openssl/crypto/ml_dsa/ml_dsa_key.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

448 lines
14 KiB
C
Raw Normal View History

/*
* Copyright 2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/core_dispatch.h>
#include <openssl/core_names.h>
#include <openssl/params.h>
#include <openssl/proverr.h>
#include <openssl/rand.h>
#include "ml_dsa_local.h"
#include "ml_dsa_key.h"
#include "ml_dsa_params.h"
#include "ml_dsa_matrix.h"
#include "ml_dsa_hash.h"
/**
* @brief Create a new ML_DSA_KEY object
*
* @param libctx A OSSL_LIB_CTX object used for fetching algorithms.
* @param propq The property query used for fetching algorithms
* @param alg The algorithm name associated with the key type
* @returns The new ML_DSA_KEY object on success, or NULL on malloc failure
*/
ML_DSA_KEY *ossl_ml_dsa_key_new(OSSL_LIB_CTX *libctx, const char *propq,
const char *alg)
{
ML_DSA_KEY *ret;
const ML_DSA_PARAMS *params = ossl_ml_dsa_params_get(alg);
if (params == NULL)
return NULL;
ret = OPENSSL_zalloc(sizeof(*ret));
if (ret != NULL) {
ret->libctx = libctx;
ret->params = params;
ret->shake128_md = EVP_MD_fetch(libctx, "SHAKE-128", propq);
ret->shake256_md = EVP_MD_fetch(libctx, "SHAKE-256", propq);
if (ret->shake128_md == NULL || ret->shake256_md == NULL)
goto err;
}
return ret;
err:
ossl_ml_dsa_key_free(ret);
return NULL;
}
int ossl_ml_dsa_key_pub_alloc(ML_DSA_KEY *key)
{
if (key->t1.poly != NULL)
return 0;
return vector_alloc(&key->t1, key->params->k);
}
int ossl_ml_dsa_key_priv_alloc(ML_DSA_KEY *key)
{
size_t k = key->params->k, l = key->params->l;
POLY *poly;
if (key->s1.poly != NULL)
return 0;
if (!vector_alloc(&key->s1, l + 2 * k))
return 0;
poly = key->s1.poly;
key->s1.num_poly = l;
vector_init(&key->s2, poly + l, k);
vector_init(&key->t0, poly + l + k, k);
return 1;
}
/**
* @brief Destroy a ML_DSA_KEY object
*/
void ossl_ml_dsa_key_free(ML_DSA_KEY *key)
{
if (key == NULL)
return;
EVP_MD_free(key->shake128_md);
EVP_MD_free(key->shake256_md);
vector_zero(&key->s2);
vector_zero(&key->s1);
vector_zero(&key->t0);
vector_free(&key->s1);
vector_free(&key->t1);
OPENSSL_cleanse(key->K, sizeof(key->K));
OPENSSL_free(key->pub_encoding);
OPENSSL_free(key->priv_encoding);
OPENSSL_free(key->propq);
OPENSSL_free(key);
}
/**
* @brief Are 2 keys equal?
*
* To be equal the keys must have matching public or private key data and
* contain the same parameters.
* (Note that in OpenSSL that the private key always has a public key component).
*
* @param key1 A ML_DSA_KEY object
* @param key2 A ML_DSA_KEY object
* @param selection to select public and/or private component comparison.
* @returns 1 if the keys are equal otherwise it returns 0.
*/
int ossl_ml_dsa_key_equal(const ML_DSA_KEY *key1, const ML_DSA_KEY *key2,
int selection)
{
int key_checked = 0;
if (key1->params != key2->params)
return 0;
if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) {
if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) {
if (key1->pub_encoding != NULL && key2->pub_encoding != NULL) {
if (memcmp(key1->pub_encoding, key2->pub_encoding,
key1->params->pk_len) != 0)
return 0;
key_checked = 1;
}
}
if (!key_checked
&& (selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) {
if (key1->priv_encoding != NULL && key2->priv_encoding != NULL) {
if (memcmp(key1->priv_encoding, key2->priv_encoding,
key1->params->sk_len) != 0)
return 0;
key_checked = 1;
}
}
return key_checked;
}
return 1;
}
int ossl_ml_dsa_key_has(const ML_DSA_KEY *key, int selection)
{
if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) {
/* Note that the public key always exists if there is a private key */
if (ossl_ml_dsa_key_get_pub(key) == NULL)
return 0; /* No public key */
if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0
&& ossl_ml_dsa_key_get_priv(key) == NULL)
return 0; /* No private key */
return 1;
}
return 0;
}
/*
* @brief Given a key containing private key values for rho, s1 & s2
* generate the public value t and return the compressed values t1, t0.
*
* @param key A private key containing params, rh0, s1 & s2.
* @param md_ctx A EVP_MD_CTX used for sampling.
* @param t1 The returned polynomial encoding of the 10 MSB of each coefficient
* of the uncompressed public key polynomial t.
* @param t0 The returned polynomial encoding of the 13 LSB of each coefficient
* of the uncompressed public key polynomial t.
