.nvml != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") {
 | 
						|
		C.nvml_check_vram(*gpuHandles.nvml, &memInfo)
 | 
						|
		if memInfo.err != nil {
 | 
						|
			slog.Info(fmt.Sprintf("[nvidia-ml] error looking up NVML GPU memory: %s", C.GoString(memInfo.err)))
 | 
						|
			C.free(unsafe.Pointer(memInfo.err))
 | 
						|
		} else if memInfo.count > 0 {
 | 
						|
			// Verify minimum compute capability
 | 
						|
			var cc C.nvml_compute_capability_t
 | 
						|
			C.nvml_compute_capability(*gpuHandles.nvml, &cc)
 | 
						|
			if cc.err != nil {
 | 
						|
				slog.Info(fmt.Sprintf("[nvidia-ml] error looking up NVML GPU compute capability: %s", C.GoString(cc.err)))
 | 
						|
				C.free(unsafe.Pointer(cc.err))
 | 
						|
			} else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) {
 | 
						|
				slog.Info(fmt.Sprintf("[nvidia-ml] NVML CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
 | 
						|
				resp.Library = "cuda"
 | 
						|
				resp.MinimumMemory = cudaMinimumMemory
 | 
						|
			} else {
 | 
						|
				slog.Info(fmt.Sprintf("[nvidia-ml] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else if gpuHandles.cudart != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") {
 | 
						|
		C.cudart_check_vram(*gpuHandles.cudart, &memInfo)
 | 
						|
		if memInfo.err != nil {
 | 
						|
			slog.Info(fmt.Sprintf("[cudart] error looking up CUDART GPU memory: %s", C.GoString(memInfo.err)))
 | 
						|
			C.free(unsafe.Pointer(memInfo.err))
 | 
						|
		} else if memInfo.count > 0 {
 | 
						|
			// Verify minimum compute capability
 | 
						|
			var cc C.cudart_compute_capability_t
 | 
						|
			C.cudart_compute_capability(*gpuHandles.cudart, &cc)
 | 
						|
			if cc.err != nil {
 | 
						|
				slog.Info(fmt.Sprintf("[cudart] error looking up CUDA compute capability: %s", C.GoString(cc.err)))
 | 
						|
				C.free(unsafe.Pointer(cc.err))
 | 
						|
			} else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) {
 | 
						|
				slog.Info(fmt.Sprintf("[cudart] CUDART CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
 | 
						|
				resp.Library = "cuda"
 | 
						|
				resp.MinimumMemory = cudaMinimumMemory
 | 
						|
			} else {
 | 
						|
				slog.Info(fmt.Sprintf("[cudart] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		AMDGetGPUInfo(&resp)
 | 
						|
		if resp.Library != "" {
 | 
						|
			resp.MinimumMemory = rocmMinimumMemory
 | 
						|
			return resp
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if resp.Library == "" {
 | 
						|
		C.cpu_check_ram(&memInfo)
 | 
						|
		resp.Library = "cpu"
 | 
						|
		resp.Variant = cpuVariant
 | 
						|
	}
 | 
						|
	if memInfo.err != nil {
 | 
						|
		slog.Info(fmt.Sprintf("error looking up CPU memory: %s", C.GoString(memInfo.err)))
 | 
						|
		C.free(unsafe.Pointer(memInfo.err))
 | 
						|
		return resp
 | 
						|
	}
 | 
						|
 | 
						|
	resp.DeviceCount = uint32(memInfo.count)
 | 
						|
	resp.FreeMemory = uint64(memInfo.free)
 | 
						|
	resp.TotalMemory = uint64(memInfo.total)
 | 
						|
	return resp
 | 
						|
}
 | 
						|
 | 
						|
func getCPUMem() (memInfo, error) {
 | 
						|
	var ret memInfo
 | 
						|
	var info C.mem_info_t
 | 
						|
	C.cpu_check_ram(&info)
 | 
						|
	if info.err != nil {
 | 
						|
		defer C.free(unsafe.Pointer(info.err))
 | 
						|
		return ret, fmt.Errorf(C.GoString(info.err))
 | 
						|
	}
 | 
						|
	ret.FreeMemory = uint64(info.free)
 | 
						|
	ret.TotalMemory = uint64(info.total)
 | 
						|
	return ret, nil
 | 
						|
}
 | 
						|
 | 
						|
func CheckVRAM() (int64, error) {
 | 
						|
	userLimit := os.Getenv("OLLAMA_MAX_VRAM")
 | 
						|
	if userLimit != "" {
 | 
						|
		avail, err := strconv.ParseInt(userLimit, 10, 64)
 | 
						|
		if err != nil {
 | 
						|
			return 0, fmt.Errorf("Invalid OLLAMA_MAX_VRAM setting %s: %s", userLimit, err)
 | 
						|
		}
 | 
						|
		slog.Info(fmt.Sprintf("user override OLLAMA_MAX_VRAM=%d", avail))
