Add gcm ciphers (aes and aria) to providers.

The code has been modularized so that it can be shared by algorithms.

A fixed size IV is now used instead of being allocated.
The IV is not set into the low level struct now until the update (it uses an
iv_state for this purpose).

Hardware specific methods have been added to a PROV_GCM_HW object.

The S390 code has been changed to just contain methods that can be accessed in
a modular way. There are equivalent generic methods also for the other
platforms.

Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Patrick Steuer <patrick.steuer@de.ibm.com>
(Merged from https://github.com/openssl/openssl/pull/9231)
This commit is contained in:
Shane Lontis 2019-07-31 21:55:16 +10:00
parent f5b7f99e69
commit a672a02a64
18 changed files with 1467 additions and 59 deletions

View File

@ -2694,7 +2694,10 @@ PROV_R_BAD_DECRYPT:100:bad decrypt
PROV_R_CIPHER_OPERATION_FAILED:102:cipher operation failed PROV_R_CIPHER_OPERATION_FAILED:102:cipher operation failed
PROV_R_FAILED_TO_GET_PARAMETER:103:failed to get parameter PROV_R_FAILED_TO_GET_PARAMETER:103:failed to get parameter
PROV_R_FAILED_TO_SET_PARAMETER:104:failed to set parameter PROV_R_FAILED_TO_SET_PARAMETER:104:failed to set parameter
PROV_R_INVALID_AAD:108:invalid aad
PROV_R_INVALID_IVLEN:109:invalid ivlen
PROV_R_INVALID_KEYLEN:105:invalid keylen PROV_R_INVALID_KEYLEN:105:invalid keylen
PROV_R_INVALID_TAG:110:invalid tag
PROV_R_OUTPUT_BUFFER_TOO_SMALL:106:output buffer too small PROV_R_OUTPUT_BUFFER_TOO_SMALL:106:output buffer too small
PROV_R_WRONG_FINAL_BLOCK_LENGTH:107:wrong final block length PROV_R_WRONG_FINAL_BLOCK_LENGTH:107:wrong final block length
RAND_R_ADDITIONAL_INPUT_TOO_LONG:102:additional input too long RAND_R_ADDITIONAL_INPUT_TOO_LONG:102:additional input too long

View File

@ -1,5 +1,5 @@
/* /*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
* *
* Licensed under the Apache License 2.0 (the "License"). You may not use * Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy * this file except in compliance with the License. You can obtain a copy
@ -163,6 +163,12 @@ int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
case NID_aes_256_ctr: case NID_aes_256_ctr:
case NID_aes_192_ctr: case NID_aes_192_ctr:
case NID_aes_128_ctr: case NID_aes_128_ctr:
case NID_aes_256_gcm:
case NID_aes_192_gcm:
case NID_aes_128_gcm:
case NID_aria_256_gcm:
case NID_aria_192_gcm:
case NID_aria_128_gcm:
break; break;
default: default:
goto legacy; goto legacy;

View File

@ -315,7 +315,13 @@ int EVP_CIPHER_iv_length(const EVP_CIPHER *cipher)
int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx)
{ {
return EVP_CIPHER_iv_length(ctx->cipher); int ok, v = EVP_CIPHER_iv_length(ctx->cipher);
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
params[0] = OSSL_PARAM_construct_int(OSSL_CIPHER_PARAM_IVLEN, &v);
ok = evp_do_ciph_ctx_getparams(ctx->cipher, ctx->provctx, params);
return ok != 0 ? v : -1;
} }
const unsigned char *EVP_CIPHER_CTX_original_iv(const EVP_CIPHER_CTX *ctx) const unsigned char *EVP_CIPHER_CTX_original_iv(const EVP_CIPHER_CTX *ctx)

View File

@ -48,9 +48,9 @@ IF[{- !$disabled{asm} -}]
ENDIF ENDIF
ENDIF ENDIF
$COMMON=cbc128.c ctr128.c cfb128.c ofb128.c $MODESASM $COMMON=cbc128.c ctr128.c cfb128.c ofb128.c gcm128.c $MODESASM
SOURCE[../../libcrypto]=$COMMON \ SOURCE[../../libcrypto]=$COMMON \
cts128.c gcm128.c ccm128.c xts128.c wrap128.c ocb128.c siv128.c cts128.c ccm128.c xts128.c wrap128.c ocb128.c siv128.c
DEFINE[../../libcrypto]=$MODESDEF DEFINE[../../libcrypto]=$MODESDEF
SOURCE[../../providers/fips]=$COMMON SOURCE[../../providers/fips]=$COMMON
DEFINE[../../providers/fips]=$MODESDEF DEFINE[../../providers/fips]=$MODESDEF