* @returns 1 on success, or 0 on failure.
*/
static int public_from_private(const ML_DSA_KEY *key, EVP_MD_CTX *md_ctx,
VECTOR *t1, VECTOR *t0)
{
const ML_DSA_PARAMS *params = key->params;
uint32_t k = params->k, l = params->l;
POLY *polys;
MATRIX a_ntt;
VECTOR s1_ntt;
VECTOR t;
polys = OPENSSL_malloc(sizeof(*polys) * (k + l + k * l));
if (polys == NULL)
return 0;
vector_init(&t, polys, k);
vector_init(&s1_ntt, t.poly + k, l);
matrix_init(&a_ntt, s1_ntt.poly + l, k, l);
/* Using rho generate A' = A in NTT form */
if (!matrix_expand_A(md_ctx, key->shake128_md, key->rho, &a_ntt))
goto err;
/* t = NTT_inv(A' * NTT(s1)) + s2 */
vector_copy(&s1_ntt, &key->s1);
vector_ntt(&s1_ntt);
matrix_mult_vector(&a_ntt, &s1_ntt, &t);
vector_ntt_inverse(&t);
vector_add(&t, &key->s2, &t);
/* Compress t */
vector_power2_round(&t, t1, t0);
/* Zeroize secret */
vector_zero(&s1_ntt);
err:
OPENSSL_free(polys);
return 1;
}
static int ml_dsa_key_public_from_private(ML_DSA_KEY *key)
{
int ret = 0;
VECTOR t0;
EVP_MD_CTX *md_ctx = NULL;
if (!vector_alloc(&t0, key->params->k)) /* t0 is already in the private key */
return 0;
if (!ossl_ml_dsa_key_pub_alloc(key)) /* allocate space for t1 */
return 0;
md_ctx = EVP_MD_CTX_new();
if (md_ctx == NULL)
goto err;
ret = public_from_private(key, md_ctx, &key->t1, &t0)
&& ossl_ml_dsa_pk_encode(key)
&& shake_xof(md_ctx, key->shake256_md,
key->pub_encoding, key->params->pk_len,
key->tr, sizeof(key->tr));
err:
vector_free(&t0);
EVP_MD_CTX_free(md_ctx);
return ret;
}
/**
* @brief Load a ML_DSA key from raw data.
*
* @param key An ML_DSA key to load into
* @param params An array of parameters containing key data.
* @param include_private Set to 1 to optionally include the private key data
* if it exists.
* @returns 1 on success, or 0 on failure.
*/
int ossl_ml_dsa_key_fromdata(ML_DSA_KEY *key, const OSSL_PARAM params[],
int include_private)
{
const OSSL_PARAM *pub = NULL, *priv = NULL;
const uint8_t *pub_data = NULL, *priv_data = NULL;
size_t pub_data_len = 0, priv_data_len = 0;
pub = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PUB_KEY);
if (pub != NULL
&& !OSSL_PARAM_get_octet_string_ptr(pub, (const void **)&pub_data,
&pub_data_len))
return 0;
/* Private key is optional */
if (include_private) {
priv = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PRIV_KEY);
if (priv != NULL) {
if (!OSSL_PARAM_get_octet_string_ptr(priv, (const void **)&priv_data,
&priv_data_len)
|| !ossl_ml_dsa_sk_decode(key, priv_data, priv_data_len))
return 0;
/* Always generate the public key from the private key */
if (!ml_dsa_key_public_from_private(key))
return 0;
/* Error if the supplied public key does not match the generated key */
if (pub != NULL
&& (pub_data_len != ossl_ml_dsa_key_get_pub_len(key)
|| memcmp(ossl_ml_dsa_key_get_pub(key), pub_data,
pub_data_len) == 0))
return 0;
}
}
/* If we only have the public key component then just decode it */
if (priv == NULL && pub != NULL) {
if (!ossl_ml_dsa_pk_decode(key, pub_data, pub_data_len))
return 0;
}
return 1;
}
int ossl_ml_dsa_key_pairwise_check(const ML_DSA_KEY *key)
{
int ret = 0;
VECTOR t1, t0;
POLY *polys = NULL;
uint32_t k = key->params->k;
EVP_MD_CTX *md_ctx = NULL;
if (key->pub_encoding == NULL || key->priv_encoding == 0)
return 0;
polys = OPENSSL_malloc(sizeof(*polys) * (2 * k));
if (polys == NULL)
return 0;
md_ctx = EVP_MD_CTX_new();
if (md_ctx == NULL)
goto err;
vector_init(&t1, polys, k);
vector_init(&t0, polys + k, k);
if (!public_from_private(key, md_ctx, &t1, &t0))
goto err;
ret = vector_equal(&t1, &key->t1) && vector_equal(&t0, &key->t0);
err:
EVP_MD_CTX_free(md_ctx);
OPENSSL_free(polys);
return ret;
}
/*
* @brief Generate a public-private key pair from a seed.
* See FIPS 204, Algorithm 6 ML-DSA.KeyGen_internal().
