1555 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			1555 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			Python
		
	
	
	
| from contextlib import asynccontextmanager
 | |
| from bs4 import BeautifulSoup
 | |
| import json
 | |
| import markdown
 | |
| import time
 | |
| import os
 | |
| import sys
 | |
| import logging
 | |
| import aiohttp
 | |
| import requests
 | |
| import mimetypes
 | |
| import shutil
 | |
| import os
 | |
| import uuid
 | |
| import inspect
 | |
| import asyncio
 | |
| 
 | |
| from fastapi import FastAPI, Request, Depends, status, UploadFile, File, Form
 | |
| from fastapi.staticfiles import StaticFiles
 | |
| from fastapi.responses import JSONResponse
 | |
| from fastapi import HTTPException
 | |
| from fastapi.middleware.wsgi import WSGIMiddleware
 | |
| from fastapi.middleware.cors import CORSMiddleware
 | |
| from starlette.exceptions import HTTPException as StarletteHTTPException
 | |
| from starlette.middleware.base import BaseHTTPMiddleware
 | |
| from starlette.responses import StreamingResponse, Response
 | |
| 
 | |
| 
 | |
| from apps.socket.main import app as socket_app
 | |
| from apps.ollama.main import (
 | |
|     app as ollama_app,
 | |
|     OpenAIChatCompletionForm,
 | |
|     get_all_models as get_ollama_models,
 | |
|     generate_openai_chat_completion as generate_ollama_chat_completion,
 | |
| )
 | |
| from apps.openai.main import (
 | |
|     app as openai_app,
 | |
|     get_all_models as get_openai_models,
 | |
|     generate_chat_completion as generate_openai_chat_completion,
 | |
| )
 | |
| 
 | |
| from apps.audio.main import app as audio_app
 | |
| from apps.images.main import app as images_app
 | |
| from apps.rag.main import app as rag_app
 | |
| from apps.webui.main import app as webui_app
 | |
| 
 | |
| 
 | |
| from pydantic import BaseModel
 | |
| from typing import List, Optional
 | |
| 
 | |
| from apps.webui.models.models import Models, ModelModel
 | |
| from apps.webui.models.tools import Tools
 | |
| from apps.webui.utils import load_toolkit_module_by_id
 | |
| 
 | |
| 
 | |
| from utils.utils import (
 | |
|     get_admin_user,
 | |
|     get_verified_user,
 | |
|     get_current_user,
 | |
|     get_http_authorization_cred,
 | |
| )
 | |
| from utils.task import (
 | |
|     title_generation_template,
 | |
|     search_query_generation_template,
 | |
|     tools_function_calling_generation_template,
 | |
| )
 | |
| from utils.misc import get_last_user_message, add_or_update_system_message
 | |
| 
 | |
| from apps.rag.utils import get_rag_context, rag_template
 | |
| 
 | |
| from config import (
 | |
|     CONFIG_DATA,
 | |
|     WEBUI_NAME,
 | |
|     WEBUI_URL,
 | |
|     WEBUI_AUTH,
 | |
|     ENV,
 | |
|     VERSION,
 | |
|     CHANGELOG,
 | |
|     FRONTEND_BUILD_DIR,
 | |
|     UPLOAD_DIR,
 | |
|     CACHE_DIR,
 | |
|     STATIC_DIR,
 | |
|     ENABLE_OPENAI_API,
 | |
|     ENABLE_OLLAMA_API,
 | |
|     ENABLE_MODEL_FILTER,
 | |
|     MODEL_FILTER_LIST,
 | |
|     GLOBAL_LOG_LEVEL,
 | |
|     SRC_LOG_LEVELS,
 | |
|     WEBHOOK_URL,
 | |
|     ENABLE_ADMIN_EXPORT,
 | |
|     WEBUI_BUILD_HASH,
 | |
|     TASK_MODEL,
 | |
|     TASK_MODEL_EXTERNAL,
 | |
|     TITLE_GENERATION_PROMPT_TEMPLATE,
 | |
|     SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE,
 | |
|     SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD,
 | |
|     TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
 | |
|     AppConfig,
 | |
| )
 | |
| from constants import ERROR_MESSAGES
 | |
| 
 | |
| logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
 | |
| log = logging.getLogger(__name__)
 | |
| log.setLevel(SRC_LOG_LEVELS["MAIN"])
 | |
| 
 | |
| 
 | |
| class SPAStaticFiles(StaticFiles):
 | |
|     async def get_response(self, path: str, scope):
 | |
|         try:
 | |
|             return await super().get_response(path, scope)
 | |
|         except (HTTPException, StarletteHTTPException) as ex:
 | |
|             if ex.status_code == 404:
 | |
|                 return await super().get_response("index.html", scope)
 | |
|             else:
 | |
|                 raise ex
 | |
| 
 | |
| 
 | |
| print(
 | |
|     rf"""
 | |
|   ___                    __        __   _     _   _ ___ 
 | |
|  / _ \ _ __   ___ _ __   \ \      / /__| |__ | | | |_ _|
 | |
| | | | | '_ \ / _ \ '_ \   \ \ /\ / / _ \ '_ \| | | || | 
 | |
| | |_| | |_) |  __/ | | |   \ V  V /  __/ |_) | |_| || | 
 | |
|  \___/| .__/ \___|_| |_|    \_/\_/ \___|_.__/ \___/|___|
 | |
|       |_|                                               
 | |
| 
 | |
|       
 | |
| v{VERSION} - building the best open-source AI user interface.