View File

@ -165,6 +165,8 @@ all parameters to NULL except B<type> in an initial call and supply
the remaining parameters in subsequent calls, all of which have B<type> the remaining parameters in subsequent calls, all of which have B<type>
set to NULL. This is done when the default cipher parameters are not set to NULL. This is done when the default cipher parameters are not
appropriate. appropriate.
For EVP_CIPH_GCM_MODE the IV will be generated internally if it is not
specified.
EVP_EncryptUpdate() encrypts B<inl> bytes from the buffer B<in> and EVP_EncryptUpdate() encrypts B<inl> bytes from the buffer B<in> and
writes the encrypted version to B<out>. This function can be called writes the encrypted version to B<out>. This function can be called

View File

@ -13,6 +13,7 @@
#include <openssl/core_names.h> #include <openssl/core_names.h>
#include <openssl/evp.h> #include <openssl/evp.h>
#include <openssl/params.h> #include <openssl/params.h>
#include <openssl/rand.h>
#include "internal/cryptlib.h" #include "internal/cryptlib.h"
#include "internal/provider_algs.h" #include "internal/provider_algs.h"
#include "ciphers_locl.h" #include "ciphers_locl.h"
@ -248,50 +249,63 @@ static int aes_cipher(void *vctx,
return 1; return 1;
} }
#define IMPLEMENT_cipher(lcmode, UCMODE, flags, kbits, blkbits, ivbits) \ static void *aes_new_ctx(void *provctx, size_t mode, size_t kbits,
static OSSL_OP_cipher_get_params_fn aes_##kbits##_##lcmode##_get_params; \ const PROV_AES_CIPHER *ciph)
static int aes_##kbits##_##lcmode##_get_params(OSSL_PARAM params[]) \ {
{ \ PROV_AES_KEY *ctx = OPENSSL_zalloc(sizeof(*ctx));
OSSL_PARAM *p; \
\ ctx->pad = 1;
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_MODE); \ ctx->keylen = kbits / 8;
if (p != NULL) { \ ctx->ciph = ciph;
if (!OSSL_PARAM_set_int(p, EVP_CIPH_##UCMODE##_MODE)) \ ctx->mode = mode;
return 0; \ return ctx;
} \ }
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_FLAGS); \
if (p != NULL) { \ int aes_get_params(OSSL_PARAM params[], int md, unsigned long flags,
if (!OSSL_PARAM_set_ulong(p, (flags))) \ int kbits, int blkbits, int ivbits)
return 0; \ {
} \ OSSL_PARAM *p;
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_KEYLEN); \
if (p != NULL) { \ p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_MODE);
if (!OSSL_PARAM_set_int(p, (kbits) / 8)) \ if (p != NULL) {
return 0; \ if (!OSSL_PARAM_set_int(p, md))
} \ return 0;
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_BLOCK_SIZE); \ }
if (p != NULL) { \ p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_FLAGS);
if (!OSSL_PARAM_set_int(p, (blkbits) / 8)) \ if (p != NULL) {
return 0; \ if (!OSSL_PARAM_set_ulong(p, flags))
} \ return 0;
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_IVLEN); \ }
if (p != NULL) { \ p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_KEYLEN);
if (!OSSL_PARAM_set_int(p, (ivbits) / 8)) \ if (p != NULL) {
return 0; \ if (!OSSL_PARAM_set_int(p, kbits / 8))
} \ return 0;
\ }
return 1; \ p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_BLOCK_SIZE);
} \ if (p != NULL) {
static OSSL_OP_cipher_newctx_fn aes_##kbits##_##lcmode##_newctx; \ if (!OSSL_PARAM_set_int(p, blkbits / 8))
static void *aes_##kbits##_##lcmode##_newctx(void *provctx) \ return 0;
{ \ }
PROV_AES_KEY *ctx = OPENSSL_zalloc(sizeof(*ctx)); \ p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_IVLEN);
\ if (p != NULL) {
ctx->pad = 1; \ if (!OSSL_PARAM_set_int(p, ivbits / 8))
ctx->keylen = ((kbits) / 8); \ return 0;
ctx->ciph = PROV_AES_CIPHER_##lcmode(ctx->keylen); \ }
ctx->mode = EVP_CIPH_##UCMODE##_MODE; \ return 1;
return ctx; \ }
#define IMPLEMENT_cipher(lcmode, UCMODE, flags, kbits, blkbits, ivbits) \
static OSSL_OP_cipher_get_params_fn aes_##kbits##_##lcmode##_get_params; \
static int aes_##kbits##_##lcmode##_get_params(OSSL_PARAM params[]) \
{ \
return aes_get_params(params, EVP_CIPH_##UCMODE##_MODE, flags, kbits, \
blkbits, ivbits); \
} \
static OSSL_OP_cipher_newctx_fn aes_##kbits##_##lcmode##_newctx; \
static void *aes_##kbits##_##lcmode##_newctx(void *provctx) \
{ \
return aes_new_ctx(provctx, EVP_CIPH_##UCMODE##_MODE, kbits, \
PROV_AES_CIPHER_##lcmode(kbits / 8)); \
} }
/* ECB */ /* ECB */
@ -351,6 +365,11 @@ static int aes_ctx_get_params(void *vctx, OSSL_PARAM params[])
PROV_AES_KEY *ctx = (PROV_AES_KEY *)vctx; PROV_AES_KEY *ctx = (PROV_AES_KEY *)vctx;
OSSL_PARAM *p; OSSL_PARAM *p;
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_IVLEN);
if (p != NULL) {
if (!OSSL_PARAM_set_int(p, AES_BLOCK_SIZE))
return 0;
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_PADDING); p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_PADDING);
if (p != NULL && !OSSL_PARAM_set_int(p, ctx->pad)) { if (p != NULL && !OSSL_PARAM_set_int(p, ctx->pad)) {
PROVerr(PROV_F_AES_CTX_GET_PARAMS, PROV_R_FAILED_TO_SET_PARAMETER); PROVerr(PROV_F_AES_CTX_GET_PARAMS, PROV_R_FAILED_TO_SET_PARAMETER);

