320 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			320 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
import logging
 | 
						|
import sys
 | 
						|
import inspect
 | 
						|
import json
 | 
						|
import asyncio
 | 
						|
 | 
						|
from pydantic import BaseModel
 | 
						|
from typing import AsyncGenerator, Generator, Iterator
 | 
						|
from fastapi import (
 | 
						|
    Depends,
 | 
						|
    FastAPI,
 | 
						|
    File,
 | 
						|
    Form,
 | 
						|
    HTTPException,
 | 
						|
    Request,
 | 
						|
    UploadFile,
 | 
						|
    status,
 | 
						|
)
 | 
						|
from starlette.responses import Response, StreamingResponse
 | 
						|
 | 
						|
 | 
						|
from open_webui.socket.main import (
 | 
						|
    get_event_call,
 | 
						|
    get_event_emitter,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
from open_webui.models.functions import Functions
 | 
						|
from open_webui.models.models import Models
 | 
						|
 | 
						|
from open_webui.utils.plugin import load_function_module_by_id
 | 
						|
from open_webui.utils.tools import get_tools
 | 
						|
from open_webui.utils.access_control import has_access
 | 
						|
 | 
						|
from open_webui.env import SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL
 | 
						|
 | 
						|
from open_webui.utils.misc import (
 | 
						|
    add_or_update_system_message,
 | 
						|
    get_last_user_message,
 | 
						|
    prepend_to_first_user_message_content,
 | 
						|
    openai_chat_chunk_message_template,
 | 
						|
    openai_chat_completion_message_template,
 | 
						|
)
 | 
						|
from open_webui.utils.payload import (
 | 
						|
    apply_model_params_to_body_openai,
 | 
						|
    apply_model_system_prompt_to_body,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
 | 
						|
log = logging.getLogger(__name__)
 | 
						|
log.setLevel(SRC_LOG_LEVELS["MAIN"])
 | 
						|
 | 
						|
 | 
						|
def get_function_module_by_id(request: Request, pipe_id: str):
 | 
						|
    # Check if function is already loaded
 | 
						|
    function_module, _, _ = load_function_module_by_id(pipe_id)
 | 
						|
    request.app.state.FUNCTIONS[pipe_id] = function_module
 | 
						|
 | 
						|
    if hasattr(function_module, "valves") and hasattr(function_module, "Valves"):
 | 
						|
        valves = Functions.get_function_valves_by_id(pipe_id)
 | 
						|
        function_module.valves = function_module.Valves(**(valves if valves else {}))
 | 
						|
    return function_module
 | 
						|
 | 
						|
 | 
						|
async def get_function_models(request):
 | 
						|
    pipes = Functions.get_functions_by_type("pipe", active_only=True)
 | 
						|
    pipe_models = []
 | 
						|
 | 
						|
    for pipe in pipes:
 | 
						|
        function_module = get_function_module_by_id(request, pipe.id)
 | 
						|
 | 
						|
        # Check if function is a manifold
 | 
						|
        if hasattr(function_module, "pipes"):
 | 
						|
            sub_pipes = []
 | 
						|
 | 
						|
            # Handle pipes being a list, sync function, or async function
 | 
						|
            try:
 | 
						|
                if callable(function_module.pipes):
 | 
						|
                    if asyncio.iscoroutinefunction(function_module.pipes):
 | 
						|
                        sub_pipes = await function_module.pipes()
 | 
						|
                    else:
 | 
						|
                        sub_pipes = function_module.pipes()
 | 
						|
                else:
 | 
						|
                    sub_pipes = function_module.pipes
 | 
						|
            except Exception as e:
 | 
						|
                log.exception(e)
 | 
						|
                sub_pipes = []
 | 
						|
 | 
						|
            log.debug(
 | 
						|
                f"get_function_models: function '{pipe.id}' is a manifold of {sub_pipes}"
 | 
						|
            )
 | 
						|
 | 
						|
            for p in sub_pipes:
 | 
						|
                sub_pipe_id = f'{pipe.id}.{p["id"]}'
 | 
						|
                sub_pipe_name = p["name"]
 | 
						|
 | 
						|
                if hasattr(function_module, "name"):
 | 
						|
                    sub_pipe_name = f"{function_module.name}{sub_pipe_name}"
 | 
						|
 | 
						|
                pipe_flag = {"type": pipe.type}
 | 
						|
 | 
						|
                pipe_models.append(
 | 
						|
                    {
 | 
						|
                        "id": sub_pipe_id,
 | 
						|
                        "name": sub_pipe_name,
 | 
						|
                        "object": "model",
 | 
						|
                        "created": pipe.created_at,
 | 
						|
                        "owned_by": "openai",
 | 
						|
                        "pipe": pipe_flag,
 | 
						|
