Split the ML-DSA internal sigver functions

Deconstruct the functions into 2 parts:
- mu computation (if needed)
- actual signing/verification

Adds helper to compute mu that is split in 3 parts
(init/update/finalize) where the update part can be used to feed the message
to be signed or verified in chunks of any size.

Signed-off-by: Simo Sorce <simo@redhat.com>

Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/27342)
This commit is contained in:
Simo Sorce 2025-04-09 09:35:20 -04:00 committed by Tomas Mraz
parent 58dfbe34e1
commit 90f0137453
1 changed files with 200 additions and 130 deletions

View File

@ -11,6 +11,9 @@
#include <openssl/core_names.h>
#include <openssl/params.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <openssl/proverr.h>
#include "internal/common.h"
#include "ml_dsa_local.h"
#include "ml_dsa_key.h"
#include "ml_dsa_matrix.h"
@ -43,12 +46,115 @@ static void signature_init(ML_DSA_SIG *sig,
}
/*
* FIPS 204, Algorithm 7, ML-DSA.Sign_internal()
* @returns 1 on success and 0 on failure.
* @brief: Auxiliary functions to compute ML-DSA's MU.
* This combines the steps of creating M' and concatenating it
* to the Public Key Hash to obtain MU.
* See FIPS 204 Algorithm 2 Step 10 (and algorithm 3 Step 5) as
* well as Algorithm 7 Step 6 (and algorithm 8 Step 7)
*
* ML_DSA pure signatures are encoded as M' = 00 || ctx_len || ctx || msg
* Where ctx is the empty string by default and ctx_len <= 255.
* The message is appended to the encoded context.
* Finally a public key hash is prepended, and the whole is hashed
* to derive the mu value.
*
* @param key: A public or private ML-DSA key;
* @param encode: if not set, assumes that M' is provided raw and the
* following parameters are ignored.
* @param ctx An optional context to add to the message encoding.
* @param ctx_len The size of |ctx|. It must be in the range 0..255
* @returns an EVP_MD_CTX if the operation is successful, NULL otherwise.
*/
static int ml_dsa_sign_internal(const ML_DSA_KEY *priv, int msg_is_mu,
const uint8_t *encoded_msg,
size_t encoded_msg_len,
static EVP_MD_CTX *ml_dsa_mu_init(const ML_DSA_KEY *key, int encode,
const uint8_t *ctx, size_t ctx_len)
{
EVP_MD_CTX *md_ctx;
uint8_t itb[2];
if (key == NULL)
return NULL;
md_ctx = EVP_MD_CTX_new();
if (md_ctx == NULL)
return NULL;
/* H(.. */
if (!EVP_DigestInit_ex2(md_ctx, key->shake256_md, NULL))
goto err;
/* ..pk (= key->tr) */
if (!EVP_DigestUpdate(md_ctx, key->tr, sizeof(key->tr)))
goto err;
/* M' = .. */
if (encode) {
if (ctx_len > ML_DSA_MAX_CONTEXT_STRING_LEN)
goto err;
/* IntegerToBytes(0, 1) .. */
itb[0] = 0;
/* || IntegerToBytes(|ctx|, 1) || .. */
itb[1] = (uint8_t)ctx_len;
if (!EVP_DigestUpdate(md_ctx, itb, 2))
goto err;
/* ctx || .. */
if (!EVP_DigestUpdate(md_ctx, ctx, ctx_len))
goto err;
/* .. msg) will follow in update and final functions */
}
return md_ctx;
err:
EVP_MD_CTX_free(md_ctx);
return NULL;
}
/*
* @brief: updates the internal ML-DSA hash with an additional message chunk.
*
* @param md_ctx: The hashing context
* @param msg: The next message chunk
* @param msg_len: The length of the msg buffer to process
* @returns 1 on success, 0 on error
*/
static int ml_dsa_mu_update(EVP_MD_CTX *md_ctx,
const uint8_t *msg, size_t msg_len)
{
return EVP_DigestUpdate(md_ctx, msg, msg_len);
}
/*
* @brief: finalizes the internal ML-DSA hash
*
* @param md_ctx: The hashing context
* @param mu: The output buffer for Mu
* @param mu_len: The size of the output buffer
* @returns 1 on success, 0 on error
*/
static int ml_dsa_mu_finalize(EVP_MD_CTX *md_ctx, uint8_t *mu, size_t mu_len)
{
if (!ossl_assert(mu_len == ML_DSA_MU_BYTES)) {
ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);
return 0;
}
return EVP_DigestSqueeze(md_ctx, mu, mu_len);
}
/*
* @brief FIPS 204, Algorithm 7, ML-DSA.Sign_internal()
*
* This algorithm is decomposed in 2 steps, a set of functions to compute mu
* and then the actual signing function.