 | |
| {f"Commit: {WEBUI_BUILD_HASH}" if WEBUI_BUILD_HASH != "dev-build" else ""}
 | |
| https://github.com/open-webui/open-webui
 | |
| """
 | |
| )
 | |
| 
 | |
| 
 | |
| @asynccontextmanager
 | |
| async def lifespan(app: FastAPI):
 | |
|     yield
 | |
| 
 | |
| 
 | |
| app = FastAPI(
 | |
|     docs_url="/docs" if ENV == "dev" else None, redoc_url=None, lifespan=lifespan
 | |
| )
 | |
| 
 | |
| app.state.config = AppConfig()
 | |
| 
 | |
| app.state.config.ENABLE_OPENAI_API = ENABLE_OPENAI_API
 | |
| app.state.config.ENABLE_OLLAMA_API = ENABLE_OLLAMA_API
 | |
| 
 | |
| app.state.config.ENABLE_MODEL_FILTER = ENABLE_MODEL_FILTER
 | |
| app.state.config.MODEL_FILTER_LIST = MODEL_FILTER_LIST
 | |
| 
 | |
| app.state.config.WEBHOOK_URL = WEBHOOK_URL
 | |
| 
 | |
| 
 | |
| app.state.config.TASK_MODEL = TASK_MODEL
 | |
| app.state.config.TASK_MODEL_EXTERNAL = TASK_MODEL_EXTERNAL
 | |
| app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = TITLE_GENERATION_PROMPT_TEMPLATE
 | |
| app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = (
 | |
|     SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE
 | |
| )
 | |
| app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD = (
 | |
|     SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD
 | |
| )
 | |
| app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = (
 | |
|     TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE
 | |
| )
 | |
| 
 | |
| app.state.MODELS = {}
 | |
| 
 | |
| origins = ["*"]
 | |
| 
 | |
| 
 | |
| async def get_function_call_response(
 | |
|     messages, files, tool_id, template, task_model_id, user
 | |
| ):
 | |
|     tool = Tools.get_tool_by_id(tool_id)
 | |
|     tools_specs = json.dumps(tool.specs, indent=2)
 | |
|     content = tools_function_calling_generation_template(template, tools_specs)
 | |
| 
 | |
|     user_message = get_last_user_message(messages)
 | |
|     prompt = (
 | |
|         "History:\n"
 | |
|         + "\n".join(
 | |
|             [
 | |
|                 f"{message['role'].upper()}: \"\"\"{message['content']}\"\"\""
 | |
|                 for message in messages[::-1][:4]
 | |
|             ]
 | |
|         )
 | |
|         + f"\nQuery: {user_message}"
 | |
|     )
 | |
| 
 | |
|     print(prompt)
 | |
| 
 | |
|     payload = {
 | |
|         "model": task_model_id,
 | |
|         "messages": [
 | |
|             {"role": "system", "content": content},
 | |
|             {"role": "user", "content": f"Query: {prompt}"},
 | |
|         ],
 | |
|         "stream": False,
 | |
|     }
 | |
| 
 | |
|     try:
 | |
|         payload = filter_pipeline(payload, user)
 | |
|     except Exception as e:
 | |
|         raise e
 | |
| 
 | |
|     model = app.state.MODELS[task_model_id]
 | |
| 
 | |
|     response = None
 | |
|     try:
 | |
|         if model["owned_by"] == "ollama":
 | |
|             response = await generate_ollama_chat_completion(payload, user=user)
 | |
|         else:
 | |
|             response = await generate_openai_chat_completion(payload, user=user)
 | |
| 
 | |
|         content = None
 | |
| 
 | |
|         if hasattr(response, "body_iterator"):
 | |
|             async for chunk in response.body_iterator:
 | |
|                 data = json.loads(chunk.decode("utf-8"))
 | |
|                 content = data["choices"][0]["message"]["content"]
 | |
| 
 | |
|             # Cleanup any remaining background tasks if necessary
 | |
|             if response.background is not None:
 | |
|                 await response.background()
 | |
|         else:
 | |
|             content = response["choices"][0]["message"]["content"]
 | |
| 
 | |
|         # Parse the function response
 | |
|         if content is not None:
 | |
|             print(f"content: {content}")
 | |
|             result = json.loads(content)
 | |
|             print(result)
 | |
| 
 | |
|             # Call the function
 | |
|             if "name" in result:
 | |
|                 if tool_id in webui_app.state.TOOLS:
 | |
|                     toolkit_module = webui_app.state.TOOLS[tool_id]
 | |
|                 else:
 | |
|                     toolkit_module = load_toolkit_module_by_id(tool_id)
 | |
|                     webui_app.state.TOOLS[tool_id] = toolkit_module
 | |
| 
 | |
|                 function = getattr(toolkit_module, result["name"])
 | |
|                 function_result = None
 | |
|                 try:
 | |
|                     # Get the signature of the function
 | |
|                     sig = inspect.signature(function)
 | |
|                     params = result["parameters"]
 | |
| 
 | |
|                     if "__user__" in sig.parameters:
 | |
|                         # Call the function with the '__user__' parameter included
 | |
|                         params = {
 | |
|                             **params,
 | |
|                             "__user__": {
 | |
|                                 "id": user.id,
 | |
|                                 "email": user.email,
 | |
|                                 "name": user.name,
 | |
|                                 "role": user.role,
 | |
|                             },
 | |
|                         }
 | |
| 
 | |
|                     if "__messages__" in sig.parameters:
 | |
|                         # Call the function with the '__messages__' parameter included
 | |
|                         params = {
 | |
|                             **params,
 | |
|                             "__messages__": messages,
 | |
|                         }
 | |
| 
 | |
|                     if "__files__" in sig.parameters:
 | |
|                         # Call the function with the '__files__' parameter included
 | |
|                         params = {
 | |
|                             **params,
 | |
|                             "__files__": files,
 | |
|                         }
 | |
| 
 | |
|                     function_result = function(**params)
 | |
|                 except Exception as e:
 | |
|                     print(e)
 | |
| 
 | |
|                 # Add the function result to the system prompt
 | |
|                 if function_result:
 | |
|                     return function_result
 | |
|     except Exception as e:
 | |
|         print(f"Error: {e}")
 | |
| 
 | |
|     return None
 | |
| 
 | |
| 
 | |
| class ChatCompletionMiddleware(BaseHTTPMiddleware):
 | |
|     async def dispatch(self, request: Request, call_next):
 | |
|         return_citations = False
 | |
| 
 | |
|         if request.method == "POST" and (
 | |
|             "/ollama/api/chat" in request.url.path
 | |
|             or "/chat/completions" in request.url.path
 | |
|         ):
 | |
|             log.debug(f"request.url.path: {request.url.path}")
 | |
| 
 | |
|             # Read the original request body
 | |
|             body = await request.body()
 | |
|             # Decode body to string
 | |
|             body_str = body.decode("utf-8")
 | |
|             # Parse string to JSON
 | |
|             data = json.loads(body_str) if body_str else {}
 | |
| 
 | |
|             user = get_current_user(
 | |
|                 get_http_authorization_cred(request.headers.get("Authorization"))
 | |
|             )
 | |
| 
 | |
|             # Remove the citations from the body
 | |
|             return_citations = data.get("citations", False)
 | |
|             if "citations" in data:
 | |
|                 del data["citations"]
 | |
| 
 | |
|             # Set the task model
 | |
|             task_model_id = data["model"]
 | |
|             if task_model_id not in app.state.MODELS:
 | |
|                 raise HTTPException(
 | |
|                     status_code=status.HTTP_404_NOT_FOUND,
 | |
|                     detail="Model not found",
 | |
|                 )
 | |
| 
 | |
|             # Check if the user has a custom task model
 | |
|             # If the user has a custom task model, use that model
 | |
|             if app.state.MODELS[task_model_id]["owned_by"] == "ollama":
