203 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Python
		
	
	
	
import inspect
 | 
						|
import logging
 | 
						|
import re
 | 
						|
from typing import Any, Awaitable, Callable, get_type_hints
 | 
						|
from functools import update_wrapper, partial
 | 
						|
 | 
						|
 | 
						|
from fastapi import Request
 | 
						|
from pydantic import BaseModel, Field, create_model
 | 
						|
from langchain_core.utils.function_calling import convert_to_openai_function
 | 
						|
 | 
						|
 | 
						|
from open_webui.models.tools import Tools
 | 
						|
from open_webui.models.users import UserModel
 | 
						|
from open_webui.utils.plugin import load_tools_module_by_id
 | 
						|
 | 
						|
log = logging.getLogger(__name__)
 | 
						|
 | 
						|
 | 
						|
def apply_extra_params_to_tool_function(
 | 
						|
    function: Callable, extra_params: dict
 | 
						|
) -> Callable[..., Awaitable]:
 | 
						|
    sig = inspect.signature(function)
 | 
						|
    extra_params = {k: v for k, v in extra_params.items() if k in sig.parameters}
 | 
						|
    partial_func = partial(function, **extra_params)
 | 
						|
    if inspect.iscoroutinefunction(function):
 | 
						|
        update_wrapper(partial_func, function)
 | 
						|
        return partial_func
 | 
						|
 | 
						|
    async def new_function(*args, **kwargs):
 | 
						|
        return partial_func(*args, **kwargs)
 | 
						|
 | 
						|
    update_wrapper(new_function, function)
 | 
						|
    return new_function
 | 
						|
 | 
						|
 | 
						|
# Mutation on extra_params
 | 
						|
def get_tools(
 | 
						|
    request: Request, tool_ids: list[str], user: UserModel, extra_params: dict
 | 
						|
) -> dict[str, dict]:
 | 
						|
    tools_dict = {}
 | 
						|
 | 
						|
    for tool_id in tool_ids:
 | 
						|
        tools = Tools.get_tool_by_id(tool_id)
 | 
						|
        if tools is None:
 | 
						|
            continue
 | 
						|
 | 
						|
        module = request.app.state.TOOLS.get(tool_id, None)
 | 
						|
        if module is None:
 | 
						|
            module, _ = load_tools_module_by_id(tool_id)
 | 
						|
            request.app.state.TOOLS[tool_id] = module
 | 
						|
 | 
						|
        extra_params["__id__"] = tool_id
 | 
						|
        if hasattr(module, "valves") and hasattr(module, "Valves"):
 | 
						|
            valves = Tools.get_tool_valves_by_id(tool_id) or {}
 | 
						|
            module.valves = module.Valves(**valves)
 | 
						|
 | 
						|
        if hasattr(module, "UserValves"):
 | 
						|
            extra_params["__user__"]["valves"] = module.UserValves(  # type: ignore
 | 
						|
                **Tools.get_user_valves_by_id_and_user_id(tool_id, user.id)
 | 
						|
            )
 | 
						|
 | 
						|
        for spec in tools.specs:
 | 
						|
            # Remove internal parameters
 | 
						|
            spec["parameters"]["properties"] = {
 | 
						|
                key: val
 | 
						|
                for key, val in spec["parameters"]["properties"].items()
 | 
						|
                if not key.startswith("__")
 | 
						|
            }
 | 
						|
 | 
						|
            function_name = spec["name"]
 | 
						|
 | 
						|
            # convert to function that takes only model params and inserts custom params
 | 
						|
            original_func = getattr(module, function_name)
 | 
						|
            callable = apply_extra_params_to_tool_function(original_func, extra_params)
 | 
						|
            # TODO: This needs to be a pydantic model
 | 
						|
            tool_dict = {
 | 
						|
                "toolkit_id": tool_id,
 | 
						|
                "callable": callable,
 | 
						|
                "spec": spec,
 | 
						|
                "pydantic_model": function_to_pydantic_model(callable),
 | 
						|
                "file_handler": hasattr(module, "file_handler") and module.file_handler,
 | 
						|
                "citation": hasattr(module, "citation") and module.citation,
 | 
						|
            }
 | 
						|
 | 
						|
            # TODO: if collision, prepend toolkit name
 | 
						|
            if function_name in tools_dict:
 | 
						|
                log.warning(f"Tool {function_name} already exists in another tools!")
 | 
						|
                log.warning(f"Collision between {tools} and {tool_id}.")