                    }
 | 
						|
                )
 | 
						|
        else:
 | 
						|
            pipe_flag = {"type": "pipe"}
 | 
						|
 | 
						|
            log.debug(
 | 
						|
                f"get_function_models: function '{pipe.id}' is a single pipe {{ 'id': {pipe.id}, 'name': {pipe.name} }}"
 | 
						|
            )
 | 
						|
 | 
						|
            pipe_models.append(
 | 
						|
                {
 | 
						|
                    "id": pipe.id,
 | 
						|
                    "name": pipe.name,
 | 
						|
                    "object": "model",
 | 
						|
                    "created": pipe.created_at,
 | 
						|
                    "owned_by": "openai",
 | 
						|
                    "pipe": pipe_flag,
 | 
						|
                }
 | 
						|
            )
 | 
						|
 | 
						|
    return pipe_models
 | 
						|
 | 
						|
 | 
						|
async def generate_function_chat_completion(
 | 
						|
    request, form_data, user, models: dict = {}
 | 
						|
):
 | 
						|
    async def execute_pipe(pipe, params):
 | 
						|
        if inspect.iscoroutinefunction(pipe):
 | 
						|
            return await pipe(**params)
 | 
						|
        else:
 | 
						|
            return pipe(**params)
 | 
						|
 | 
						|
    async def get_message_content(res: str | Generator | AsyncGenerator) -> str:
 | 
						|
        if isinstance(res, str):
 | 
						|
            return res
 | 
						|
        if isinstance(res, Generator):
 | 
						|
            return "".join(map(str, res))
 | 
						|
        if isinstance(res, AsyncGenerator):
 | 
						|
            return "".join([str(stream) async for stream in res])
 | 
						|
 | 
						|
    def process_line(form_data: dict, line):
 | 
						|
        if isinstance(line, BaseModel):
 | 
						|
            line = line.model_dump_json()
 | 
						|
            line = f"data: {line}"
 | 
						|
        if isinstance(line, dict):
 | 
						|
            line = f"data: {json.dumps(line)}"
 | 
						|
 | 
						|
        try:
 | 
						|
            line = line.decode("utf-8")
 | 
						|
        except Exception:
 | 
						|
            pass
 | 
						|
 | 
						|
        if line.startswith("data:"):
 | 
						|
            return f"{line}\n\n"
 | 
						|
        else:
 | 
						|
            line = openai_chat_chunk_message_template(form_data["model"], line)
 | 
						|
            return f"data: {json.dumps(line)}\n\n"
 | 
						|
 | 
						|
    def get_pipe_id(form_data: dict) -> str:
 | 
						|
        pipe_id = form_data["model"]
 | 
						|
        if "." in pipe_id:
 | 
						|
            pipe_id, _ = pipe_id.split(".", 1)
 | 
						|
        return pipe_id
 | 
						|
 | 
						|
    def get_function_params(function_module, form_data, user, extra_params=None):
 | 
						|
        if extra_params is None:
 | 
						|
            extra_params = {}
 | 
						|
 | 
						|
        pipe_id = get_pipe_id(form_data)
 | 
						|
 | 
						|
        # Get the signature of the function
 | 
						|
        sig = inspect.signature(function_module.pipe)
 | 
						|
        params = {"body": form_data} | {
 | 
						|
            k: v for k, v in extra_params.items() if k in sig.parameters
 | 
						|
        }
 | 
						|
 | 
						|
        if "__user__" in params and hasattr(function_module, "UserValves"):
 | 
						|
            user_valves = Functions.get_user_valves_by_id_and_user_id(pipe_id, user.id)
 | 
						|
            try:
 | 
						|
                params["__user__"]["valves"] = function_module.UserValves(**user_valves)
 | 
						|
            except Exception as e:
 | 
						|
                log.exception(e)
 | 
						|
                params["__user__"]["valves"] = function_module.UserValves()
 | 
						|
 | 
						|
        return params
 | 
						|
 | 
						|
    model_id = form_data.get("model")
 | 
						|
    model_info = Models.get_model_by_id(model_id)
 | 
						|
 | 
						|
    metadata = form_data.pop("metadata", {})
 | 
						|
 | 
						|
    files = metadata.get("files", [])
 | 
						|
    tool_ids = metadata.get("tool_ids", [])
 | 
						|
    # Check if tool_ids is None
 | 
						|
    if tool_ids is None:
 | 
						|
        tool_ids = []
 | 
						|
 | 
						|
    __event_emitter__ = None
 | 
						|
    __event_call__ = None
 | 
						|
    __task__ = None
 | 
						|
    __task_body__ = None
 | 
						|
 | 
						|
    if metadata:
 | 
						|
        if all(k in metadata for k in ("session_id", "chat_id", "message_id")):
 | 
						|
            __event_emitter__ = get_event_emitter(metadata)
 | 
						|
            __event_call__ = get_event_call(metadata)
 | 
						|
        __task__ = metadata.get("task", None)
 | 
						|
        __task_body__ = metadata.get("task_body", None)