 | |
|                 if (
 | |
|                     app.state.config.TASK_MODEL
 | |
|                     and app.state.config.TASK_MODEL in app.state.MODELS
 | |
|                 ):
 | |
|                     task_model_id = app.state.config.TASK_MODEL
 | |
|             else:
 | |
|                 if (
 | |
|                     app.state.config.TASK_MODEL_EXTERNAL
 | |
|                     and app.state.config.TASK_MODEL_EXTERNAL in app.state.MODELS
 | |
|                 ):
 | |
|                     task_model_id = app.state.config.TASK_MODEL_EXTERNAL
 | |
| 
 | |
|             prompt = get_last_user_message(data["messages"])
 | |
|             context = ""
 | |
| 
 | |
|             # If tool_ids field is present, call the functions
 | |
|             if "tool_ids" in data:
 | |
|                 print(data["tool_ids"])
 | |
|                 for tool_id in data["tool_ids"]:
 | |
|                     print(tool_id)
 | |
|                     try:
 | |
|                         response = await get_function_call_response(
 | |
|                             messages=data["messages"],
 | |
|                             files=data.get("files", []),
 | |
|                             tool_id=tool_id,
 | |
|                             template=app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
 | |
|                             task_model_id=task_model_id,
 | |
|                             user=user,
 | |
|                         )
 | |
| 
 | |
|                         if isinstance(response, str):
 | |
|                             context += ("\n" if context != "" else "") + response
 | |
| 
 | |
|                     except Exception as e:
 | |
|                         print(f"Error: {e}")
 | |
|                 del data["tool_ids"]
 | |
| 
 | |
|                 print(f"tool_context: {context}")
 | |
| 
 | |
|             # TODO: Check if tools & functions have files support to skip this step to delegate file processing
 | |
|             # If files field is present, generate RAG completions
 | |
|             if "files" in data:
 | |
|                 data = {**data}
 | |
|                 rag_context, citations = get_rag_context(
 | |
|                     files=data["files"],
 | |
|                     messages=data["messages"],
 | |
|                     embedding_function=rag_app.state.EMBEDDING_FUNCTION,
 | |
|                     k=rag_app.state.config.TOP_K,
 | |
|                     reranking_function=rag_app.state.sentence_transformer_rf,
 | |
|                     r=rag_app.state.config.RELEVANCE_THRESHOLD,
 | |
|                     hybrid_search=rag_app.state.config.ENABLE_RAG_HYBRID_SEARCH,
 | |
|                 )
 | |
| 
 | |
|                 if rag_context:
 | |
|                     context += ("\n" if context != "" else "") + rag_context
 | |
| 
 | |
|                 del data["files"]
 | |
|                 log.debug(f"rag_context: {rag_context}, citations: {citations}")
 | |
| 
 | |
|             if context != "":
 | |
|                 system_prompt = rag_template(
 | |
|                     rag_app.state.config.RAG_TEMPLATE, context, prompt
 | |
|                 )
 | |
|                 print(system_prompt)
 | |
|                 data["messages"] = add_or_update_system_message(
 | |
|                     f"\n{system_prompt}", data["messages"]
 | |
|                 )
 | |
| 
 | |
|             modified_body_bytes = json.dumps(data).encode("utf-8")
 | |
|             # Replace the request body with the modified one
 | |
|             request._body = modified_body_bytes
 | |
|             # Set custom header to ensure content-length matches new body length
 | |
|             request.headers.__dict__["_list"] = [
 | |
|                 (b"content-length", str(len(modified_body_bytes)).encode("utf-8")),
 | |
|                 *[
 | |
|                     (k, v)
 | |
|                     for k, v in request.headers.raw
 | |
|                     if k.lower() != b"content-length"
 | |
|                 ],
 | |
|             ]
 | |
| 
 | |
|         response = await call_next(request)
 | |
| 
 | |
|         if return_citations:
 | |
|             # Inject the citations into the response
 | |
|             if isinstance(response, StreamingResponse):
 | |
|                 # If it's a streaming response, inject it as SSE event or NDJSON line
 | |
|                 content_type = response.headers.get("Content-Type")
 | |
|                 if "text/event-stream" in content_type:
 | |
|                     return StreamingResponse(
 | |
|                         self.openai_stream_wrapper(response.body_iterator, citations),
 | |
|                     )
 | |
|                 if "application/x-ndjson" in content_type:
 | |
|                     return StreamingResponse(
 | |
|                         self.ollama_stream_wrapper(response.body_iterator, citations),
 | |
|                     )
 | |
| 
 | |
|         return response
 | |
| 
 | |
|     async def _receive(self, body: bytes):
 | |
|         return {"type": "http.request", "body": body, "more_body": False}
 | |
| 
 | |
|     async def openai_stream_wrapper(self, original_generator, citations):
 | |
|         yield f"data: {json.dumps({'citations': citations})}\n\n"
 | |
|         async for data in original_generator:
 | |
|             yield data
 | |
| 
 | |
|     async def ollama_stream_wrapper(self, original_generator, citations):
 | |
|         yield f"{json.dumps({'citations': citations})}\n"
 | |
|         async for data in original_generator:
 | |
|             yield data
 | |
| 
 | |
| 
 | |
| app.add_middleware(ChatCompletionMiddleware)
 | |
| 
 | |
| 
 | |
| def filter_pipeline(payload, user):
 | |
|     user = {"id": user.id, "name": user.name, "role": user.role}
 | |
|     model_id = payload["model"]
 | |
|     filters = [
 | |
|         model
 | |
|         for model in app.state.MODELS.values()
 | |
|         if "pipeline" in model
 | |
|         and "type" in model["pipeline"]
 | |
|         and model["pipeline"]["type"] == "filter"
 | |
|         and (
 | |
|             model["pipeline"]["pipelines"] == ["*"]
 | |
|             or any(
 | |
|                 model_id == target_model_id
 | |
|                 for target_model_id in model["pipeline"]["pipelines"]
 | |
|             )
 | |
|         )
 | |
|     ]
 | |
|     sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"])
 | |
| 
 | |
|     model = app.state.MODELS[model_id]
 | |
| 
 | |
|     if "pipeline" in model:
 | |
|         sorted_filters.append(model)
 | |
| 
 | |
|     for filter in sorted_filters:
 | |
|         r = None
 | |
|         try:
 | |
|             urlIdx = filter["urlIdx"]
 | |
| 
 | |
|             url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
 | |
|             key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
 | |
| 
 | |
|             if key != "":
 | |
|                 headers = {"Authorization": f"Bearer {key}"}
 | |
|                 r = requests.post(
 | |
|                     f"{url}/{filter['id']}/filter/inlet",
 | |
|                     headers=headers,
 | |
|                     json={
 | |
|                         "user": user,
 | |
|                         "body": payload,
 | |
|                     },
 | |
|                 )
 | |
| 
 | |
|                 r.raise_for_status()
 | |
|                 payload = r.json()
 | |
|         except Exception as e:
 | |
|             # Handle connection error here
 | |
|             print(f"Connection error: {e}")
 | |
| 
 | |
|             if r is not None:
 | |
|                 try:
 | |
|                     res = r.json()
 | |
|                 except:
 | |
|                     pass
 | |
|                 if "detail" in res:
 | |
|                     raise Exception(r.status_code, res["detail"])
 | |
| 
 | |
|             else:
 | |
|                 pass
 | |
| 
 | |
|     if "pipeline" not in app.state.MODELS[model_id]:
 | |
|         if "chat_id" in payload:
 | |
|             del payload["chat_id"]
 | |
| 
 | |
|         if "title" in payload:
 | |
|             del payload["title"]
 | |
| 
 | |
|         if "task" in payload:
 | |
|             del payload["task"]
 | |
| 
 | |
|     return payload
 | |
| 
 | |
| 
 | |
| class PipelineMiddleware(BaseHTTPMiddleware):
 | |
|     async def dispatch(self, request: Request, call_next):
 | |
|         if request.method == "POST" and (
 | |
|             "/ollama/api/chat" in request.url.path
 | |
|             or "/chat/completions" in request.url.path
 | |
|         ):
 | |
|             log.debug(f"request.url.path: {request.url.path}")
 | |
| 
 | |
|             # Read the original request body
 | |
|             body = await request.body()
 | |
|             # Decode body to string
 | |
|             body_str = body.decode("utf-8")
 | |
|             # Parse string to JSON
 | |
|             data = json.loads(body_str) if body_str else {}
 | |
| 
 | |
|             user = get_current_user(
 | |
|                 get_http_authorization_cred(request.headers.get("Authorization"))
 | |
|             )
 | |
| 
 | |
|             try:
 | |
|                 data = filter_pipeline(data, user)
 | |
|             except Exception as e:
 | |
|                 return JSONResponse(
 | |
|                     status_code=e.args[0],
 | |
|                     content={"detail": e.args[1]},
 | |
|                 )
 | |
| 
 | |
|             modified_body_bytes = json.dumps(data).encode("utf-8")
 | |
|             # Replace the request body with the modified one
 | |
|             request._body = modified_body_bytes
 | |
|             # Set custom header to ensure content-length matches new body length
 | |
|             request.headers.__dict__["_list"] = [
 | |
|                 (b"content-length", str(len(modified_body_bytes)).encode("utf-8")),
 | |
|                 *[
 | |
|                     (k, v)
 | |
|                     for k, v in request.headers.raw
 | |
|                     if k.lower() != b"content-length"
 | |
|                 ],
 | |
|             ]
 | |
| 
 | |
|         response = await call_next(request)
 | |
|         return response
 | |
| 
 | |
|     async def _receive(self, body: bytes):
 | |
|         return {"type": "http.request", "body": body, "more_body": False}
 | |
| 
 | |
| 
 | |
| app.add_middleware(PipelineMiddleware)
 | |
| 
 | |
| 
 | |
| app.add_middleware(
 | |
|     CORSMiddleware,
 | |
|     allow_origins=origins,
 | |
|     allow_credentials=True,
 | |
|     allow_methods=["*"],
 | |
|     allow_headers=["*"],
 | |
| )
 | |
| 
 | |
| 
 | |
| @app.middleware("http")
 | |
| async def check_url(request: Request, call_next):
 | |
|     if len(app.state.MODELS) == 0:
 | |
|         await get_all_models()
 | |
|     else:
 | |
|         pass
 | |
| 
 | |
|     start_time = int(time.time())
 | |
|     response = await call_next(request)
 | |
|     process_time = int(time.time()) - start_time
 | |
|     response.headers["X-Process-Time"] = str(process_time)
 | |
| 
 | |
|     return response
 | |
| 
 | |
| 
 | |
| @app.middleware("http")
 | |
| async def update_embedding_function(request: Request, call_next):
 | |
|     response = await call_next(request)
 | |
|     if "/embedding/update" in request.url.path:
 | |
|         webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION
 | |
|     return response
 | |
| 
 | |
| 
 | |
| app.mount("/ws", socket_app)
 | |
| 
 | |
| 
 | |
| app.mount("/ollama", ollama_app)
 | |
| app.mount("/openai", openai_app)
 | |
| 
 | |
| app.mount("/images/api/v1", images_app)
 | |
| app.mount("/audio/api/v1", audio_app)
 | |
| app.mount("/rag/api/v1", rag_app)
 | |
| 
 | |
| app.mount("/api/v1", webui_app)
 | |
| 
 | |
| webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION
 | |
| 
 | |
| 
 | |
| async def get_all_models():
 | |
|     openai_models = []
 | |
|     ollama_models = []
 | |
| 
 | |
|     if app.state.config.ENABLE_OPENAI_API:
 | |
|         openai_models = await get_openai_models()
 | |
| 
 | |
|         openai_models = openai_models["data"]
 | |
| 
 | |
|     if app.state.config.ENABLE_OLLAMA_API:
 | |
|         ollama_models = await get_ollama_models()
 | |
| 
 | |
|         ollama_models = [
 | |
|             {
 | |
|                 "id": model["model"],
 | |
|                 "name": model["name"],
 | |
|                 "object": "model",
 | |
|                 "created": int(time.time()),
 | |
|                 "owned_by": "ollama",
 | |
|                 "ollama": model,
 | |
|             }
 | |
|             for model in ollama_models["models"]
 | |
|         ]
 | |
| 
 | |
|     models = openai_models + ollama_models
 | |
|     custom_models = Models.get_all_models()
 | |
| 
 | |
|     for custom_model in custom_models:
 | |
|         if custom_model.base_model_id == None:
 | |
|             for model in models:
 | |
|                 if (
 | |
|                     custom_model.id == model["id"]
 | |
|                     or custom_model.id == model["id"].split(":")[0]
 | |
|                 ):
 | |
|                     model["name"] = custom_model.name
 | |
|                     model["info"] = custom_model.model_dump()
 | |
|         else:
 | |
|             owned_by = "openai"
 | |
|             for model in models:
 | |
|                 if (
 | |
|                     custom_model.base_model_id == model["id"]
 | |
|                     or custom_model.base_model_id == model["id"].split(":")[0]
 | |
|                 ):
 | |
|                     owned_by = model["owned_by"]
 | |
|                     break
 | |
| 
 | |
|             models.append(
 | |
|                 {
 | |
|                     "id": custom_model.id,
 | |
|                     "name": custom_model.name,
 | |
|                     "object": "model",
 | |
|                     "created": custom_model.created_at,
 | |
|                     "owned_by": owned_by,
 | |
|                     "info": custom_model.model_dump(),
 | |
|                     "preset": True,
 | |
|                 }
 | |
|             )
 | |
| 
 | |
|     app.state.MODELS = {model["id"]: model for model in models}
 | |
| 
 | |
|     webui_app.state.MODELS = app.state.MODELS
 | |
| 
 | |
|     return models
 | |
| 
 | |
| 
 | |
| @app.get("/api/models")
 | |
| async def get_models(user=Depends(get_verified_user)):
 | |
|     models = await get_all_models()
 | |
| 
 | |
|     # Filter out filter pipelines
 | |
|     models = [
 | |
|         model
 | |
|         for model in models
 | |
|         if "pipeline" not in model or model["pipeline"].get("type", None) != "filter"
 | |
|     ]
 | |
| 
 | |
|     if app.state.config.ENABLE_MODEL_FILTER:
 | |
|         if user.role == "user":
 | |
|             models = list(
 | |
|                 filter(
 | |
|                     lambda model: model["id"] in app.state.config.MODEL_FILTER_LIST,
 | |
|                     models,
 | |
|                 )
 | |
|             )
 | |
|             return {"data": models}
 | |
| 
 | |
|     return {"data": models}
 | |
| 
 | |
| 
 | |
| @app.get("/api/task/config")
 | |
| async def get_task_config(user=Depends(get_verified_user)):
 | |
|     return {
 | |
|         "TASK_MODEL": app.state.config.TASK_MODEL,
 | |
|         "TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL,
 | |
|         "TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE,
 | |
|         "SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE,
 | |
|         "SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD": app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD,
 | |
|         "TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
 | |
|     }
 | |
| 
 | |
| 
 | |
| class TaskConfigForm(BaseModel):
 | |
|     TASK_MODEL: Optional[str]
 | |
|     TASK_MODEL_EXTERNAL: Optional[str]
 | |
|     TITLE_GENERATION_PROMPT_TEMPLATE: str
 | |
|     SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE: str