 | 
						|
                log.warning(f"Discarding {tools}.{function_name}")
 | 
						|
            else:
 | 
						|
                tools_dict[function_name] = tool_dict
 | 
						|
 | 
						|
    return tools_dict
 | 
						|
 | 
						|
 | 
						|
def parse_description(docstring: str | None) -> str:
 | 
						|
    """
 | 
						|
    Parse a function's docstring to extract the description.
 | 
						|
 | 
						|
    Args:
 | 
						|
        docstring (str): The docstring to parse.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        str: The description.
 | 
						|
    """
 | 
						|
 | 
						|
    if not docstring:
 | 
						|
        return ""
 | 
						|
 | 
						|
    lines = [line.strip() for line in docstring.strip().split("\n")]
 | 
						|
    description_lines: list[str] = []
 | 
						|
 | 
						|
    for line in lines:
 | 
						|
        if re.match(r":param", line) or re.match(r":return", line):
 | 
						|
            break
 | 
						|
 | 
						|
        description_lines.append(line)
 | 
						|
 | 
						|
    return "\n".join(description_lines)
 | 
						|
 | 
						|
 | 
						|
def parse_docstring(docstring):
 | 
						|
    """
 | 
						|
    Parse a function's docstring to extract parameter descriptions in reST format.
 | 
						|
 | 
						|
    Args:
 | 
						|
        docstring (str): The docstring to parse.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        dict: A dictionary where keys are parameter names and values are descriptions.
 | 
						|
    """
 | 
						|
    if not docstring:
 | 
						|
        return {}
 | 
						|
 | 
						|
    # Regex to match `:param name: description` format
 | 
						|
    param_pattern = re.compile(r":param (\w+):\s*(.+)")
 | 
						|
    param_descriptions = {}
 | 
						|
 | 
						|
    for line in docstring.splitlines():
 | 
						|
        match = param_pattern.match(line.strip())
 | 
						|
        if not match:
 | 
						|
            continue
 | 
						|
        param_name, param_description = match.groups()
 | 
						|
        if param_name.startswith("__"):
 | 
						|
            continue
 | 
						|
        param_descriptions[param_name] = param_description
 | 
						|
 | 
						|
    return param_descriptions
 | 
						|
 | 
						|
 | 
						|
def function_to_pydantic_model(func: Callable) -> type[BaseModel]:
 | 
						|
    """
 | 
						|
    Converts a Python function's type hints and docstring to a Pydantic model,
 | 
						|
    including support for nested types, default values, and descriptions.
 | 
						|
 | 
						|
    Args:
 | 
						|
        func: The function whose type hints and docstring should be converted.
 | 
						|
        model_name: The name of the generated Pydantic model.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        A Pydantic model class.
 | 
						|
    """
 | 
						|
    type_hints = get_type_hints(func)
 | 
						|
    signature = inspect.signature(func)
 | 
						|
    parameters = signature.parameters
 | 
						|
 | 
						|
    docstring = func.__doc__
 | 
						|
    descriptions = parse_docstring(docstring)
 | 
						|
 | 
						|
    tool_description = parse_description(docstring)
 | 
						|
 | 
						|
    field_defs = {}
 | 
						|
    for name, param in parameters.items():
 | 
						|
        type_hint = type_hints.get(name, Any)
 | 
						|
        default_value = param.default if param.default is not param.empty else ...
 | 
						|
        description = descriptions.get(name, None)
 | 
						|
        if not description:
 | 
						|
            field_defs[name] = type_hint, default_value
 | 
						|
            continue
 | 
						|
        field_defs[name] = type_hint, Field(default_value, description=description)
 | 
						|
 | 
						|
    model = create_model(func.__name__, **field_defs)
 | 
						|
    model.__doc__ = tool_description
 | 
						|
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
def get_callable_attributes(tool: object) -> list[Callable]:
 | 
						|
    return [
 | 
						|
        getattr(tool, func)
 | 
						|
        for func in dir(tool)
 | 
						|
        if callable(getattr(tool, func))
 | 
						|
        and not func.startswith("__")
 | 
						|
        and not inspect.isclass(getattr(tool, func))
 | 
						|
    ]
 | 
						|
 | 
						|
 | 
						|
def get_tools_specs(tool_class: object) -> list[dict]:
 | 
						|
    function_list = get_callable_attributes(tool_class)
 | 
						|
    models = map(function_to_pydantic_model, function_list)
 | 
						|
    return [convert_to_openai_function(tool) for tool in models]
 |