347 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			347 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
import os
 | 
						|
import re
 | 
						|
import logging
 | 
						|
from typing import List
 | 
						|
import requests
 | 
						|
 | 
						|
 | 
						|
from huggingface_hub import snapshot_download
 | 
						|
from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm
 | 
						|
 | 
						|
 | 
						|
from config import SRC_LOG_LEVELS, CHROMA_CLIENT
 | 
						|
 | 
						|
 | 
						|
log = logging.getLogger(__name__)
 | 
						|
log.setLevel(SRC_LOG_LEVELS["RAG"])
 | 
						|
 | 
						|
 | 
						|
def query_doc(collection_name: str, query: str, k: int, embedding_function):
 | 
						|
    try:
 | 
						|
        # if you use docker use the model from the environment variable
 | 
						|
        collection = CHROMA_CLIENT.get_collection(
 | 
						|
            name=collection_name,
 | 
						|
            embedding_function=embedding_function,
 | 
						|
        )
 | 
						|
        result = collection.query(
 | 
						|
            query_texts=[query],
 | 
						|
            n_results=k,
 | 
						|
        )
 | 
						|
        return result
 | 
						|
    except Exception as e:
 | 
						|
        raise e
 | 
						|
 | 
						|
 | 
						|
def query_embeddings_doc(collection_name: str, query_embeddings, k: int):
 | 
						|
    try:
 | 
						|
        # if you use docker use the model from the environment variable
 | 
						|
        log.info(f"query_embeddings_doc {query_embeddings}")
 | 
						|
        collection = CHROMA_CLIENT.get_collection(
 | 
						|
            name=collection_name,
 | 
						|
        )
 | 
						|
        result = collection.query(
 | 
						|
            query_embeddings=[query_embeddings],
 | 
						|
            n_results=k,
 | 
						|
        )
 | 
						|
 | 
						|
        log.info(f"query_embeddings_doc:result {result}")
 | 
						|
        return result
 | 
						|
    except Exception as e:
 | 
						|
        raise e
 | 
						|
 | 
						|
 | 
						|
def merge_and_sort_query_results(query_results, k):
 | 
						|
    # Initialize lists to store combined data
 | 
						|
    combined_ids = []
 | 
						|
    combined_distances = []
 | 
						|
    combined_metadatas = []
 | 
						|
    combined_documents = []
 | 
						|
 | 
						|
    # Combine data from each dictionary
 | 
						|
    for data in query_results:
 | 
						|
        combined_ids.extend(data["ids"][0])
 | 
						|
        combined_distances.extend(data["distances"][0])
 | 
						|
        combined_metadatas.extend(data["metadatas"][0])
 | 
						|
        combined_documents.extend(data["documents"][0])
 | 
						|
 | 
						|
    # Create a list of tuples (distance, id, metadata, document)
 | 
						|
    combined = list(
 | 
						|
        zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
 | 
						|
    )
 | 
						|
 | 
						|
    # Sort the list based on distances
 | 
						|
    combined.sort(key=lambda x: x[0])
 | 
						|
 | 
						|
    # Unzip the sorted list
 | 
						|
    sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)
 | 
						|
 | 
						|
    # Slicing the lists to include only k elements
 | 
						|
    sorted_distances = list(sorted_distances)[:k]
 | 
						|
    sorted_ids = list(sorted_ids)[:k]
 | 
						|
    sorted_metadatas = list(sorted_metadatas)[:k]
 | 
						|
    sorted_documents = list(sorted_documents)[:k]
 | 
						|
 | 
						|
    # Create the output dictionary
 | 
						|
    merged_query_results = {
 | 
						|
        "ids": [sorted_ids],
 | 
						|
        "distances": [sorted_distances],
 | 
						|
        "metadatas": [sorted_metadatas],
 | 
						|
        "documents": [sorted_documents],
 | 
						|
        "embeddings": None,
 | 
						|
        "uris": None,
 | 
						|
        "data": None,
 | 
						|
    }
 | 
						|
 | 
						|
    return merged_query_results
 | 
						|
 | 
						|
 | 
						|
def query_collection(
 | 
						|
    collection_names: List[str], query: str, k: int, embedding_function
 | 
						|
):
 | 
						|
 | 
						|
    results = []
 | 
						|
 | 
						|
    for collection_name in collection_names:
 | 
						|
        try:
 | 
						|
            # if you use docker use the model from the environment variable
 | 
						|
            collection = CHROMA_CLIENT.get_collection(
 | 
						|
                name=collection_name,
 | 
						|
                embedding_function=embedding_function,
 | 
						|
            )
 | 
						|
 | 
						|
            result = collection.query(
 | 
						|
                query_texts=[query],
 | 
						|
                n_results=k,
 | 
						|
            )
 | 
						|
            results.append(result)
 | 
						|
        except:
 | 
						|
            pass
 | 
						|
 | 
						|
    return merge_and_sort_query_results(results, k)
 | 
						|
 | 
						|
 | 
						|