 | |
|     SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD: int
 | |
|     TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE: str
 | |
| 
 | |
| 
 | |
| @app.post("/api/task/config/update")
 | |
| async def update_task_config(form_data: TaskConfigForm, user=Depends(get_admin_user)):
 | |
|     app.state.config.TASK_MODEL = form_data.TASK_MODEL
 | |
|     app.state.config.TASK_MODEL_EXTERNAL = form_data.TASK_MODEL_EXTERNAL
 | |
|     app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = (
 | |
|         form_data.TITLE_GENERATION_PROMPT_TEMPLATE
 | |
|     )
 | |
|     app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = (
 | |
|         form_data.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE
 | |
|     )
 | |
|     app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD = (
 | |
|         form_data.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD
 | |
|     )
 | |
|     app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = (
 | |
|         form_data.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE
 | |
|     )
 | |
| 
 | |
|     return {
 | |
|         "TASK_MODEL": app.state.config.TASK_MODEL,
 | |
|         "TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL,
 | |
|         "TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE,
 | |
|         "SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE,
 | |
|         "SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD": app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD,
 | |
|         "TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
 | |
|     }
 | |
| 
 | |
| 
 | |
| @app.post("/api/task/title/completions")
 | |
| async def generate_title(form_data: dict, user=Depends(get_verified_user)):
 | |
|     print("generate_title")
 | |
| 
 | |
|     model_id = form_data["model"]
 | |
|     if model_id not in app.state.MODELS:
 | |
|         raise HTTPException(
 | |
|             status_code=status.HTTP_404_NOT_FOUND,
 | |
|             detail="Model not found",
 | |
|         )
 | |
| 
 | |
|     # Check if the user has a custom task model
 | |
|     # If the user has a custom task model, use that model
 | |
|     if app.state.MODELS[model_id]["owned_by"] == "ollama":
 | |
|         if app.state.config.TASK_MODEL:
 | |
|             task_model_id = app.state.config.TASK_MODEL
 | |
|             if task_model_id in app.state.MODELS:
 | |
|                 model_id = task_model_id
 | |
|     else:
 | |
|         if app.state.config.TASK_MODEL_EXTERNAL:
 | |
|             task_model_id = app.state.config.TASK_MODEL_EXTERNAL
 | |
|             if task_model_id in app.state.MODELS:
 | |
|                 model_id = task_model_id
 | |
| 
 | |
|     print(model_id)
 | |
|     model = app.state.MODELS[model_id]
 | |
| 
 | |
|     template = app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE
 | |
| 
 | |
|     content = title_generation_template(
 | |
|         template,
 | |
|         form_data["prompt"],
 | |
|         {
 | |
|             "name": user.name,
 | |
|             "location": user.info.get("location") if user.info else None,
 | |
|         },
 | |
|     )
 | |
| 
 | |
|     payload = {
 | |
|         "model": model_id,
 | |
|         "messages": [{"role": "user", "content": content}],
 | |
|         "stream": False,
 | |
|         "max_tokens": 50,
 | |
|         "chat_id": form_data.get("chat_id", None),
 | |
|         "title": True,
 | |
|     }
 | |
| 
 | |
|     log.debug(payload)
 | |
| 
 | |
|     try:
 | |
|         payload = filter_pipeline(payload, user)
 | |
|     except Exception as e:
 | |
|         return JSONResponse(
 | |
|             status_code=e.args[0],
 | |
|             content={"detail": e.args[1]},
 | |
|         )
 | |
| 
 | |
|     if model["owned_by"] == "ollama":
 | |
|         return await generate_ollama_chat_completion(payload, user=user)
 | |
|     else:
 | |
|         return await generate_openai_chat_completion(payload, user=user)
 | |
| 
 | |
| 
 | |
| @app.post("/api/task/query/completions")
 | |
| async def generate_search_query(form_data: dict, user=Depends(get_verified_user)):
 | |
|     print("generate_search_query")
 | |
| 
 | |
|     if len(form_data["prompt"]) < app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD:
 | |
|         raise HTTPException(
 | |
|             status_code=status.HTTP_400_BAD_REQUEST,
 | |
|             detail=f"Skip search query generation for short prompts (< {app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD} characters)",
 | |
|         )
 | |
| 
 | |
|     model_id = form_data["model"]
 | |
|     if model_id not in app.state.MODELS:
 | |
|         raise HTTPException(
 | |
|             status_code=status.HTTP_404_NOT_FOUND,
 | |
|             detail="Model not found",
 | |
|         )
 | |
| 
 | |
|     # Check if the user has a custom task model
 | |
|     # If the user has a custom task model, use that model
 | |
|     if app.state.MODELS[model_id]["owned_by"] == "ollama":
 | |
|         if app.state.config.TASK_MODEL:
 | |
|             task_model_id = app.state.config.TASK_MODEL
 | |
|             if task_model_id in app.state.MODELS:
 | |
|                 model_id = task_model_id
 | |
|     else:
 | |
|         if app.state.config.TASK_MODEL_EXTERNAL:
 | |
|             task_model_id = app.state.config.TASK_MODEL_EXTERNAL
 | |
|             if task_model_id in app.state.MODELS:
 | |
|                 model_id = task_model_id
 | |
| 
 | |
|     print(model_id)
 | |
|     model = app.state.MODELS[model_id]
 | |
| 
 | |
|     template = app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE
 | |
| 
 | |
|     content = search_query_generation_template(
 | |
|         template, form_data["prompt"], {"name": user.name}
 | |
|     )
 | |
| 
 | |
|     payload = {
 | |
|         "model": model_id,
 | |
|         "messages": [{"role": "user", "content": content}],
 | |
|         "stream": False,
 | |
|         "max_tokens": 30,
 | |
|         "task": True,
 | |
|     }
 | |
| 
 | |
|     print(payload)
 | |
| 
 | |
|     try:
 | |
|         payload = filter_pipeline(payload, user)
 | |
|     except Exception as e:
 | |
|         return JSONResponse(
 | |
|             status_code=e.args[0],
 | |
|             content={"detail": e.args[1]},
 | |
|         )
 | |
| 
 | |
|     if model["owned_by"] == "ollama":
 | |
|         return await generate_ollama_chat_completion(payload, user=user)
 | |
|     else:
 | |
|         return await generate_openai_chat_completion(payload, user=user)
 | |
| 
 | |
| 
 | |
| @app.post("/api/task/emoji/completions")
 | |
| async def generate_emoji(form_data: dict, user=Depends(get_verified_user)):
 | |
|     print("generate_emoji")
 | |
| 
 | |
|     model_id = form_data["model"]
 | |
|     if model_id not in app.state.MODELS:
 | |
|         raise HTTPException(
 | |
|             status_code=status.HTTP_404_NOT_FOUND,
 | |
|             detail="Model not found",
 | |
|         )
 | |
| 
 | |
|     # Check if the user has a custom task model
 | |
|     # If the user has a custom task model, use that model
 | |
|     if app.state.MODELS[model_id]["owned_by"] == "ollama":
 | |
|         if app.state.config.TASK_MODEL:
 | |
|             task_model_id = app.state.config.TASK_MODEL
 | |
|             if task_model_id in app.state.MODELS:
 | |
|                 model_id = task_model_id
 | |
|     else:
 | |
|         if app.state.config.TASK_MODEL_EXTERNAL:
 | |
|             task_model_id = app.state.config.TASK_MODEL_EXTERNAL
 | |
|             if task_model_id in app.state.MODELS:
 | |
|                 model_id = task_model_id
 | |
| 
 | |
|     print(model_id)
 | |
|     model = app.state.MODELS[model_id]
 | |
| 
 | |
|     template = '''
 | |
| Your task is to reflect the speaker's likely facial expression through a fitting emoji. Interpret emotions from the message and reflect their facial expression using fitting, diverse emojis (e.g., 😊, 😢, 😡, 😱).