 | 
						|
		return avail, nil
 | 
						|
	}
 | 
						|
	gpuInfo := GetGPUInfo()
 | 
						|
	if gpuInfo.FreeMemory > 0 && (gpuInfo.Library == "cuda" || gpuInfo.Library == "rocm") {
 | 
						|
		return int64(gpuInfo.FreeMemory), nil
 | 
						|
	}
 | 
						|
 | 
						|
	return 0, fmt.Errorf("no GPU detected") // TODO - better handling of CPU based memory determiniation
 | 
						|
}
 | 
						|
 | 
						|
func FindGPULibs(baseLibName string, patterns []string) []string {
 | 
						|
	// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
 | 
						|
	var ldPaths []string
 | 
						|
	gpuLibPaths := []string{}
 | 
						|
	slog.Info(fmt.Sprintf("Searching for GPU management library %s", baseLibName))
 | 
						|
 | 
						|
	switch runtime.GOOS {
 | 
						|
	case "windows":
 | 
						|
		ldPaths = strings.Split(os.Getenv("PATH"), ";")
 | 
						|
	case "linux":
 | 
						|
		ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
 | 
						|
	default:
 | 
						|
		return gpuLibPaths
 | 
						|
	}
 | 
						|
	// Start with whatever we find in the PATH/LD_LIBRARY_PATH
 | 
						|
	for _, ldPath := range ldPaths {
 | 
						|
		d, err := filepath.Abs(ldPath)
 | 
						|
		if err != nil {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
 | 
						|
	}
 | 
						|
	slog.Debug(fmt.Sprintf("gpu management search paths: %v", patterns))
 | 
						|
	for _, pattern := range patterns {
 | 
						|
		// Ignore glob discovery errors
 | 
						|
		matches, _ := filepath.Glob(pattern)
 | 
						|
		for _, match := range matches {
 | 
						|
			// Resolve any links so we don't try the same lib multiple times
 | 
						|
			// and weed out any dups across globs
 | 
						|
			libPath := match
 | 
						|
			tmp := match
 | 
						|
			var err error
 | 
						|
			for ; err == nil; tmp, err = os.Readlink(libPath) {
 | 
						|
				if !filepath.IsAbs(tmp) {
 | 
						|
					tmp = filepath.Join(filepath.Dir(libPath), tmp)
 | 
						|
				}
 | 
						|
				libPath = tmp
 | 
						|
			}
 | 
						|
			new := true
 | 
						|
			for _, cmp := range gpuLibPaths {
 | 
						|
				if cmp == libPath {
 | 
						|
					new = false
 | 
						|
					break
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if new {
 | 
						|
				gpuLibPaths = append(gpuLibPaths, libPath)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	slog.Info(fmt.Sprintf("Discovered GPU libraries: %v", gpuLibPaths))
 | 
						|
	return gpuLibPaths
 | 
						|
}
 | 
						|
 | 
						|
func LoadNVMLMgmt(nvmlLibPaths []string) *C.nvml_handle_t {
 | 
						|
	var resp C.nvml_init_resp_t
 | 
						|
	resp.ch.verbose = getVerboseState()
 | 
						|
	for _, libPath := range nvmlLibPaths {
 | 
						|
		lib := C.CString(libPath)
 | 
						|
		defer C.free(unsafe.Pointer(lib))
 | 
						|
		C.nvml_init(lib, &resp)
 | 
						|
		if resp.err != nil {
 | 
						|
			slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
 | 
						|
			C.free(unsafe.Pointer(resp.err))
 | 
						|
		} else {
 | 
						|
			return &resp.ch
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
func LoadCUDARTMgmt(cudartLibPaths []string) *C.cudart_handle_t {
 | 
						|
	var resp C.cudart_init_resp_t
 | 
						|
	resp.ch.verbose = getVerboseState()
 | 
						|
	for _, libPath := range cudartLibPaths {
 | 
						|
		lib := C.CString(libPath)
 | 
						|
		defer C.free(unsafe.Pointer(lib))
 | 
						|
		C.cudart_init(lib, &resp)
 | 
						|
		if resp.err != nil {
 | 
						|
			slog.Info(fmt.Sprintf("Unable to load cudart CUDA management library %s: %s", libPath, C.GoString(resp.err)))
 | 
						|
			C.free(unsafe.Pointer(resp.err))
 | 
						|
		} else {
 | 
						|
			return &resp.ch
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
func getVerboseState() C.uint16_t {
 | 
						|
	if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
 | 
						|
		return C.uint16_t(1)
 | 
						|
	}
 | 
						|
	return C.uint16_t(0)
 | 
						|
}
 |