def query_embeddings_collection(collection_names: List[str], query_embeddings, k: int):
 | 
						|
 | 
						|
    results = []
 | 
						|
    log.info(f"query_embeddings_collection {query_embeddings}")
 | 
						|
 | 
						|
    for collection_name in collection_names:
 | 
						|
        try:
 | 
						|
            collection = CHROMA_CLIENT.get_collection(name=collection_name)
 | 
						|
 | 
						|
            result = collection.query(
 | 
						|
                query_embeddings=[query_embeddings],
 | 
						|
                n_results=k,
 | 
						|
            )
 | 
						|
            results.append(result)
 | 
						|
        except:
 | 
						|
            pass
 | 
						|
 | 
						|
    return merge_and_sort_query_results(results, k)
 | 
						|
 | 
						|
 | 
						|
def rag_template(template: str, context: str, query: str):
 | 
						|
    template = template.replace("[context]", context)
 | 
						|
    template = template.replace("[query]", query)
 | 
						|
    return template
 | 
						|
 | 
						|
 | 
						|
def rag_messages(
 | 
						|
    docs,
 | 
						|
    messages,
 | 
						|
    template,
 | 
						|
    k,
 | 
						|
    embedding_engine,
 | 
						|
    embedding_model,
 | 
						|
    embedding_function,
 | 
						|
    openai_key,
 | 
						|
    openai_url,
 | 
						|
):
 | 
						|
    log.debug(
 | 
						|
        f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {openai_key} {openai_url}"
 | 
						|
    )
 | 
						|
 | 
						|
    last_user_message_idx = None
 | 
						|
    for i in range(len(messages) - 1, -1, -1):
 | 
						|
        if messages[i]["role"] == "user":
 | 
						|
            last_user_message_idx = i
 | 
						|
            break
 | 
						|
 | 
						|
    user_message = messages[last_user_message_idx]
 | 
						|
 | 
						|
    if isinstance(user_message["content"], list):
 | 
						|
        # Handle list content input
 | 
						|
        content_type = "list"
 | 
						|
        query = ""
 | 
						|
        for content_item in user_message["content"]:
 | 
						|
            if content_item["type"] == "text":
 | 
						|
                query = content_item["text"]
 | 
						|
                break
 | 
						|
    elif isinstance(user_message["content"], str):
 | 
						|
        # Handle text content input
 | 
						|
        content_type = "text"
 | 
						|
        query = user_message["content"]
 | 
						|
    else:
 | 
						|
        # Fallback in case the input does not match expected types
 | 
						|
        content_type = None
 | 
						|
        query = ""
 | 
						|
 | 
						|
    relevant_contexts = []
 | 
						|
 | 
						|
    for doc in docs:
 | 
						|
        context = None
 | 
						|
 | 
						|
        try:
 | 
						|
 | 
						|
            if doc["type"] == "text":
 | 
						|
                context = doc["content"]
 | 
						|
            else:
 | 
						|
                if embedding_engine == "":
 | 
						|
                    if doc["type"] == "collection":
 | 
						|
                        context = query_collection(
 | 
						|
                            collection_names=doc["collection_names"],
 | 
						|
                            query=query,
 | 
						|
                            k=k,
 | 
						|
                            embedding_function=embedding_function,
 | 
						|
                        )
 | 
						|
                    else:
 | 
						|
                        context = query_doc(
 | 
						|
                            collection_name=doc["collection_name"],
 | 
						|
                            query=query,
 | 
						|
                            k=k,
 | 
						|
                            embedding_function=embedding_function,
 | 
						|
                        )
 | 
						|
 | 
						|
                else:
 | 
						|
                    if embedding_engine == "ollama":
 | 
						|
                        query_embeddings = generate_ollama_embeddings(
 | 
						|
                            GenerateEmbeddingsForm(
 | 
						|
                                **{
 | 
						|
                                    "model": embedding_model,
 | 
						|
                                    "prompt": query,
 | 
						|
                                }
 | 
						|
                            )
 | 
						|
                        )
 | 
						|
                    elif embedding_engine == "openai":
 | 
						|
                        query_embeddings = generate_openai_embeddings(
 | 
						|
                            model=embedding_model,
 | 
						|
                            text=query,
 | 
						|
                            key=openai_key,
 | 
						|
                            url=openai_url,
 | 
						|
                        )
 | 
						|
 | 
						|
                    if doc["type"] == "collection":
 | 
						|
                        context = query_embeddings_collection(
 | 
						|
                            collection_names=doc["collection_names"],