 | |
| 
 | |
| Message: """{{prompt}}"""
 | |
| '''
 | |
| 
 | |
|     content = title_generation_template(
 | |
|         template,
 | |
|         form_data["prompt"],
 | |
|         {
 | |
|             "name": user.name,
 | |
|             "location": user.info.get("location") if user.info else None,
 | |
|         },
 | |
|     )
 | |
| 
 | |
|     payload = {
 | |
|         "model": model_id,
 | |
|         "messages": [{"role": "user", "content": content}],
 | |
|         "stream": False,
 | |
|         "max_tokens": 4,
 | |
|         "chat_id": form_data.get("chat_id", None),
 | |
|         "task": True,
 | |
|     }
 | |
| 
 | |
|     log.debug(payload)
 | |
| 
 | |
|     try:
 | |
|         payload = filter_pipeline(payload, user)
 | |
|     except Exception as e:
 | |
|         return JSONResponse(
 | |
|             status_code=e.args[0],
 | |
|             content={"detail": e.args[1]},
 | |
|         )
 | |
| 
 | |
|     if model["owned_by"] == "ollama":
 | |
|         return await generate_ollama_chat_completion(payload, user=user)
 | |
|     else:
 | |
|         return await generate_openai_chat_completion(payload, user=user)
 | |
| 
 | |
| 
 | |
| @app.post("/api/task/tools/completions")
 | |
| async def get_tools_function_calling(form_data: dict, user=Depends(get_verified_user)):
 | |
|     print("get_tools_function_calling")
 | |
| 
 | |
|     model_id = form_data["model"]
 | |
|     if model_id not in app.state.MODELS:
 | |
|         raise HTTPException(
 | |
|             status_code=status.HTTP_404_NOT_FOUND,
 | |
|             detail="Model not found",
 | |
|         )
 | |
| 
 | |
|     # Check if the user has a custom task model
 | |
|     # If the user has a custom task model, use that model
 | |
|     if app.state.MODELS[model_id]["owned_by"] == "ollama":
 | |
|         if app.state.config.TASK_MODEL:
 | |
|             task_model_id = app.state.config.TASK_MODEL
 | |
|             if task_model_id in app.state.MODELS:
 | |
|                 model_id = task_model_id
 | |
|     else:
 | |
|         if app.state.config.TASK_MODEL_EXTERNAL:
 | |
|             task_model_id = app.state.config.TASK_MODEL_EXTERNAL
 | |
|             if task_model_id in app.state.MODELS:
 | |
|                 model_id = task_model_id
 | |
| 
 | |
|     print(model_id)
 | |
|     template = app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE
 | |
| 
 | |
|     try:
 | |
|         context = await get_function_call_response(
 | |
|             form_data["messages"],
 | |
|             form_data.get("files", []),
 | |
|             form_data["tool_id"],
 | |
|             template,
 | |
|             model_id,
 | |
|             user,
 | |
|         )
 | |
|         return context
 | |
|     except Exception as e:
 | |
|         return JSONResponse(
 | |
|             status_code=e.args[0],
 | |
|             content={"detail": e.args[1]},
 | |
|         )
 | |
| 
 | |
| 
 | |
| @app.post("/api/chat/completions")
 | |
| async def generate_chat_completions(form_data: dict, user=Depends(get_verified_user)):
 | |
|     model_id = form_data["model"]
 | |
|     if model_id not in app.state.MODELS:
 | |
|         raise HTTPException(
 | |
|             status_code=status.HTTP_404_NOT_FOUND,
 | |
|             detail="Model not found",
 | |
|         )
 | |
| 
 | |
|     model = app.state.MODELS[model_id]
 | |
|     print(model)
 | |
| 
 | |
|     if model["owned_by"] == "ollama":
 | |
|         return await generate_ollama_chat_completion(form_data, user=user)
 | |
|     else:
 | |
|         return await generate_openai_chat_completion(form_data, user=user)
 | |
| 
 | |
| 
 | |
| @app.post("/api/chat/completed")
 | |
| async def chat_completed(form_data: dict, user=Depends(get_verified_user)):
 | |
|     data = form_data
 | |
|     model_id = data["model"]
 | |
| 
 | |
|     filters = [
 | |
|         model
 | |
|         for model in app.state.MODELS.values()
 | |
|         if "pipeline" in model
 | |
|         and "type" in model["pipeline"]
 | |
|         and model["pipeline"]["type"] == "filter"
 | |
|         and (
 | |
|             model["pipeline"]["pipelines"] == ["*"]
 | |
|             or any(
 | |
|                 model_id == target_model_id
 | |
|                 for target_model_id in model["pipeline"]["pipelines"]
 | |
|             )
 | |
|         )
 | |
|     ]
 | |
|     sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"])
 | |
| 
 | |
|     print(model_id)
 | |
| 
 | |
|     if model_id in app.state.MODELS:
 | |
|         model = app.state.MODELS[model_id]
 | |
|         if "pipeline" in model:
 | |
|             sorted_filters = [model] + sorted_filters
 | |
| 
 | |
|     for filter in sorted_filters:
 | |
|         r = None
 | |
|         try:
 | |
|             urlIdx = filter["urlIdx"]
 | |
| 
 | |
|             url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
 | |
|             key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
 | |
| 
 | |
|             if key != "":
 | |
|                 headers = {"Authorization": f"Bearer {key}"}
 | |
|                 r = requests.post(
 | |
|                     f"{url}/{filter['id']}/filter/outlet",
 | |
|                     headers=headers,
 | |
|                     json={
 | |
|                         "user": {"id": user.id, "name": user.name, "role": user.role},
 | |
|                         "body": data,
 | |
|                     },
 | |
|                 )
 | |
| 
 | |
|                 r.raise_for_status()
 | |
|                 data = r.json()
 | |
|         except Exception as e:
 | |
|             # Handle connection error here
 | |
|             print(f"Connection error: {e}")
 | |
| 
 | |
|             if r is not None:
 | |
|                 try:
 | |
|                     res = r.json()
 | |
|                     if "detail" in res:
 | |
|                         return JSONResponse(
 | |
|                             status_code=r.status_code,
 | |
|                             content=res,
 | |
|                         )
 | |
|                 except:
 | |
|                     pass
 | |
| 
 | |
|             else:
 | |
|                 pass
 | |
| 
 | |
|     return data
 | |
| 
 | |
| 
 | |
| @app.get("/api/pipelines/list")
 | |
| async def get_pipelines_list(user=Depends(get_admin_user)):
 | |
|     responses = await get_openai_models(raw=True)
 | |
| 
 | |
|     print(responses)
 | |
|     urlIdxs = [
 | |
|         idx
 | |
|         for idx, response in enumerate(responses)
 | |
|         if response != None and "pipelines" in response
 | |
|     ]
 | |
| 
 | |
|     return {
 | |
|         "data": [
 | |
|             {
 | |
|                 "url": openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx],
 | |
|                 "idx": urlIdx,
 | |
|             }
 | |
|             for urlIdx in urlIdxs
 | |
|         ]
 | |
|     }
 | |
| 
 | |
| 
 | |
| @app.post("/api/pipelines/upload")
 | |
| async def upload_pipeline(
 | |
|     urlIdx: int = Form(...), file: UploadFile = File(...), user=Depends(get_admin_user)
 | |
| ):
 | |
|     print("upload_pipeline", urlIdx, file.filename)
 | |
|     # Check if the uploaded file is a python file
 | |
|     if not file.filename.endswith(".py"):
 | |
|         raise HTTPException(
 | |
|             status_code=status.HTTP_400_BAD_REQUEST,
 | |
|             detail="Only Python (.py) files are allowed.",
 | |
|         )
 | |
| 
 | |
|     upload_folder = f"{CACHE_DIR}/pipelines"
 | |
|     os.makedirs(upload_folder, exist_ok=True)
 | |
|     file_path = os.path.join(upload_folder, file.filename)
 | |
| 
 | |
|     try:
 | |
|         # Save the uploaded file
 | |
|         with open(file_path, "wb") as buffer:
 | |
|             shutil.copyfileobj(file.file, buffer)
 | |
| 
 | |