 | 
						|
 | 
						|
    extra_params = {
 | 
						|
        "__event_emitter__": __event_emitter__,
 | 
						|
        "__event_call__": __event_call__,
 | 
						|
        "__chat_id__": metadata.get("chat_id", None),
 | 
						|
        "__session_id__": metadata.get("session_id", None),
 | 
						|
        "__message_id__": metadata.get("message_id", None),
 | 
						|
        "__task__": __task__,
 | 
						|
        "__task_body__": __task_body__,
 | 
						|
        "__files__": files,
 | 
						|
        "__user__": {
 | 
						|
            "id": user.id,
 | 
						|
            "email": user.email,
 | 
						|
            "name": user.name,
 | 
						|
            "role": user.role,
 | 
						|
        },
 | 
						|
        "__metadata__": metadata,
 | 
						|
        "__request__": request,
 | 
						|
    }
 | 
						|
    extra_params["__tools__"] = get_tools(
 | 
						|
        request,
 | 
						|
        tool_ids,
 | 
						|
        user,
 | 
						|
        {
 | 
						|
            **extra_params,
 | 
						|
            "__model__": models.get(form_data["model"], None),
 | 
						|
            "__messages__": form_data["messages"],
 | 
						|
            "__files__": files,
 | 
						|
        },
 | 
						|
    )
 | 
						|
 | 
						|
    if model_info:
 | 
						|
        if model_info.base_model_id:
 | 
						|
            form_data["model"] = model_info.base_model_id
 | 
						|
 | 
						|
        params = model_info.params.model_dump()
 | 
						|
        form_data = apply_model_params_to_body_openai(params, form_data)
 | 
						|
        form_data = apply_model_system_prompt_to_body(params, form_data, metadata, user)
 | 
						|
 | 
						|
    pipe_id = get_pipe_id(form_data)
 | 
						|
    function_module = get_function_module_by_id(request, pipe_id)
 | 
						|
 | 
						|
    pipe = function_module.pipe
 | 
						|
    params = get_function_params(function_module, form_data, user, extra_params)
 | 
						|
 | 
						|
    if form_data.get("stream", False):
 | 
						|
 | 
						|
        async def stream_content():
 | 
						|
            try:
 | 
						|
                res = await execute_pipe(pipe, params)
 | 
						|
 | 
						|
                # Directly return if the response is a StreamingResponse
 | 
						|
                if isinstance(res, StreamingResponse):
 | 
						|
                    async for data in res.body_iterator:
 | 
						|
                        yield data
 | 
						|
                    return
 | 
						|
                if isinstance(res, dict):
 | 
						|
                    yield f"data: {json.dumps(res)}\n\n"
 | 
						|
                    return
 | 
						|
 | 
						|
            except Exception as e:
 | 
						|
                log.error(f"Error: {e}")
 | 
						|
                yield f"data: {json.dumps({'error': {'detail':str(e)}})}\n\n"
 | 
						|
                return
 | 
						|
 | 
						|
            if isinstance(res, str):
 | 
						|
                message = openai_chat_chunk_message_template(form_data["model"], res)
 | 
						|
                yield f"data: {json.dumps(message)}\n\n"
 | 
						|
 | 
						|
            if isinstance(res, Iterator):
 | 
						|
                for line in res:
 | 
						|
                    yield process_line(form_data, line)
 | 
						|
 | 
						|
            if isinstance(res, AsyncGenerator):
 | 
						|
                async for line in res:
 | 
						|
                    yield process_line(form_data, line)
 | 
						|
 | 
						|
            if isinstance(res, str) or isinstance(res, Generator):
 | 
						|
                finish_message = openai_chat_chunk_message_template(
 | 
						|
                    form_data["model"], ""
 | 
						|
                )
 | 
						|
                finish_message["choices"][0]["finish_reason"] = "stop"
 | 
						|
                yield f"data: {json.dumps(finish_message)}\n\n"
 | 
						|
                yield "data: [DONE]"
 | 
						|
 | 
						|
        return StreamingResponse(stream_content(), media_type="text/event-stream")
 | 
						|
    else:
 | 
						|
        try:
 | 
						|
            res = await execute_pipe(pipe, params)
 | 
						|
 | 
						|
        except Exception as e:
 | 
						|
            log.error(f"Error: {e}")
 | 
						|
            return {"error": {"detail": str(e)}}
 | 
						|
 | 
						|
        if isinstance(res, StreamingResponse) or isinstance(res, dict):
 | 
						|
            return res
 | 
						|
        if isinstance(res, BaseModel):
 | 
						|
            return res.model_dump()
 | 
						|
 | 
						|
        message = await get_message_content(res)
 | 
						|
        return openai_chat_completion_message_template(form_data["model"], message)
 |