*
* @param priv: The private ML-DSA key
* @param mu: The pre-computed mu hash
* @param mu_len: The length of the mu buffer
* @param rnd: The random buffer
* @param rnd_len: The length of the random buffer
* @param out_sig: The output signature buffer
* @returns 1 on success, 0 on error
*/
static int ml_dsa_sign_internal(const ML_DSA_KEY *priv,
const uint8_t *mu, size_t mu_len,
const uint8_t *rnd, size_t rnd_len,
uint8_t *out_sig)
{
@ -63,25 +169,28 @@ static int ml_dsa_sign_internal(const ML_DSA_KEY *priv, int msg_is_mu,
size_t num_polys_k = 5 * k;
size_t num_polys_l = 3 * l;
size_t num_polys_k_by_l = k * l;
POLY *polys = NULL, *p, *c_ntt;
POLY *p, *c_ntt;
VECTOR s1_ntt, s2_ntt, t0_ntt, w, w1, cs1, cs2, y;
MATRIX a_ntt;
ML_DSA_SIG sig;
uint8_t mu[ML_DSA_MU_BYTES], *mu_ptr = mu;
const size_t mu_len = sizeof(mu);
uint8_t rho_prime[ML_DSA_RHO_PRIME_BYTES];
uint8_t c_tilde[ML_DSA_MAX_LAMBDA / 4];
size_t c_tilde_len = params->bit_strength >> 2;
size_t kappa;
if (mu_len != ML_DSA_MU_BYTES) {
ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);
return 0;
}
/*
* Allocate a single blob for most of the variable size temporary variables.
* Mostly used for VECTOR POLYNOMIALS (every POLY is 1K).
*/
w1_encoded_len = k * (gamma2 == ML_DSA_GAMMA2_Q_MINUS1_DIV88 ? 192 : 128);
alloc_len = w1_encoded_len
+ sizeof(*polys) * (1 + num_polys_k + num_polys_l
+ num_polys_k_by_l + num_polys_sig_k);
+ sizeof(*p) * (1 + num_polys_k + num_polys_l
+ num_polys_k_by_l + num_polys_sig_k);
alloc = OPENSSL_malloc(alloc_len);
if (alloc == NULL)
return 0;
@ -110,17 +219,9 @@ static int ml_dsa_sign_internal(const ML_DSA_KEY *priv, int msg_is_mu,
if (!matrix_expand_A(md_ctx, priv->shake128_md, priv->rho, &a_ntt))
goto err;
if (msg_is_mu) {
if (encoded_msg_len != mu_len)
goto err;
mu_ptr = (uint8_t *)encoded_msg;
} else {
if (!shake_xof_2(md_ctx, priv->shake256_md, priv->tr, sizeof(priv->tr),
encoded_msg, encoded_msg_len, mu_ptr, mu_len))
goto err;
}
if (!shake_xof_3(md_ctx, priv->shake256_md, priv->K, sizeof(priv->K),
rnd, rnd_len, mu_ptr, mu_len,
rnd, rnd_len, mu, mu_len,
rho_prime, sizeof(rho_prime)))
goto err;
@ -152,7 +253,7 @@ static int ml_dsa_sign_internal(const ML_DSA_KEY *priv, int msg_is_mu,
vector_high_bits(&w, gamma2, &w1);
ossl_ml_dsa_w1_encode(&w1, gamma2, w1_encoded, w1_encoded_len);
if (!shake_xof_2(md_ctx, priv->shake256_md, mu_ptr, mu_len,
if (!shake_xof_2(md_ctx, priv->shake256_md, mu, mu_len,
w1_encoded, w1_encoded_len, c_tilde, c_tilde_len))
break;
@ -202,15 +303,26 @@ err:
}
/*
* See FIPS 204, Algorithm 8, ML-DSA.Verify_internal().
* @brief FIPS 204, Algorithm 8, ML-DSA.Verify_internal().
*
* This algorithm is decomposed in 2 steps, a set of functions to compute mu
* and then the actual verification function.
