mirror of https://github.com/openssl/openssl.git
Refactor BN_R_NO_INVERSE logic in internal functions
Closes #12129 As described in https://github.com/openssl/openssl/issues/12129 the readability of the internal functions providing the two alternative implementations for `BN_mod_inverse()` is a bit lacking. Both these functions are now completely internal, so we have the flexibility needed to slightly improve readability and remove unnecessary NULL checks. The main changes here are: - rename `BN_mod_inverse_no_branch()` as `bn_mod_inverse_no_branch()`: this function is `static` so it is not even visible within the rest of libcrypto. By convention upcase prefixes are reserved for public functions. - remove `if (pnoinv == NULL)` checks in `int_bn_mod_inverse()`: this function is internal to the BN module and we can guarantee that all callers pass non-NULL arguments. - `bn_mod_inverse_no_branch()` takes an extra `int *pnoinv` argument, so that it can signal if no inverse exists for the given inputs: in this way the caller is in charge of raising `BN_R_NO_INVERSE` as it is the case for the non-consttime implementation of `int_bn_mod_inverse()`. - `BN_mod_inverse()` is a public function and must guarantee that the internal functions providing the actual implementation receive valid arguments. If the caller passes a NULL `BN_CTX` we create a temporary one for internal use. - reorder function definitions in `crypto/bn/bn_gcd.c` to avoid forward declaration of `static` functions (in preparation for inlining). - inline `bn_mod_inverse_no_branch()`. Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org> (Merged from https://github.com/openssl/openssl/pull/12142)
This commit is contained in:
parent
e98c7350bf
commit
5d8b3a3ef2
|
@ -10,22 +10,189 @@
|
|||
#include "internal/cryptlib.h"
|
||||
#include "bn_local.h"
|
||||
|
||||
/* solves ax == 1 (mod n) */
|
||||
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
|
||||
const BIGNUM *a, const BIGNUM *n,
|
||||
BN_CTX *ctx);
|
||||
|
||||
BIGNUM *BN_mod_inverse(BIGNUM *in,
|
||||
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
|
||||
/*
|
||||
* bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
|
||||
* not contain branches that may leak sensitive information.
|
||||
*
|
||||
* This is a static function, we ensure all callers in this file pass valid
|
||||
* arguments: all passed pointers here are non-NULL.
|
||||
*/
|
||||
static ossl_inline
|
||||
BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in,
|
||||
const BIGNUM *a, const BIGNUM *n,
|
||||
BN_CTX *ctx, int *pnoinv)
|
||||
{
|
||||
BIGNUM *rv;
|
||||
int noinv;
|
||||
rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
|
||||
if (noinv)
|
||||
BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
|
||||
return rv;
|
||||
BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
|
||||
BIGNUM *ret = NULL;
|
||||
int sign;
|
||||
|
||||
bn_check_top(a);
|
||||
bn_check_top(n);
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
A = BN_CTX_get(ctx);
|
||||
B = BN_CTX_get(ctx);
|
||||
X = BN_CTX_get(ctx);
|
||||
D = BN_CTX_get(ctx);
|
||||
M = BN_CTX_get(ctx);
|
||||
Y = BN_CTX_get(ctx);
|
||||
T = BN_CTX_get(ctx);
|
||||
if (T == NULL)
|
||||
goto err;
|
||||
|
||||
if (in == NULL)
|
||||
R = BN_new();
|
||||
else
|
||||
R = in;
|
||||
if (R == NULL)
|
||||
goto err;
|
||||
|
||||
BN_one(X);
|
||||
BN_zero(Y);
|
||||
if (BN_copy(B, a) == NULL)
|
||||
goto err;
|
||||
if (BN_copy(A, n) == NULL)
|
||||
goto err;
|
||||
A->neg = 0;
|
||||
|
||||
if (B->neg || (BN_ucmp(B, A) >= 0)) {
|
||||
/*
|
||||
* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
|
||||
* BN_div_no_branch will be called eventually.
|
||||
*/
|
||||
{
|
||||
BIGNUM local_B;
|
||||
bn_init(&local_B);
|
||||
BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
|
||||
if (!BN_nnmod(B, &local_B, A, ctx))
|
||||
goto err;
|
||||
/* Ensure local_B goes out of scope before any further use of B */
|
||||
}
|
||||
}
|
||||
sign = -1;
|
||||
/*-
|
||||
* From B = a mod |n|, A = |n| it follows that
|
||||
*
|
||||
* 0 <= B < A,
|
||||
* -sign*X*a == B (mod |n|),
|
||||
* sign*Y*a == A (mod |n|).