|         url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
 | |
|         key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
 | |
| 
 | |
|         headers = {"Authorization": f"Bearer {key}"}
 | |
| 
 | |
|         with open(file_path, "rb") as f:
 | |
|             files = {"file": f}
 | |
|             r = requests.post(f"{url}/pipelines/upload", headers=headers, files=files)
 | |
| 
 | |
|         r.raise_for_status()
 | |
|         data = r.json()
 | |
| 
 | |
|         return {**data}
 | |
|     except Exception as e:
 | |
|         # Handle connection error here
 | |
|         print(f"Connection error: {e}")
 | |
| 
 | |
|         detail = "Pipeline not found"
 | |
|         if r is not None:
 | |
|             try:
 | |
|                 res = r.json()
 | |
|                 if "detail" in res:
 | |
|                     detail = res["detail"]
 | |
|             except:
 | |
|                 pass
 | |
| 
 | |
|         raise HTTPException(
 | |
|             status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
 | |
|             detail=detail,
 | |
|         )
 | |
|     finally:
 | |
|         # Ensure the file is deleted after the upload is completed or on failure
 | |
|         if os.path.exists(file_path):
 | |
|             os.remove(file_path)
 | |
| 
 | |
| 
 | |
| class AddPipelineForm(BaseModel):
 | |
|     url: str
 | |
|     urlIdx: int
 | |
| 
 | |
| 
 | |
| @app.post("/api/pipelines/add")
 | |
| async def add_pipeline(form_data: AddPipelineForm, user=Depends(get_admin_user)):
 | |
| 
 | |
|     r = None
 | |
|     try:
 | |
|         urlIdx = form_data.urlIdx
 | |
| 
 | |
|         url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
 | |
|         key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
 | |
| 
 | |
|         headers = {"Authorization": f"Bearer {key}"}
 | |
|         r = requests.post(
 | |
|             f"{url}/pipelines/add", headers=headers, json={"url": form_data.url}
 | |
|         )
 | |
| 
 | |
|         r.raise_for_status()
 | |
|         data = r.json()
 | |
| 
 | |
|         return {**data}
 | |
|     except Exception as e:
 | |
|         # Handle connection error here
 | |
|         print(f"Connection error: {e}")
 | |
| 
 | |
|         detail = "Pipeline not found"
 | |
|         if r is not None:
 | |
|             try:
 | |
|                 res = r.json()
 | |
|                 if "detail" in res:
 | |
|                     detail = res["detail"]
 | |
|             except:
 | |
|                 pass
 | |
| 
 | |
|         raise HTTPException(
 | |
|             status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
 | |
|             detail=detail,
 | |
|         )
 | |
| 
 | |
| 
 | |
| class DeletePipelineForm(BaseModel):
 | |
|     id: str
 | |
|     urlIdx: int
 | |
| 
 | |
| 
 | |
| @app.delete("/api/pipelines/delete")
 | |
| async def delete_pipeline(form_data: DeletePipelineForm, user=Depends(get_admin_user)):
 | |
| 
 | |
|     r = None
 | |
|     try:
 | |
|         urlIdx = form_data.urlIdx
 | |
| 
 | |
|         url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
 | |
|         key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
 | |
| 
 | |
|         headers = {"Authorization": f"Bearer {key}"}
 | |
|         r = requests.delete(
 | |
|             f"{url}/pipelines/delete", headers=headers, json={"id": form_data.id}
 | |
|         )
 | |
| 
 | |
|         r.raise_for_status()
 | |
|         data = r.json()
 | |
| 
 | |
|         return {**data}
 | |
|     except Exception as e:
 | |
|         # Handle connection error here
 | |
|         print(f"Connection error: {e}")
 | |
| 
 | |
|         detail = "Pipeline not found"
 | |
|         if r is not None:
 | |
|             try:
 | |
|                 res = r.json()
 | |
|                 if "detail" in res:
 | |
|                     detail = res["detail"]
 | |
|             except:
 | |
|                 pass
 | |
| 
 | |
|         raise HTTPException(
 | |
|             status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
 | |
|             detail=detail,
 | |
|         )
 | |
| 
 | |
| 
 | |
| @app.get("/api/pipelines")
 | |
| async def get_pipelines(urlIdx: Optional[int] = None, user=Depends(get_admin_user)):
 | |
|     r = None
 | |
|     try:
 | |
|         urlIdx
 | |
| 
 | |
|         url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
 | |
|         key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
 | |
| 
 | |
|         headers = {"Authorization": f"Bearer {key}"}
 | |
|         r = requests.get(f"{url}/pipelines", headers=headers)
 | |
| 
 | |
|         r.raise_for_status()
 | |
|         data = r.json()
 | |
| 
 | |
|         return {**data}
 | |
|     except Exception as e:
 | |
|         # Handle connection error here
 | |
|         print(f"Connection error: {e}")
 | |
| 
 | |
|         detail = "Pipeline not found"
 | |
|         if r is not None:
 | |
|             try:
 | |
|                 res = r.json()
 | |
|                 if "detail" in res:
 | |
|                     detail = res["detail"]
 | |
|             except:
 | |
|                 pass
 | |
| 
 | |
|         raise HTTPException(
 | |
|             status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
 | |
|             detail=detail,
 | |
|         )
 | |
| 
 | |
| 
 | |
| @app.get("/api/pipelines/{pipeline_id}/valves")
 | |
| async def get_pipeline_valves(
 | |
|     urlIdx: Optional[int], pipeline_id: str, user=Depends(get_admin_user)
 | |
| ):
 | |
|     models = await get_all_models()
 | |
|     r = None
 | |
|     try:
 | |
| 
 | |
|         url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
 | |
|         key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
 | |
| 
 | |
|         headers = {"Authorization": f"Bearer {key}"}
 | |
|         r = requests.get(f"{url}/{pipeline_id}/valves", headers=headers)
 | |
| 
 | |
|         r.raise_for_status()
 | |
|         data = r.json()
 | |
| 
 | |
|         return {**data}
 | |
|     except Exception as e:
 | |
|         # Handle connection error here
 | |
|         print(f"Connection error: {e}")
 | |
| 
 | |
|         detail = "Pipeline not found"
 | |
| 
 | |
|         if r is not None:
 | |
|             try:
 | |
|                 res = r.json()
 | |
|                 if "detail" in res:
 | |
|                     detail = res["detail"]
 | |
|             except:
 | |
|                 pass
 | |
| 
 | |
|         raise HTTPException(
 | |
|             status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
 | |
|             detail=detail,
 | |
|         )
 | |
| 
 | |
| 
 | |
| @app.get("/api/pipelines/{pipeline_id}/valves/spec")
 | |
| async def get_pipeline_valves_spec(
 | |
|     urlIdx: Optional[int], pipeline_id: str, user=Depends(get_admin_user)
 | |
| ):
 | |
|     models = await get_all_models()
 | |
| 
 | |
|     r = None
 | |
|     try:
 | |
|         url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
 | |
|         key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
 | |
| 
 | |
|         headers = {"Authorization": f"Bearer {key}"}
 | |
|         r = requests.get(f"{url}/{pipeline_id}/valves/spec", headers=headers)
 | |
| 
 | |
|         r.raise_for_status()
 | |
|         data = r.json()
 | |
| 
 | |
|         return {**data}
 | |
|     except Exception as e:
 | |
|         # Handle connection error here
 | |
|         print(f"Connection error: {e}")
 | |
| 
 | |
|         detail = "Pipeline not found"
 | |
|         if r is not None:
 | |
|             try:
 | |
|                 res = r.json()
 | |
|                 if "detail" in res:
 | |
|                     detail = res["detail"]
 | |
|             except:
 | |
|                 pass
 | |
| 
 | |
|         raise HTTPException(
 | |
|             status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