 | 
						|
                            query_embeddings=query_embeddings,
 | 
						|
                            k=k,
 | 
						|
                        )
 | 
						|
                    else:
 | 
						|
                        context = query_embeddings_doc(
 | 
						|
                            collection_name=doc["collection_name"],
 | 
						|
                            query_embeddings=query_embeddings,
 | 
						|
                            k=k,
 | 
						|
                        )
 | 
						|
 | 
						|
        except Exception as e:
 | 
						|
            log.exception(e)
 | 
						|
            context = None
 | 
						|
 | 
						|
        relevant_contexts.append(context)
 | 
						|
 | 
						|
    log.debug(f"relevant_contexts: {relevant_contexts}")
 | 
						|
 | 
						|
    context_string = ""
 | 
						|
    for context in relevant_contexts:
 | 
						|
        if context:
 | 
						|
            context_string += " ".join(context["documents"][0]) + "\n"
 | 
						|
 | 
						|
    ra_content = rag_template(
 | 
						|
        template=template,
 | 
						|
        context=context_string,
 | 
						|
        query=query,
 | 
						|
    )
 | 
						|
 | 
						|
    if content_type == "list":
 | 
						|
        new_content = []
 | 
						|
        for content_item in user_message["content"]:
 | 
						|
            if content_item["type"] == "text":
 | 
						|
                # Update the text item's content with ra_content
 | 
						|
                new_content.append({"type": "text", "text": ra_content})
 | 
						|
            else:
 | 
						|
                # Keep other types of content as they are
 | 
						|
                new_content.append(content_item)
 | 
						|
        new_user_message = {**user_message, "content": new_content}
 | 
						|
    else:
 | 
						|
        new_user_message = {
 | 
						|
            **user_message,
 | 
						|
            "content": ra_content,
 | 
						|
        }
 | 
						|
 | 
						|
    messages[last_user_message_idx] = new_user_message
 | 
						|
 | 
						|
    return messages
 | 
						|
 | 
						|
 | 
						|
def get_embedding_model_path(
 | 
						|
    embedding_model: str, update_embedding_model: bool = False
 | 
						|
):
 | 
						|
    # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
 | 
						|
    cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
 | 
						|
 | 
						|
    local_files_only = not update_embedding_model
 | 
						|
 | 
						|
    snapshot_kwargs = {
 | 
						|
        "cache_dir": cache_dir,
 | 
						|
        "local_files_only": local_files_only,
 | 
						|
    }
 | 
						|
 | 
						|
    log.debug(f"embedding_model: {embedding_model}")
 | 
						|
    log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
 | 
						|
 | 
						|
    # Inspiration from upstream sentence_transformers
 | 
						|
    if (
 | 
						|
        os.path.exists(embedding_model)
 | 
						|
        or ("\\" in embedding_model or embedding_model.count("/") > 1)
 | 
						|
        and local_files_only
 | 
						|
    ):
 | 
						|
        # If fully qualified path exists, return input, else set repo_id
 | 
						|
        return embedding_model
 | 
						|
    elif "/" not in embedding_model:
 | 
						|
        # Set valid repo_id for model short-name
 | 
						|
        embedding_model = "sentence-transformers" + "/" + embedding_model
 | 
						|
 | 
						|
    snapshot_kwargs["repo_id"] = embedding_model
 | 
						|
 | 
						|
    # Attempt to query the huggingface_hub library to determine the local path and/or to update
 | 
						|
    try:
 | 
						|
        embedding_model_repo_path = snapshot_download(**snapshot_kwargs)
 | 
						|
        log.debug(f"embedding_model_repo_path: {embedding_model_repo_path}")
 | 
						|
        return embedding_model_repo_path
 | 
						|
    except Exception as e:
 | 
						|
        log.exception(f"Cannot determine embedding model snapshot path: {e}")
 | 
						|
        return embedding_model
 | 
						|
 | 
						|
 | 
						|
def generate_openai_embeddings(
 | 
						|
    model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
 | 
						|
):
 | 
						|
    try:
 | 
						|
        r = requests.post(
 | 
						|
            f"{url}/embeddings",
 | 
						|
            headers={
 | 
						|
                "Content-Type": "application/json",
 | 
						|
                "Authorization": f"Bearer {key}",
 | 
						|
            },
 | 
						|
            json={"input": text, "model": model},
 | 
						|
        )
 | 
						|
        r.raise_for_status()
 | 
						|
        data = r.json()
 | 
						|
        if "data" in data:
 | 
						|
            return data["data"][0]["embedding"]
 | 
						|
        else:
 | 
						|
            raise "Something went wrong :/"
 | 
						|
    except Exception as e:
 | 
						|
        print(e)
 | 
						|
        return None
 |