|
||||
*/
|
||||
|
||||
while (!BN_is_zero(B)) {
|
||||
BIGNUM *tmp;
|
||||
|
||||
/*-
|
||||
* 0 < B < A,
|
||||
* (*) -sign*X*a == B (mod |n|),
|
||||
* sign*Y*a == A (mod |n|)
|
||||
*/
|
||||
|
||||
/*
|
||||
* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
|
||||
* BN_div_no_branch will be called eventually.
|
||||
*/
|
||||
{
|
||||
BIGNUM local_A;
|
||||
bn_init(&local_A);
|
||||
BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);
|
||||
|
||||
/* (D, M) := (A/B, A%B) ... */
|
||||
if (!BN_div(D, M, &local_A, B, ctx))
|
||||
goto err;
|
||||
/* Ensure local_A goes out of scope before any further use of A */
|
||||
}
|
||||
|
||||
/*-
|
||||
* Now
|
||||
* A = D*B + M;
|
||||
* thus we have
|
||||
* (**) sign*Y*a == D*B + M (mod |n|).
|
||||
*/
|
||||
|
||||
tmp = A; /* keep the BIGNUM object, the value does not
|
||||
* matter */
|
||||
|
||||
/* (A, B) := (B, A mod B) ... */
|
||||
A = B;
|
||||
B = M;
|
||||
/* ... so we have 0 <= B < A again */
|
||||
|
||||
/*-
|
||||
* Since the former M is now B and the former B is now A,
|
||||
* (**) translates into
|
||||
* sign*Y*a == D*A + B (mod |n|),
|
||||
* i.e.
|
||||
* sign*Y*a - D*A == B (mod |n|).
|
||||
* Similarly, (*) translates into
|
||||
* -sign*X*a == A (mod |n|).
|
||||
*
|
||||
* Thus,
|
||||
* sign*Y*a + D*sign*X*a == B (mod |n|),
|
||||
* i.e.
|
||||
* sign*(Y + D*X)*a == B (mod |n|).
|
||||
*
|
||||
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
|
||||
* -sign*X*a == B (mod |n|),
|
||||
* sign*Y*a == A (mod |n|).
|
||||
* Note that X and Y stay non-negative all the time.
|
||||
*/
|
||||
|
||||
if (!BN_mul(tmp, D, X, ctx))
|
||||
goto err;
|
||||
if (!BN_add(tmp, tmp, Y))
|
||||
goto err;
|
||||
|
||||
M = Y; /* keep the BIGNUM object, the value does not
|
||||
* matter */
|
||||
Y = X;
|
||||
X = tmp;
|
||||
sign = -sign;
|
||||
}
|
||||
|
||||
/*-
|
||||
* The while loop (Euclid's algorithm) ends when
|
||||
* A == gcd(a,n);
|
||||
* we have
|
||||
* sign*Y*a == A (mod |n|),
|
||||
* where Y is non-negative.
|
||||
*/
|
||||
|
||||
if (sign < 0) {
|
||||
if (!BN_sub(Y, n, Y))
|
||||
goto err;
|
||||
}
|
||||
/* Now Y*a == A (mod |n|). */
|
||||
|
||||
if (BN_is_one(A)) {
|
||||
/* Y*a == 1 (mod |n|) */
|
||||
if (!Y->neg && BN_ucmp(Y, n) < 0) {
|
||||
if (!BN_copy(R, Y))
|
||||
goto err;
|
||||
} else {
|
||||
if (!BN_nnmod(R, Y, n, ctx))
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
*pnoinv = 1;
|
||||
/* caller sets the BN_R_NO_INVERSE error */
|
||||
goto err;
|
||||
}
|
||||
|
||||
ret = R;
|
||||
*pnoinv = 0;
|
||||
|
||||
err:
|
||||
if ((ret == NULL) && (in == NULL))
|
||||
BN_free(R);
|
||||
BN_CTX_end(ctx);
|
||||
bn_check_top(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* This is an internal function, we assume all callers pass valid arguments:
|
||||
* all pointers passed here are assumed non-NULL.
|
||||
*/
|
||||
BIGNUM *int_bn_mod_inverse(BIGNUM *in,
|
||||
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
|
||||
int *pnoinv)
|
||||
|
@ -36,17 +203,15 @@ BIGNUM *int_bn_mod_inverse(BIGNUM *in,
|
|||
|
||||
/* This is invalid input so we don't worry about constant time here */
|
||||
if (BN_abs_is_word(n, 1) || BN_is_zero(n)) {
|
||||
if (pnoinv != NULL)
|
||||
*pnoinv = 1;
|
||||
*pnoinv = 1;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (pnoinv != NULL)
|
||||
*pnoinv = 0;
|
||||
*pnoinv = 0;
|
||||
|
||||
if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
|
||||
|| (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
|
||||
return BN_mod_inverse_no_branch(in, a, n, ctx);
|
||||
return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv);
|
||||
}
|
||||
|
||||
bn_check_top(a);
|
||||
|
@ -332,8 +497,7 @@ BIGNUM *int_bn_mod_inverse(BIGNUM *in,
|
|||
goto err;
|
||||
}
|
||||
} else {
|
||||
if (pnoinv)
|
||||
*pnoinv = 1;
|
||||
*pnoinv = 1;
|
||||
goto err;
|
||||
}
|
||||
ret = R;
|
||||
|
@ -345,175 +509,27 @@ BIGNUM *int_bn_mod_inverse(BIGNUM *in,
|
|||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
|
||||
* not contain branches that may leak sensitive information.