*
* @param pub: The public ML-DSA key
* @param mu: The pre-computed mu hash
* @param mu_len: The length of the mu buffer
* @param sig_enc: The encoded signature to be verified
* @param sig_enc_len: the encoded csignature length
* @returns 1 on success, 0 on error
*/
static int ml_dsa_verify_internal(const ML_DSA_KEY *pub, int msg_is_mu,
const uint8_t *msg_enc, size_t msg_enc_len,
const uint8_t *sig_enc, size_t sig_enc_len)
static int ml_dsa_verify_internal(const ML_DSA_KEY *pub,
const uint8_t *mu, size_t mu_len,
const uint8_t *sig_enc,
size_t sig_enc_len)
{
int ret = 0;
uint8_t *alloc = NULL, *w1_encoded;
POLY *polys = NULL, *p, *c_ntt;
POLY *p, *c_ntt;
MATRIX a_ntt;
VECTOR az_ntt, ct1_ntt, *z_ntt, *w1, *w_approx;
ML_DSA_SIG sig;
@ -223,21 +335,25 @@ static int ml_dsa_verify_internal(const ML_DSA_KEY *pub, int msg_is_mu,
size_t num_polys_k = 2 * k;
size_t num_polys_l = 1 * l;
size_t num_polys_k_by_l = k * l;
uint8_t mu[ML_DSA_MU_BYTES], *mu_ptr = mu;
const size_t mu_len = sizeof(mu);
uint8_t c_tilde[ML_DSA_MAX_LAMBDA / 4];
uint8_t c_tilde_sig[ML_DSA_MAX_LAMBDA / 4];
EVP_MD_CTX *md_ctx = NULL;
size_t c_tilde_len = params->bit_strength >> 2;
uint32_t z_max;
if (mu_len != ML_DSA_MU_BYTES) {
ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);
return 0;
}
/* Allocate space for all the POLYNOMIALS used by temporary VECTORS */
w1_encoded_len = k * (gamma2 == ML_DSA_GAMMA2_Q_MINUS1_DIV88 ? 192 : 128);
alloc = OPENSSL_malloc(w1_encoded_len
+ sizeof(*polys) * (1 + num_polys_k
+ num_polys_l
+ num_polys_k_by_l
+ num_polys_sig));
+ sizeof(*p) * (1 + num_polys_k
+ num_polys_l
+ num_polys_k_by_l
+ num_polys_sig));
if (alloc == NULL)
return 0;
md_ctx = EVP_MD_CTX_new();
@ -258,16 +374,8 @@ static int ml_dsa_verify_internal(const ML_DSA_KEY *pub, int msg_is_mu,
if (!ossl_ml_dsa_sig_decode(&sig, sig_enc, sig_enc_len, pub->params)
|| !matrix_expand_A(md_ctx, pub->shake128_md, pub->rho, &a_ntt))
goto err;
if (msg_is_mu) {
if (msg_enc_len != mu_len)
goto err;
mu_ptr = (uint8_t *)msg_enc;
} else {
if (!shake_xof_2(md_ctx, pub->shake256_md, pub->tr, sizeof(pub->tr),
msg_enc, msg_enc_len, mu_ptr, mu_len))
goto err;
}
/* Compute verifiers challenge c_ntt = NTT(SampleInBall(c_tilde) */
/* Compute verifiers challenge c_ntt = NTT(SampleInBall(c_tilde)) */
if (!poly_sample_in_ball_ntt(c_ntt, c_tilde_sig, c_tilde_len,
md_ctx, pub->shake256_md, params->tau))
goto err;
@ -292,7 +400,7 @@ static int ml_dsa_verify_internal(const ML_DSA_KEY *pub, int msg_is_mu,
vector_use_hint(&sig.hint, w_approx, gamma2, w1);
ossl_ml_dsa_w1_encode(w1, gamma2, w1_encoded, w1_encoded_len);
if (!shake_xof_3(md_ctx, pub->shake256_md, mu_ptr, mu_len,
if (!shake_xof_3(md_ctx, pub->shake256_md, mu, mu_len,
w1_encoded, w1_encoded_len, NULL, 0, c_tilde, c_tilde_len))
goto err;
@ -304,61 +412,6 @@ err:
return ret;
}
/**
* @brief Encode a message
* See FIPS 204 Algorithm 2 Step 10 (and algorithm 3 Step 5).
*
* ML_DSA pure signatures are encoded as M' = 00 || ctx_len || ctx || msg
* Where ctx is the empty string by default and ctx_len <= 255.
*
* Note this code could be shared with SLH_DSA
*
* @param msg A message to encode
* @param msg_len The size of |msg|
* @param ctx An optional context to add to the message encoding.
* @param ctx_len The size of |ctx|. It must be in the range 0..255
* @param encode Use the Pure signature encoding if this is 1, and dont encode
* if this value is 0.
* @param tmp A small buffer that may be used if the message is small.
* @param tmp_len The size of |tmp|
* @param out_len The size of the returned encoded buffer.
* @returns A buffer containing the encoded message. If the passed in
* |tmp| buffer is big enough to hold the encoded message then it returns |tmp|
* otherwise it allocates memory which must be freed by the caller. If |encode|
* is 0 then it returns |msg|. NULL is returned if there is a failure.
