209 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			209 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
| from open_webui.utils.task import prompt_template, prompt_variables_template
 | |
| from open_webui.utils.misc import (
 | |
|     add_or_update_system_message,
 | |
| )
 | |
| 
 | |
| from typing import Callable, Optional
 | |
| 
 | |
| 
 | |
| # inplace function: form_data is modified
 | |
| def apply_model_system_prompt_to_body(
 | |
|     params: dict, form_data: dict, metadata: Optional[dict] = None, user=None
 | |
| ) -> dict:
 | |
|     system = params.get("system", None)
 | |
|     if not system:
 | |
|         return form_data
 | |
| 
 | |
|     # Metadata (WebUI Usage)
 | |
|     if metadata:
 | |
|         variables = metadata.get("variables", {})
 | |
|         if variables:
 | |
|             system = prompt_variables_template(system, variables)
 | |
| 
 | |
|     # Legacy (API Usage)
 | |
|     if user:
 | |
|         template_params = {
 | |
|             "user_name": user.name,
 | |
|             "user_location": user.info.get("location") if user.info else None,
 | |
|         }
 | |
|     else:
 | |
|         template_params = {}
 | |
| 
 | |
|     system = prompt_template(system, **template_params)
 | |
| 
 | |
|     form_data["messages"] = add_or_update_system_message(
 | |
|         system, form_data.get("messages", [])
 | |
|     )
 | |
|     return form_data
 | |
| 
 | |
| 
 | |
| # inplace function: form_data is modified
 | |
| def apply_model_params_to_body(
 | |
|     params: dict, form_data: dict, mappings: dict[str, Callable]
 | |
| ) -> dict:
 | |
|     if not params:
 | |
|         return form_data
 | |
| 
 | |
|     for key, cast_func in mappings.items():
 | |
|         if (value := params.get(key)) is not None:
 | |
|             form_data[key] = cast_func(value)
 | |
| 
 | |
|     return form_data
 | |
| 
 | |
| 
 | |
| # inplace function: form_data is modified
 | |
| def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict:
 | |
|     mappings = {
 | |
|         "temperature": float,
 | |
|         "top_p": float,
 | |
|         "max_tokens": int,
 | |
|         "frequency_penalty": float,
 | |
|         "reasoning_effort": str,
 | |
|         "seed": lambda x: x,
 | |
|         "stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
 | |
|     }
 | |
|     return apply_model_params_to_body(params, form_data, mappings)
 | |
| 
 | |
| 
 | |
| def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict:
 | |
|     opts = [
 | |
|         "temperature",
 | |
|         "top_p",
 | |
|         "seed",
 | |
|         "mirostat",
 | |
|         "mirostat_eta",
 | |
|         "mirostat_tau",
 | |
|         "num_ctx",
 | |
|         "num_batch",
 | |
|         "num_keep",
 | |
|         "repeat_last_n",
 | |
|         "tfs_z",
 | |
|         "top_k",
 | |
|         "min_p",
 | |
|         "use_mmap",
 | |
|         "use_mlock",
 | |
|         "num_thread",
 | |
|         "num_gpu",
 | |
|     ]
 | |
|     mappings = {i: lambda x: x for i in opts}
 | |
|     form_data = apply_model_params_to_body(params, form_data, mappings)
 | |
| 
 | |
|     name_differences = {
 | |
|         "max_tokens": "num_predict",
 | |
|         "frequency_penalty": "repeat_penalty",
 | |
|     }
 | |
| 
 | |
|     for key, value in name_differences.items():
 | |
|         if (param := params.get(key, None)) is not None:
 | |
|             form_data[value] = param
 | |
| 
 | |
|     return form_data
 | |
| 
 | |
| 
 | |
| def convert_messages_openai_to_ollama(messages: list[dict]) -> list[dict]:
 | |
|     ollama_messages = []
 | |
| 
 | |
|     for message in messages:
 | |
|         # Initialize the new message structure with the role
 | |
|         new_message = {"role": message["role"]}
 | |
| 
 | |
|         content = message.get("content", [])
 | |
| 
 | |
|         # Check if the content is a string (just a simple message)
 | |
|         if isinstance(content, str):
 | |
|             # If the content is a string, it's pure text
 | |
|             new_message["content"] = content
 | |
|         else:
 | |
|             # Otherwise, assume the content is a list of dicts, e.g., text followed by an image URL