View File

@ -6,18 +6,16 @@
* in the file LICENSE in the source distribution or at * in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html * https://www.openssl.org/source/license.html
*/ */
#include <string.h>
#include <assert.h>
#include <openssl/opensslconf.h> #include <openssl/opensslconf.h>
#include <openssl/crypto.h> #include <openssl/crypto.h>
#include <openssl/err.h> #include <openssl/err.h>
#include <string.h>
#include <assert.h>
#include <openssl/aes.h> #include <openssl/aes.h>
#include "internal/modes_int.h"
#include "internal/evp_int.h"
#include <openssl/rand.h> #include <openssl/rand.h>
#include <openssl/cmac.h> #include <openssl/cmac.h>
#include "ciphers_locl.h" #include "ciphers_locl.h"
#include "internal/evp_int.h"
#include "internal/providercommonerr.h" #include "internal/providercommonerr.h"
#include "internal/aes_platform.h" #include "internal/aes_platform.h"

View File

@ -1,8 +1,8 @@
LIBS=../../../libcrypto LIBS=../../../libcrypto
SOURCE[../../../libcrypto]=\ $COMMON=block.c aes.c aes_basic.c gcm.c gcm_hw.c
block.c aes.c aes_basic.c
SOURCE[../../../libcrypto]=$COMMON
INCLUDE[../../../libcrypto]=. ../../../crypto INCLUDE[../../../libcrypto]=. ../../../crypto
SOURCE[../../fips]=\ SOURCE[../../fips]=$COMMON
block.c aes.c aes_basic.c
INCLUDE[../../fips]=. ../../../crypto INCLUDE[../../fips]=. ../../../crypto