*/
static uint8_t *msg_encode(const uint8_t *msg, size_t msg_len,
const uint8_t *ctx, size_t ctx_len, int encode,
uint8_t *tmp, size_t tmp_len, size_t *out_len)
{
uint8_t *encoded = NULL;
size_t encoded_len;
if (encode == 0) {
/* Raw message */
*out_len = msg_len;
return (uint8_t *)msg;
}
if (ctx_len > ML_DSA_MAX_CONTEXT_STRING_LEN)
return NULL;
/* Pure encoding */
encoded_len = 1 + 1 + ctx_len + msg_len;
*out_len = encoded_len;
if (encoded_len <= tmp_len) {
encoded = tmp;
} else {
encoded = OPENSSL_malloc(encoded_len);
if (encoded == NULL)
return NULL;
}
encoded[0] = 0;
encoded[1] = (uint8_t)ctx_len;
memcpy(&encoded[2], ctx, ctx_len);
memcpy(&encoded[2 + ctx_len], msg, msg_len);
return encoded;
}
/**
* See FIPS 204 Section 5.2 Algorithm 2 ML-DSA.Sign()
*
@ -370,31 +423,43 @@ int ossl_ml_dsa_sign(const ML_DSA_KEY *priv, int msg_is_mu,
const uint8_t *rand, size_t rand_len, int encode,
unsigned char *sig, size_t *sig_len, size_t sig_size)
{
int ret = 1;
uint8_t m_tmp[1024], *m = m_tmp, *alloced_m = NULL;
size_t m_len = 0;
EVP_MD_CTX *md_ctx = NULL;
uint8_t mu[ML_DSA_MU_BYTES];
const uint8_t *mu_ptr = mu;
size_t mu_len = sizeof(mu);
int ret = 0;
if (ossl_ml_dsa_key_get_priv(priv) == NULL)
return 0;
if (sig != NULL) {
if (sig_size < priv->params->sig_len)
return 0;
if (msg_is_mu) {
m = (uint8_t *)msg;
m_len = msg_len;
} else {
m = msg_encode(msg, msg_len, context, context_len, encode,
m_tmp, sizeof(m_tmp), &m_len);
if (m == NULL)
return 0;
if (m != msg && m != m_tmp)
alloced_m = m;
}
ret = ml_dsa_sign_internal(priv, msg_is_mu, m, m_len, rand, rand_len, sig);
OPENSSL_free(alloced_m);
}
if (sig_len != NULL)
*sig_len = priv->params->sig_len;
if (sig == NULL)
return (sig_len != NULL) ? 1 : 0;
if (sig_size < priv->params->sig_len)
return 0;
if (msg_is_mu) {
mu_ptr = msg;
mu_len = msg_len;
} else {
md_ctx = ml_dsa_mu_init(priv, encode, context, context_len);
if (md_ctx == NULL)
return 0;
if (!ml_dsa_mu_update(md_ctx, msg, msg_len))
goto err;
if (!ml_dsa_mu_finalize(md_ctx, mu, mu_len))
goto err;
}
ret = ml_dsa_sign_internal(priv, mu_ptr, mu_len, rand, rand_len, sig);
err:
EVP_MD_CTX_free(md_ctx);
return ret;
}
@ -407,27 +472,32 @@ int ossl_ml_dsa_verify(const ML_DSA_KEY *pub, int msg_is_mu,
const uint8_t *context, size_t context_len, int encode,
const uint8_t *sig, size_t sig_len)
{
uint8_t *m, *alloced_m = NULL;
size_t m_len;
uint8_t m_tmp[1024];
EVP_MD_CTX *md_ctx = NULL;
uint8_t mu[ML_DSA_MU_BYTES];
const uint8_t *mu_ptr = mu;
size_t mu_len = sizeof(mu);
int ret = 0;
if (ossl_ml_dsa_key_get_pub(pub) == NULL)
return 0;
if (msg_is_mu) {
m = (uint8_t *)msg;
m_len = msg_len;
mu_ptr = msg;
mu_len = msg_len;
} else {
m = msg_encode(msg, msg_len, context, context_len, encode,
m_tmp, sizeof(m_tmp), &m_len);
if (m == NULL)
md_ctx = ml_dsa_mu_init(pub, encode, context, context_len);
if (md_ctx == NULL)
return 0;
if (m != msg && m != m_tmp)
alloced_m = m;
if (!ml_dsa_mu_update(md_ctx, msg, msg_len))
goto err;
if (!ml_dsa_mu_finalize(md_ctx, mu, mu_len))
goto err;
}
ret = ml_dsa_verify_internal(pub, msg_is_mu, m, m_len, sig, sig_len);
OPENSSL_free(alloced_m);
ret = ml_dsa_verify_internal(pub, mu_ptr, mu_len, sig, sig_len);
err:
EVP_MD_CTX_free(md_ctx);
return ret;
}