 | |
|             content_text = ""
 | |
|             images = []
 | |
| 
 | |
|             # Iterate through the list of content items
 | |
|             for item in content:
 | |
|                 # Check if it's a text type
 | |
|                 if item.get("type") == "text":
 | |
|                     content_text += item.get("text", "")
 | |
| 
 | |
|                 # Check if it's an image URL type
 | |
|                 elif item.get("type") == "image_url":
 | |
|                     img_url = item.get("image_url", {}).get("url", "")
 | |
|                     if img_url:
 | |
|                         # If the image url starts with data:, it's a base64 image and should be trimmed
 | |
|                         if img_url.startswith("data:"):
 | |
|                             img_url = img_url.split(",")[-1]
 | |
|                         images.append(img_url)
 | |
| 
 | |
|             # Add content text (if any)
 | |
|             if content_text:
 | |
|                 new_message["content"] = content_text.strip()
 | |
| 
 | |
|             # Add images (if any)
 | |
|             if images:
 | |
|                 new_message["images"] = images
 | |
| 
 | |
|         # Append the new formatted message to the result
 | |
|         ollama_messages.append(new_message)
 | |
| 
 | |
|     return ollama_messages
 | |
| 
 | |
| 
 | |
| def convert_payload_openai_to_ollama(openai_payload: dict) -> dict:
 | |
|     """
 | |
|     Converts a payload formatted for OpenAI's API to be compatible with Ollama's API endpoint for chat completions.
 | |
| 
 | |
|     Args:
 | |
|         openai_payload (dict): The payload originally designed for OpenAI API usage.
 | |
| 
 | |
|     Returns:
 | |
|         dict: A modified payload compatible with the Ollama API.
 | |
|     """
 | |
|     ollama_payload = {}
 | |
| 
 | |
|     # Mapping basic model and message details
 | |
|     ollama_payload["model"] = openai_payload.get("model")
 | |
|     ollama_payload["messages"] = convert_messages_openai_to_ollama(
 | |
|         openai_payload.get("messages")
 | |
|     )
 | |
|     ollama_payload["stream"] = openai_payload.get("stream", False)
 | |
| 
 | |
|     if "tools" in openai_payload:
 | |
|         ollama_payload["tools"] = openai_payload["tools"]
 | |
| 
 | |
|     if "format" in openai_payload:
 | |
|         ollama_payload["format"] = openai_payload["format"]
 | |
| 
 | |
|     # If there are advanced parameters in the payload, format them in Ollama's options field
 | |
|     ollama_options = {}
 | |
| 
 | |
|     if openai_payload.get("options"):
 | |
|         ollama_payload["options"] = openai_payload["options"]
 | |
|         ollama_options = openai_payload["options"]
 | |
| 
 | |
|     # Handle parameters which map directly
 | |
|     for param in ["temperature", "top_p", "seed"]:
 | |
|         if param in openai_payload:
 | |
|             ollama_options[param] = openai_payload[param]
 | |
| 
 | |
|     # Mapping OpenAI's `max_tokens` -> Ollama's `num_predict`
 | |
|     if "max_completion_tokens" in openai_payload:
 | |
|         ollama_options["num_predict"] = openai_payload["max_completion_tokens"]
 | |
|     elif "max_tokens" in openai_payload:
 | |
|         ollama_options["num_predict"] = openai_payload["max_tokens"]
 | |
| 
 | |
|     # Handle frequency / presence_penalty, which needs renaming and checking
 | |
|     if "frequency_penalty" in openai_payload:
 | |
|         ollama_options["repeat_penalty"] = openai_payload["frequency_penalty"]
 | |
| 
 | |
|     if "presence_penalty" in openai_payload and "penalty" not in ollama_options:
 | |
|         # We are assuming presence penalty uses a similar concept in Ollama, which needs custom handling if exists.
 | |
|         ollama_options["new_topic_penalty"] = openai_payload["presence_penalty"]
 | |
| 
 | |
|     # Add options to payload if any have been set
 | |
|     if ollama_options:
 | |
|         ollama_payload["options"] = ollama_options
 | |
| 
 | |
|     if "metadata" in openai_payload:
 | |
|         ollama_payload["metadata"] = openai_payload["metadata"]
 | |
| 
 | |
|     return ollama_payload
 |