|
||||
*/
|
||||
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
|
||||
const BIGNUM *a, const BIGNUM *n,
|
||||
BN_CTX *ctx)
|
||||
/* solves ax == 1 (mod n) */
|
||||
BIGNUM *BN_mod_inverse(BIGNUM *in,
|
||||
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
|
||||
{
|
||||
BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
|
||||
BIGNUM *ret = NULL;
|
||||
int sign;
|
||||
BN_CTX *new_ctx = NULL;
|
||||
BIGNUM *rv;
|
||||
int noinv = 0;
|
||||
|
||||
bn_check_top(a);
|
||||
bn_check_top(n);
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
A = BN_CTX_get(ctx);
|
||||
B = BN_CTX_get(ctx);
|
||||
X = BN_CTX_get(ctx);
|
||||
D = BN_CTX_get(ctx);
|
||||
M = BN_CTX_get(ctx);
|
||||
Y = BN_CTX_get(ctx);
|
||||
T = BN_CTX_get(ctx);
|
||||
if (T == NULL)
|
||||
goto err;
|
||||
|
||||
if (in == NULL)
|
||||
R = BN_new();
|
||||
else
|
||||
R = in;
|
||||
if (R == NULL)
|
||||
goto err;
|
||||
|
||||
BN_one(X);
|
||||
BN_zero(Y);
|
||||
if (BN_copy(B, a) == NULL)
|
||||
goto err;
|
||||
if (BN_copy(A, n) == NULL)
|
||||
goto err;
|
||||
A->neg = 0;
|
||||
|
||||
if (B->neg || (BN_ucmp(B, A) >= 0)) {
|
||||
/*
|
||||
* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
|
||||
* BN_div_no_branch will be called eventually.
|
||||
*/
|
||||
{
|
||||
BIGNUM local_B;
|
||||
bn_init(&local_B);
|
||||
BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
|
||||
if (!BN_nnmod(B, &local_B, A, ctx))
|
||||
goto err;
|
||||
/* Ensure local_B goes out of scope before any further use of B */
|
||||
if (ctx == NULL) {
|
||||
ctx = new_ctx = BN_CTX_new_ex(NULL);
|
||||
if (ctx == NULL) {
|
||||
BNerr(BN_F_BN_MOD_INVERSE, ERR_R_MALLOC_FAILURE);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
sign = -1;
|
||||
/*-
|
||||
* From B = a mod |n|, A = |n| it follows that
|
||||
*
|
||||
* 0 <= B < A,
|
||||
* -sign*X*a == B (mod |n|),
|
||||
* sign*Y*a == A (mod |n|).
|
||||
*/
|
||||
|
||||
while (!BN_is_zero(B)) {
|
||||
BIGNUM *tmp;
|
||||
|
||||
/*-
|
||||
* 0 < B < A,
|
||||
* (*) -sign*X*a == B (mod |n|),
|
||||
* sign*Y*a == A (mod |n|)
|
||||
*/
|
||||
|
||||
/*
|
||||
* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
|
||||
* BN_div_no_branch will be called eventually.
|
||||
*/
|
||||
{
|
||||
BIGNUM local_A;
|
||||
bn_init(&local_A);
|
||||
BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);
|
||||
|
||||
/* (D, M) := (A/B, A%B) ... */
|
||||
if (!BN_div(D, M, &local_A, B, ctx))
|
||||
goto err;
|
||||
/* Ensure local_A goes out of scope before any further use of A */
|
||||
}
|
||||
|
||||
/*-
|
||||
* Now
|
||||
* A = D*B + M;
|
||||
* thus we have
|
||||
* (**) sign*Y*a == D*B + M (mod |n|).
|
||||
*/
|
||||
|
||||
tmp = A; /* keep the BIGNUM object, the value does not
|
||||
* matter */
|
||||
|
||||
/* (A, B) := (B, A mod B) ... */
|
||||
A = B;
|
||||
B = M;
|
||||
/* ... so we have 0 <= B < A again */
|
||||
|
||||
/*-
|
||||
* Since the former M is now B and the former B is now A,
|
||||
* (**) translates into
|
||||
* sign*Y*a == D*A + B (mod |n|),
|
||||
* i.e.