View File

@ -0,0 +1,120 @@
/*
* Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/aes.h>
typedef struct prov_gcm_hw_st PROV_GCM_HW;
#define GCM_IV_DEFAULT_SIZE 12/* IV's for AES_GCM should normally be 12 bytes */
#define GCM_IV_MAX_SIZE 64
#define GCM_TAG_MAX_SIZE 16
typedef struct prov_gcm_ctx_st {
int enc; /* Set to 1 if we are encrypting or 0 otherwise */
int mode; /* The mode that we are using */
size_t keylen;
int ivlen;
size_t ivlen_min;
int taglen;
int key_set; /* Set if key initialised */
int iv_state; /* set to one of IV_STATE_XXX */
int iv_gen_rand; /* No IV was specified, so generate a rand IV */
int iv_gen; /* It is OK to generate IVs */
int tls_aad_pad_sz;
int tls_aad_len; /* TLS AAD length */
uint64_t tls_enc_records; /* Number of TLS records encrypted */
/*
* num contains the number of bytes of |iv| which are valid for modes that
* manage partial blocks themselves.
*/
size_t num;
size_t bufsz; /* Number of bytes in buf */
uint64_t flags;
unsigned int pad : 1; /* Whether padding should be used or not */
unsigned char iv[GCM_IV_MAX_SIZE]; /* Buffer to use for IV's */
unsigned char buf[AES_BLOCK_SIZE]; /* Buffer of partial blocks processed via update calls */
OPENSSL_CTX *libctx; /* needed for rand calls */
const PROV_GCM_HW *hw; /* hardware specific methods */
GCM128_CONTEXT gcm;
ctr128_f ctr;
const void *ks;
} PROV_GCM_CTX;
typedef struct prov_aes_gcm_ctx_st {
PROV_GCM_CTX base; /* must be first entry in struct */
union {
OSSL_UNION_ALIGN;
AES_KEY ks;
} ks; /* AES key schedule to use */
/* Platform specific data */
union {
int dummy;
#if defined(OPENSSL_CPUID_OBJ) && defined(__s390__)
struct {
union {
OSSL_UNION_ALIGN;
S390X_KMA_PARAMS kma;
} param;
unsigned int fc;
unsigned char ares[16];
unsigned char mres[16];
unsigned char kres[16];
int areslen;
int mreslen;
int kreslen;
int res;
} s390x;
#endif /* defined(OPENSSL_CPUID_OBJ) && defined(__s390__) */
} plat;
} PROV_AES_GCM_CTX;
OSSL_CIPHER_FUNC(int, GCM_setkey, (PROV_GCM_CTX *ctx, const unsigned char *key,
size_t keylen));
OSSL_CIPHER_FUNC(int, GCM_setiv, (PROV_GCM_CTX *dat, const unsigned char *iv,
size_t ivlen));
OSSL_CIPHER_FUNC(int, GCM_aadupdate, (PROV_GCM_CTX *ctx,
const unsigned char *aad, size_t aadlen));
OSSL_CIPHER_FUNC(int, GCM_cipherupdate, (PROV_GCM_CTX *ctx,
const unsigned char *in, size_t len,
unsigned char *out));
OSSL_CIPHER_FUNC(int, GCM_cipherfinal, (PROV_GCM_CTX *ctx, unsigned char *tag));
OSSL_CIPHER_FUNC(int, GCM_oneshot, (PROV_GCM_CTX *ctx, unsigned char *aad,
size_t aad_len, const unsigned char *in,
size_t in_len, unsigned char *out,
unsigned char *tag, size_t taglen));
struct prov_gcm_hw_st {
OSSL_GCM_setkey_fn setkey;
OSSL_GCM_setiv_fn setiv;
OSSL_GCM_aadupdate_fn aadupdate;
OSSL_GCM_cipherupdate_fn cipherupdate;
OSSL_GCM_cipherfinal_fn cipherfinal;
OSSL_GCM_oneshot_fn oneshot;
};
const PROV_GCM_HW *PROV_AES_HW_gcm(size_t keybits);
#if !defined(OPENSSL_NO_ARIA) && !defined(FIPS_MODE)
#include "internal/aria.h"
typedef struct prov_aria_gcm_ctx_st {
PROV_GCM_CTX base; /* must be first entry in struct */
union {
OSSL_UNION_ALIGN;
ARIA_KEY ks;
} ks;
} PROV_ARIA_GCM_CTX;
const PROV_GCM_HW *PROV_ARIA_HW_gcm(size_t keybits);
#endif /* !defined(OPENSSL_NO_ARIA) && !defined(FIPS_MODE) */