 | |
|             detail=detail,
 | |
|         )
 | |
| 
 | |
| 
 | |
| @app.post("/api/pipelines/{pipeline_id}/valves/update")
 | |
| async def update_pipeline_valves(
 | |
|     urlIdx: Optional[int],
 | |
|     pipeline_id: str,
 | |
|     form_data: dict,
 | |
|     user=Depends(get_admin_user),
 | |
| ):
 | |
|     models = await get_all_models()
 | |
| 
 | |
|     r = None
 | |
|     try:
 | |
|         url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
 | |
|         key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
 | |
| 
 | |
|         headers = {"Authorization": f"Bearer {key}"}
 | |
|         r = requests.post(
 | |
|             f"{url}/{pipeline_id}/valves/update",
 | |
|             headers=headers,
 | |
|             json={**form_data},
 | |
|         )
 | |
| 
 | |
|         r.raise_for_status()
 | |
|         data = r.json()
 | |
| 
 | |
|         return {**data}
 | |
|     except Exception as e:
 | |
|         # Handle connection error here
 | |
|         print(f"Connection error: {e}")
 | |
| 
 | |
|         detail = "Pipeline not found"
 | |
| 
 | |
|         if r is not None:
 | |
|             try:
 | |
|                 res = r.json()
 | |
|                 if "detail" in res:
 | |
|                     detail = res["detail"]
 | |
|             except:
 | |
|                 pass
 | |
| 
 | |
|         raise HTTPException(
 | |
|             status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
 | |
|             detail=detail,
 | |
|         )
 | |
| 
 | |
| 
 | |
| @app.get("/api/config")
 | |
| async def get_app_config():
 | |
|     # Checking and Handling the Absence of 'ui' in CONFIG_DATA
 | |
| 
 | |
|     default_locale = "en-US"
 | |
|     if "ui" in CONFIG_DATA:
 | |
|         default_locale = CONFIG_DATA["ui"].get("default_locale", "en-US")
 | |
| 
 | |
|     # The Rest of the Function Now Uses the Variables Defined Above
 | |
|     return {
 | |
|         "status": True,
 | |
|         "name": WEBUI_NAME,
 | |
|         "version": VERSION,
 | |
|         "default_locale": default_locale,
 | |
|         "default_models": webui_app.state.config.DEFAULT_MODELS,
 | |
|         "default_prompt_suggestions": webui_app.state.config.DEFAULT_PROMPT_SUGGESTIONS,
 | |
|         "features": {
 | |
|             "auth": WEBUI_AUTH,
 | |
|             "auth_trusted_header": bool(webui_app.state.AUTH_TRUSTED_EMAIL_HEADER),
 | |
|             "enable_signup": webui_app.state.config.ENABLE_SIGNUP,
 | |
|             "enable_web_search": rag_app.state.config.ENABLE_RAG_WEB_SEARCH,
 | |
|             "enable_image_generation": images_app.state.config.ENABLED,
 | |
|             "enable_community_sharing": webui_app.state.config.ENABLE_COMMUNITY_SHARING,
 | |
|             "enable_admin_export": ENABLE_ADMIN_EXPORT,
 | |
|         },
 | |
|         "audio": {
 | |
|             "tts": {
 | |
|                 "engine": audio_app.state.config.TTS_ENGINE,
 | |
|                 "voice": audio_app.state.config.TTS_VOICE,
 | |
|             },
 | |
|             "stt": {
 | |
|                 "engine": audio_app.state.config.STT_ENGINE,
 | |
|             },
 | |
|         },
 | |
|     }
 | |
| 
 | |
| 
 | |
| @app.get("/api/config/model/filter")
 | |
| async def get_model_filter_config(user=Depends(get_admin_user)):
 | |
|     return {
 | |
|         "enabled": app.state.config.ENABLE_MODEL_FILTER,
 | |
|         "models": app.state.config.MODEL_FILTER_LIST,
 | |
|     }
 | |
| 
 | |
| 
 | |
| class ModelFilterConfigForm(BaseModel):
 | |
|     enabled: bool
 | |
|     models: List[str]
 | |
| 
 | |
| 
 | |
| @app.post("/api/config/model/filter")
 | |
| async def update_model_filter_config(
 | |
|     form_data: ModelFilterConfigForm, user=Depends(get_admin_user)
 | |
| ):
 | |
|     app.state.config.ENABLE_MODEL_FILTER = form_data.enabled
 | |
|     app.state.config.MODEL_FILTER_LIST = form_data.models
 | |
| 
 | |
|     return {
 | |
|         "enabled": app.state.config.ENABLE_MODEL_FILTER,
 | |
|         "models": app.state.config.MODEL_FILTER_LIST,
 | |
|     }
 | |
| 
 | |
| 
 | |
| @app.get("/api/webhook")
 | |
| async def get_webhook_url(user=Depends(get_admin_user)):
 | |
|     return {
 | |
|         "url": app.state.config.WEBHOOK_URL,
 | |
|     }
 | |
| 
 | |
| 
 | |
| class UrlForm(BaseModel):
 | |
|     url: str
 | |
| 
 | |
| 
 | |
| @app.post("/api/webhook")
 | |
| async def update_webhook_url(form_data: UrlForm, user=Depends(get_admin_user)):
 | |
|     app.state.config.WEBHOOK_URL = form_data.url
 | |
|     webui_app.state.WEBHOOK_URL = app.state.config.WEBHOOK_URL
 | |
|     return {"url": app.state.config.WEBHOOK_URL}
 | |
| 
 | |
| 
 | |
| @app.get("/api/version")
 | |
| async def get_app_config():
 | |
|     return {
 | |
|         "version": VERSION,
 | |
|     }
 | |
| 
 | |
| 
 | |
| @app.get("/api/changelog")
 | |
| async def get_app_changelog():
 | |
|     return {key: CHANGELOG[key] for idx, key in enumerate(CHANGELOG) if idx < 5}
 | |
| 
 | |
| 
 | |
| @app.get("/api/version/updates")
 | |
| async def get_app_latest_release_version():
 | |
|     try:
 | |
|         async with aiohttp.ClientSession(trust_env=True) as session:
 | |
|             async with session.get(
 | |
|                 "https://api.github.com/repos/open-webui/open-webui/releases/latest"
 | |
|             ) as response:
 | |
|                 response.raise_for_status()
 | |
|                 data = await response.json()
 | |
|                 latest_version = data["tag_name"]
 | |
| 
 | |
|                 return {"current": VERSION, "latest": latest_version[1:]}
 | |
|     except aiohttp.ClientError as e:
 | |
|         raise HTTPException(
 | |
|             status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
 | |
|             detail=ERROR_MESSAGES.RATE_LIMIT_EXCEEDED,
 | |
|         )
 | |
| 
 | |
| 
 | |
| @app.get("/manifest.json")
 | |
| async def get_manifest_json():
 | |
|     return {
 | |
|         "name": WEBUI_NAME,
 | |
|         "short_name": WEBUI_NAME,
 | |
|         "start_url": "/",
 | |
|         "display": "standalone",
 | |
|         "background_color": "#343541",
 | |
|         "theme_color": "#343541",
 | |
|         "orientation": "portrait-primary",
 | |
|         "icons": [{"src": "/static/logo.png", "type": "image/png", "sizes": "500x500"}],
 | |
|     }
 | |
| 
 | |
| 
 | |
| @app.get("/opensearch.xml")
 | |
| async def get_opensearch_xml():
 | |
|     xml_content = rf"""
 | |
|     <OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/" xmlns:moz="http://www.mozilla.org/2006/browser/search/">
 | |
|     <ShortName>{WEBUI_NAME}</ShortName>
 | |
|     <Description>Search {WEBUI_NAME}</Description>
 | |
|     <InputEncoding>UTF-8</InputEncoding>
 | |
|     <Image width="16" height="16" type="image/x-icon">{WEBUI_URL}/favicon.png</Image>
 | |
|     <Url type="text/html" method="get" template="{WEBUI_URL}/?q={"{searchTerms}"}"/>
 | |
|     <moz:SearchForm>{WEBUI_URL}</moz:SearchForm>
 | |
|     </OpenSearchDescription>
 | |
|     """
 | |
|     return Response(content=xml_content, media_type="application/xml")
 | |
| 
 | |
| 
 | |
| @app.get("/health")
 | |
| async def healthcheck():
 | |
|     return {"status": True}
 | |
| 
 | |
| 
 | |
| app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
 | |
| app.mount("/cache", StaticFiles(directory=CACHE_DIR), name="cache")
 | |
| 
 | |
| if os.path.exists(FRONTEND_BUILD_DIR):
 | |
|     mimetypes.add_type("text/javascript", ".js")
 | |
|     app.mount(
 | |
|         "/",
 | |
|         SPAStaticFiles(directory=FRONTEND_BUILD_DIR, html=True),
 | |
|         name="spa-static-files",
 | |
|     )
 | |
| else:
 | |
|     log.warning(
 | |
|         f"Frontend build directory not found at '{FRONTEND_BUILD_DIR}'. Serving API only."
 | |
|     )
 |