|
||||
* sign*Y*a - D*A == B (mod |n|).
|
||||
* Similarly, (*) translates into
|
||||
* -sign*X*a == A (mod |n|).
|
||||
*
|
||||
* Thus,
|
||||
* sign*Y*a + D*sign*X*a == B (mod |n|),
|
||||
* i.e.
|
||||
* sign*(Y + D*X)*a == B (mod |n|).
|
||||
*
|
||||
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
|
||||
* -sign*X*a == B (mod |n|),
|
||||
* sign*Y*a == A (mod |n|).
|
||||
* Note that X and Y stay non-negative all the time.
|
||||
*/
|
||||
|
||||
if (!BN_mul(tmp, D, X, ctx))
|
||||
goto err;
|
||||
if (!BN_add(tmp, tmp, Y))
|
||||
goto err;
|
||||
|
||||
M = Y; /* keep the BIGNUM object, the value does not
|
||||
* matter */
|
||||
Y = X;
|
||||
X = tmp;
|
||||
sign = -sign;
|
||||
}
|
||||
|
||||
/*-
|
||||
* The while loop (Euclid's algorithm) ends when
|
||||
* A == gcd(a,n);
|
||||
* we have
|
||||
* sign*Y*a == A (mod |n|),
|
||||
* where Y is non-negative.
|
||||
*/
|
||||
|
||||
if (sign < 0) {
|
||||
if (!BN_sub(Y, n, Y))
|
||||
goto err;
|
||||
}
|
||||
/* Now Y*a == A (mod |n|). */
|
||||
|
||||
if (BN_is_one(A)) {
|
||||
/* Y*a == 1 (mod |n|) */
|
||||
if (!Y->neg && BN_ucmp(Y, n) < 0) {
|
||||
if (!BN_copy(R, Y))
|
||||
goto err;
|
||||
} else {
|
||||
if (!BN_nnmod(R, Y, n, ctx))
|
||||
goto err;
|
||||
}
|
||||
} else {
|
||||
BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
|
||||
goto err;
|
||||
}
|
||||
ret = R;
|
||||
err:
|
||||
if ((ret == NULL) && (in == NULL))
|
||||
BN_free(R);
|
||||
BN_CTX_end(ctx);
|
||||
bn_check_top(ret);
|
||||
return ret;
|
||||
rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
|
||||
if (noinv)
|
||||
BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
|
||||
BN_CTX_free(new_ctx);
|
||||
return rv;
|
||||
}
|
||||
|
||||
/*-
|
||||
|
|
|
@ -221,7 +221,6 @@ BN_F_BN_MOD_EXP_MONT_WORD:117:BN_mod_exp_mont_word
|
|||
BN_F_BN_MOD_EXP_RECP:125:BN_mod_exp_recp
|
||||
BN_F_BN_MOD_EXP_SIMPLE:126:BN_mod_exp_simple
|
||||
BN_F_BN_MOD_INVERSE:110:BN_mod_inverse
|
||||
BN_F_BN_MOD_INVERSE_NO_BRANCH:139:BN_mod_inverse_no_branch
|
||||
BN_F_BN_MOD_LSHIFT_QUICK:119:BN_mod_lshift_quick
|
||||
BN_F_BN_MOD_SQRT:121:BN_mod_sqrt
|
||||
BN_F_BN_MONT_CTX_NEW:149:BN_MONT_CTX_new
|
||||
|
|
|
@ -62,7 +62,7 @@ extern "C" {
|
|||
* avoid leaking exponent information through timing,
|
||||
* BN_mod_exp_mont() will call BN_mod_exp_mont_consttime,
|
||||
* BN_div() will call BN_div_no_branch,
|
||||
* BN_mod_inverse() will call BN_mod_inverse_no_branch.
|
||||
* BN_mod_inverse() will call bn_mod_inverse_no_branch.
|
||||
*/
|
||||
# define BN_FLG_CONSTTIME 0x04
|
||||
# define BN_FLG_SECURE 0x08
|
||||
|
|
|
@ -61,7 +61,6 @@ int ERR_load_BN_strings(void);
|
|||
# define BN_F_BN_MOD_EXP_RECP 0
|
||||
# define BN_F_BN_MOD_EXP_SIMPLE 0
|
||||
# define BN_F_BN_MOD_INVERSE 0
|
||||
# define BN_F_BN_MOD_INVERSE_NO_BRANCH 0
|
||||
# define BN_F_BN_MOD_LSHIFT_QUICK 0
|
||||
# define BN_F_BN_MOD_SQRT 0
|
||||
# define BN_F_BN_MONT_CTX_NEW 0
|
||||
|
|
Loading…
Reference in New Issue