*
* @param seed The input seed
* @param seed_len The size of entropy (Must be 32 bytes)
* @param out The generated key (which contains params on input)
*
* @returns 1 on success or 0 on failure.
*/
static int keygen_internal(const uint8_t *seed, size_t seed_len,
ML_DSA_KEY *out)
{
int ret = 0;
uint8_t augmented_seed[ML_DSA_SEED_BYTES + 2];
uint8_t expanded_seed[ML_DSA_RHO_BYTES + ML_DSA_PRIV_SEED_BYTES + ML_DSA_K_BYTES];
const uint8_t *const rho = expanded_seed; /* p = Public Random Seed */
const uint8_t *const priv_seed = expanded_seed + ML_DSA_RHO_BYTES;
const uint8_t *const K = priv_seed + ML_DSA_PRIV_SEED_BYTES;
const ML_DSA_PARAMS *params = out->params;
EVP_MD_CTX *md_ctx = NULL;
md_ctx = EVP_MD_CTX_new();
if (md_ctx == NULL
|| !ossl_ml_dsa_key_pub_alloc(out)
|| !ossl_ml_dsa_key_priv_alloc(out))
goto err;
/* augmented_seed = seed || k || l */
memcpy(augmented_seed, seed, seed_len);
augmented_seed[ML_DSA_SEED_BYTES] = (uint8_t)params->k;
augmented_seed[ML_DSA_SEED_BYTES + 1] = (uint8_t)params->l;
/* Expand the seed into p[32], p'[64], K[32] */
if (!shake_xof(md_ctx, out->shake256_md, augmented_seed, sizeof(augmented_seed),
expanded_seed, sizeof(expanded_seed)))
goto err;
memcpy(out->rho, rho, sizeof(out->rho));
memcpy(out->K, K, sizeof(out->K));
ret = vector_expand_S(md_ctx, out->shake256_md, params->eta, priv_seed, &out->s1, &out->s2)
&& public_from_private(out, md_ctx, &out->t1, &out->t0)
&& ossl_ml_dsa_pk_encode(out)
&& shake_xof(md_ctx, out->shake256_md, out->pub_encoding, out->params->pk_len,
out->tr, sizeof(out->tr))
&& ossl_ml_dsa_sk_encode(out);
err:
EVP_MD_CTX_free(md_ctx);
OPENSSL_cleanse(augmented_seed, sizeof(augmented_seed));
OPENSSL_cleanse(expanded_seed, sizeof(expanded_seed));
return ret;
}
int ossl_ml_dsa_generate_key(OSSL_LIB_CTX *lib_ctx,
const uint8_t *entropy, size_t entropy_len,
ML_DSA_KEY *out)
{
int ret = 0;
uint8_t seed[ML_DSA_SEED_BYTES];
size_t seed_len = sizeof(seed);
if (entropy != NULL && entropy_len != 0) {
if (entropy_len != seed_len) {
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_SEED_LENGTH);
return 0;
}
memcpy(seed, entropy, seed_len);
} else {
if (RAND_priv_bytes_ex(lib_ctx, seed, seed_len, 0) <= 0)
goto err;
}
ret = keygen_internal(seed, seed_len, out);
err:
OPENSSL_cleanse(seed, seed_len);
return ret;
}
/**
* @brief This is used when a ML DSA key is used for an operation.
* This checks that the algorithm is the same (i.e. uses the same parameters)
*
* @param key A ML_DSA key to use for an operation.
* @param alg The algorithm name associated with an operation
*
* @returns 1 if the algorithm matches, or 0 otherwise.
*/
int ossl_ml_dsa_key_matches(const ML_DSA_KEY *key, const char *alg)
{
return (key->params == ossl_ml_dsa_params_get(alg));
}
/* Returns the public key data or NULL if there is no public key */
const uint8_t *ossl_ml_dsa_key_get_pub(const ML_DSA_KEY *key)
{
return key->pub_encoding;
}
/* Returns the encoded public key size */
size_t ossl_ml_dsa_key_get_pub_len(const ML_DSA_KEY *key)
{
return key->params->pk_len;
}
size_t ossl_ml_dsa_key_get_collision_strength_bits(const ML_DSA_KEY *key)
{
return key->params->bit_strength;
}
/* Returns the private key data or NULL if there is no private key */
const uint8_t *ossl_ml_dsa_key_get_priv(const ML_DSA_KEY *key)
{
return key->priv_encoding;
}
size_t ossl_ml_dsa_key_get_priv_len(const ML_DSA_KEY *key)
{
return key->params->sk_len;
}
size_t ossl_ml_dsa_key_get_sig_len(const ML_DSA_KEY *key)
{
return key->params->sig_len;
}
void ossl_ml_dsa_key_set0_libctx(ML_DSA_KEY *key, OSSL_LIB_CTX *lib_ctx)
{
key->libctx = lib_ctx;
}
const char *ossl_ml_dsa_key_get_name(const ML_DSA_KEY *key)
{
return key->params->alg;
}