View File

@ -1,4 +1,3 @@
/* /*
* Copyright 2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
* *
@ -8,12 +7,46 @@
* https://www.openssl.org/source/license.html * https://www.openssl.org/source/license.html
*/ */
#include <openssl/opensslconf.h>
#include <openssl/aes.h> #include <openssl/aes.h>
#include <openssl/modes.h> #include <openssl/params.h>
#include "internal/cryptlib.h" #include "internal/cryptlib.h"
#include "internal/modes_int.h"
#if defined(OPENSSL_CPUID_OBJ) && defined(__s390__)
/*-
* KMA-GCM-AES parameter block - begin
* (see z/Architecture Principles of Operation >= SA22-7832-11)
*/
typedef struct S390X_kma_params_st {
unsigned char reserved[12];
union {
unsigned int w;
unsigned char b[4];
} cv; /* 32 bit counter value */
union {
unsigned long long g[2];
unsigned char b[16];
} t; /* tag */
unsigned char h[16]; /* hash subkey */
unsigned long long taadl; /* total AAD length */
unsigned long long tpcl; /* total plaintxt/ciphertxt len */
union {
unsigned long long g[2];
unsigned int w[4];
} j0; /* initial counter value */
unsigned char k[32]; /* key */
} S390X_KMA_PARAMS;
#endif
typedef struct prov_aes_cipher_st PROV_AES_CIPHER; typedef struct prov_aes_cipher_st PROV_AES_CIPHER;
#define IV_STATE_UNINITIALISED 0 /* initial state is not initialized */
#define IV_STATE_BUFFERED 1 /* iv has been copied to the iv buffer */
#define IV_STATE_COPIED 2 /* iv has been copied from the iv buffer */
#define IV_STATE_FINISHED 3 /* the iv has been used - so don't reuse it */
typedef struct prov_aes_key_st { typedef struct prov_aes_key_st {
union { union {
OSSL_UNION_ALIGN; OSSL_UNION_ALIGN;
@ -93,6 +126,10 @@ struct prov_aes_cipher_st {
size_t inl); size_t inl);
}; };
#define OSSL_CIPHER_FUNC(type, name, args) typedef type (* OSSL_##name##_fn)args
#include "ciphers_gcm.h"
const PROV_AES_CIPHER *PROV_AES_CIPHER_ecb(size_t keylen); const PROV_AES_CIPHER *PROV_AES_CIPHER_ecb(size_t keylen);
const PROV_AES_CIPHER *PROV_AES_CIPHER_cbc(size_t keylen); const PROV_AES_CIPHER *PROV_AES_CIPHER_cbc(size_t keylen);
const PROV_AES_CIPHER *PROV_AES_CIPHER_ofb(size_t keylen); const PROV_AES_CIPHER *PROV_AES_CIPHER_ofb(size_t keylen);
@ -107,3 +144,5 @@ int trailingdata(unsigned char *buf, size_t *buflen, size_t blocksize,
const unsigned char **in, size_t *inlen); const unsigned char **in, size_t *inlen);
void padblock(unsigned char *buf, size_t *buflen, size_t blocksize); void padblock(unsigned char *buf, size_t *buflen, size_t blocksize);
int unpadblock(unsigned char *buf, size_t *buflen, size_t blocksize); int unpadblock(unsigned char *buf, size_t *buflen, size_t blocksize);
int aes_get_params(OSSL_PARAM params[], int md, unsigned long flags,
int kbits, int blkbits, int ivbits);

View File

@ -0,0 +1,580 @@
/*
* Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/evp.h>
#include <openssl/params.h>
#include <openssl/core_numbers.h>
#include <openssl/core_names.h>
#include "internal/rand_int.h"
#include "internal/provider_algs.h"
#include "internal/provider_ctx.h"
#include "internal/providercommonerr.h"
#include "ciphers_locl.h"
/* TODO(3.0) Figure out what flags are really needed */
#define AEAD_GCM_FLAGS (EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_DEFAULT_ASN1 \
| EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
| EVP_CIPH_CUSTOM_COPY)
static OSSL_OP_cipher_encrypt_init_fn gcm_einit;
static OSSL_OP_cipher_decrypt_init_fn gcm_dinit;
static OSSL_OP_cipher_ctx_get_params_fn gcm_ctx_get_params;
static OSSL_OP_cipher_ctx_set_params_fn gcm_ctx_set_params;
static OSSL_OP_cipher_cipher_fn gcm_cipher;
static OSSL_OP_cipher_update_fn gcm_stream_update;
static OSSL_OP_cipher_final_fn gcm_stream_final;
static int gcm_tls_init(PROV_GCM_CTX *dat, unsigned char *aad, size_t aad_len);
static int gcm_tls_iv_set_fixed(PROV_GCM_CTX *ctx, unsigned char *iv,
size_t len);
static int gcm_tls_cipher(PROV_GCM_CTX *ctx, unsigned char *out, size_t *padlen,
const unsigned char *in, size_t len);
static int gcm_cipher_internal(PROV_GCM_CTX *ctx, unsigned char *out,
size_t *padlen, const unsigned char *in,
size_t len);
static void gcm_initctx(void *provctx, PROV_GCM_CTX *ctx, size_t keybits,
const PROV_GCM_HW *hw, size_t ivlen_min)
{
ctx->pad = 1;
ctx->mode = EVP_CIPH_GCM_MODE;
ctx->taglen = -1;
ctx->tls_aad_len = -1;
ctx->ivlen_min = ivlen_min;
ctx->ivlen = (EVP_GCM_TLS_FIXED_IV_LEN + EVP_GCM_TLS_EXPLICIT_IV_LEN);
ctx->keylen = keybits / 8;
ctx->hw = hw;
ctx->libctx = PROV_LIBRARY_CONTEXT_OF(provctx);
}
static void gcm_deinitctx(PROV_GCM_CTX *ctx)
{
OPENSSL_cleanse(ctx->iv, sizeof(ctx->iv));
}
static int gcm_init(void *vctx, const unsigned char *key, size_t keylen,
const unsigned char *iv, size_t ivlen, int enc)
{
PROV_GCM_CTX *ctx = (PROV_GCM_CTX *)vctx;
ctx->enc = enc;
if (iv != NULL) {
if (ivlen < ctx->ivlen_min || ivlen > sizeof(ctx->iv)) {
PROVerr(0, PROV_R_INVALID_IVLEN);
return 0;
}
ctx->ivlen = ivlen;
memcpy(ctx->iv, iv, ctx->ivlen);
ctx->iv_state = IV_STATE_BUFFERED;
}
if (key != NULL) {
if (keylen != ctx->keylen) {
PROVerr(0, PROV_R_INVALID_KEYLEN);
return 0;
}
return ctx->hw->setkey(ctx, key, ctx->keylen);
}
return 1;
}
static int gcm_einit(void *vctx, const unsigned char *key, size_t keylen,
const unsigned char *iv, size_t ivlen)
{
return gcm_init(vctx, key, keylen, iv, ivlen, 1);
}
static int gcm_dinit(void *vctx, const unsigned char *key, size_t keylen,
const unsigned char *iv, size_t ivlen)
{
return gcm_init(vctx, key, keylen, iv, ivlen, 0);
}
static int gcm_ctx_get_params(void *vctx, OSSL_PARAM params[])
{
PROV_GCM_CTX *ctx = (PROV_GCM_CTX *)vctx;
OSSL_PARAM *p;
size_t sz;
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_IVLEN);
if (p != NULL) {
if (!OSSL_PARAM_set_int(p, ctx->ivlen))
return 0;
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_KEYLEN);
if (p != NULL && !OSSL_PARAM_set_int(p, ctx->keylen)) {
PROVerr(0, PROV_R_FAILED_TO_SET_PARAMETER);
return 0;
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_IV);
if (p != NULL) {
if (ctx->iv_gen != 1 && ctx->iv_gen_rand != 1)
return 0;
if (ctx->ivlen != (int)p->data_size) {
PROVerr(0, PROV_R_INVALID_IVLEN);
return 0;
}
if (!OSSL_PARAM_set_octet_string(p, ctx->iv, ctx->ivlen)) {
PROVerr(0, PROV_R_FAILED_TO_SET_PARAMETER);
return 0;
}
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_AEAD_TLS1_AAD_PAD);
if (p != NULL && !OSSL_PARAM_set_size_t(p, ctx->tls_aad_pad_sz)) {
PROVerr(0, PROV_R_FAILED_TO_SET_PARAMETER);
return 0;
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_AEAD_TAG);
if (p != NULL) {
sz = p->data_size;
if (sz == 0 || sz > EVP_GCM_TLS_TAG_LEN || !ctx->enc || ctx->taglen < 0) {
PROVerr(0, PROV_R_INVALID_TAG);
return 0;
}
if (!OSSL_PARAM_set_octet_string(p, ctx->buf, sz)) {
PROVerr(0, PROV_R_FAILED_TO_SET_PARAMETER);
return 0;
}
}
return 1;
}
static int gcm_ctx_set_params(void *vctx, const OSSL_PARAM params[])
{
PROV_GCM_CTX *ctx = (PROV_GCM_CTX *)vctx;
const OSSL_PARAM *p;
size_t sz;
void *vp;
p = OSSL_PARAM_locate_const(params, OSSL_CIPHER_PARAM_AEAD_TAG);
if (p != NULL) {
vp = ctx->buf;
if (!OSSL_PARAM_get_octet_string(p, &vp, EVP_GCM_TLS_TAG_LEN, &sz)) {
PROVerr(0, PROV_R_FAILED_TO_GET_PARAMETER);
return 0;
}
if (sz == 0 || ctx->enc) {
PROVerr(0, PROV_R_INVALID_TAG);
return 0;
}
ctx->taglen = sz;
}
p = OSSL_PARAM_locate_const(params, OSSL_CIPHER_PARAM_AEAD_IVLEN);
if (p != NULL) {
if (!OSSL_PARAM_get_size_t(p, &sz)) {
PROVerr(0, PROV_R_FAILED_TO_GET_PARAMETER);
return 0;
}
if (sz == 0 || sz > sizeof(ctx->iv)) {
PROVerr(0, PROV_R_INVALID_IVLEN);
return 0;
}
ctx->ivlen = sz;
}
p = OSSL_PARAM_locate_const(params, OSSL_CIPHER_PARAM_AEAD_TLS1_AAD);
if (p != NULL) {
if (p->data_type != OSSL_PARAM_OCTET_STRING) {
PROVerr(0, PROV_R_FAILED_TO_GET_PARAMETER);
return 0;
}
sz = gcm_tls_init(ctx, p->data, p->data_size);
if (sz == 0) {
PROVerr(0, PROV_R_INVALID_AAD);
return 0;
}
ctx->tls_aad_pad_sz = sz;
}
p = OSSL_PARAM_locate_const(params, OSSL_CIPHER_PARAM_AEAD_TLS1_IV_FIXED);
if (p != NULL) {
if (p->data_type != OSSL_PARAM_OCTET_STRING) {
PROVerr(0, PROV_R_FAILED_TO_GET_PARAMETER);
return 0;
}
if (gcm_tls_iv_set_fixed(ctx, p->data, p->data_size) == 0) {
PROVerr(0, PROV_R_FAILED_TO_GET_PARAMETER);
return 0;
}
}
return 1;
}
static int gcm_stream_update(void *vctx, unsigned char *out, size_t *outl,
size_t outsize, const unsigned char *in,
size_t inl)
{
PROV_GCM_CTX *ctx = (PROV_GCM_CTX *)vctx;
if (outsize < inl) {
PROVerr(0, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
return -1;
}
if (gcm_cipher_internal(ctx, out, outl, in, inl) <= 0) {
PROVerr(0, PROV_R_CIPHER_OPERATION_FAILED);
return -1;
}
return 1;
}
static int gcm_stream_final(void *vctx, unsigned char *out, size_t *outl,
size_t outsize)
{
PROV_GCM_CTX *ctx = (PROV_GCM_CTX *)vctx;
int i;
i = gcm_cipher_internal(ctx, out, outl, NULL, 0);
if (i <= 0)
return 0;
*outl = 0;
return 1;
}
static int gcm_cipher(void *vctx,
unsigned char *out, size_t *outl, size_t outsize,
const unsigned char *in, size_t inl)
{
PROV_GCM_CTX *ctx = (PROV_GCM_CTX *)vctx;
if (outsize < inl) {
PROVerr(0, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
return -1;
}
if (gcm_cipher_internal(ctx, out, outl, in, inl) <= 0)
return -1;
*outl = inl;
return 1;
}
/*
* See SP800-38D (GCM) Section 8 "Uniqueness requirement on IVS and keys"
*
* See also 8.2.2 RBG-based construction.
* Random construction consists of a free field (which can be NULL) and a
* random field which will use a DRBG that can return at least 96 bits of
* entropy strength. (The DRBG must be seeded by the FIPS module).
*/
static int gcm_iv_generate(PROV_GCM_CTX *ctx, int offset)
{
int sz = ctx->ivlen - offset;
/* Must be at least 96 bits */
if (sz <= 0 || ctx->ivlen < GCM_IV_DEFAULT_SIZE)
return 0;
/* Use DRBG to generate random iv */
if (rand_bytes_ex(ctx->libctx, ctx->iv + offset, sz) <= 0)
return 0;
ctx->iv_state = IV_STATE_BUFFERED;
ctx->iv_gen_rand = 1;
return 1;
}
static int gcm_cipher_internal(PROV_GCM_CTX *ctx, unsigned char *out,
size_t *padlen, const unsigned char *in,
size_t len)
{
size_t olen = 0;
int rv = 0;
const PROV_GCM_HW *hw = ctx->hw;
if (ctx->tls_aad_len >= 0)
return gcm_tls_cipher(ctx, out, padlen, in, len);
if (!ctx->key_set || ctx->iv_state == IV_STATE_FINISHED)
goto err;
/*
* FIPS requires generation of AES-GCM IV's inside the FIPS module.
* The IV can still be set externally (the security policy will state that
* this is not FIPS compliant). There are some applications
* where setting the IV externally is the only option available.
*/
if (ctx->iv_state == IV_STATE_UNINITIALISED) {
if (!ctx->enc || !gcm_iv_generate(ctx, 0))
goto err;
}
if (ctx->iv_state == IV_STATE_BUFFERED) {
if (!hw->setiv(ctx, ctx->iv, ctx->ivlen))
goto err;
ctx->iv_state = IV_STATE_COPIED;
}
if (in != NULL) {
/* The input is AAD if out is NULL */
if (out == NULL) {
if (!hw->aadupdate(ctx, in, len))
goto err;
} else {
/* The input is ciphertext OR plaintext */
if (!hw->cipherupdate(ctx, in, len, out))
goto err;
}
} else {
/* Finished when in == NULL */
if (!hw->cipherfinal(ctx, ctx->buf))
goto err;
ctx->iv_state = IV_STATE_FINISHED; /* Don't reuse the IV */
goto finish;
}
olen = len;
finish:
rv = 1;
err:
*padlen = olen;
return rv;
}
static int gcm_tls_init(PROV_GCM_CTX *dat, unsigned char *aad, size_t aad_len)
{
unsigned char *buf;
size_t len;
if (aad_len != EVP_AEAD_TLS1_AAD_LEN)
return 0;
/* Save the aad for later use. */
buf = dat->buf;
memcpy(buf, aad, aad_len);
dat->tls_aad_len = aad_len;
dat->tls_enc_records = 0;
len = buf[aad_len - 2] << 8 | buf[aad_len - 1];
/* Correct length for explicit iv. */
if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
return 0;
len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
/* If decrypting correct for tag too. */
if (!dat->enc) {
if (len < EVP_GCM_TLS_TAG_LEN)
return 0;
len -= EVP_GCM_TLS_TAG_LEN;
}
buf[aad_len - 2] = (unsigned char)(len >> 8);
buf[aad_len - 1] = (unsigned char)(len & 0xff);
/* Extra padding: tag appended to record. */
return EVP_GCM_TLS_TAG_LEN;
}
static int gcm_tls_iv_set_fixed(PROV_GCM_CTX *ctx, unsigned char *iv,
size_t len)
{
/* Special case: -1 length restores whole IV */
if (len == (size_t)-1) {
memcpy(ctx->iv, iv, ctx->ivlen);
ctx->iv_gen = 1;
ctx->iv_state = IV_STATE_BUFFERED;
return 1;
}
/* Fixed field must be at least 4 bytes and invocation field at least 8 */
if ((len < EVP_GCM_TLS_FIXED_IV_LEN)
|| (ctx->ivlen - (int)len) < EVP_GCM_TLS_EXPLICIT_IV_LEN)
return 0;
if (len > 0)
memcpy(ctx->iv, iv, len);
if (ctx->enc
&& rand_bytes_ex(ctx->libctx, ctx->iv + len, ctx->ivlen - len) <= 0)
return 0;
ctx->iv_gen = 1;
ctx->iv_state = IV_STATE_BUFFERED;
return 1;
}
/* increment counter (64-bit int) by 1 */
static void ctr64_inc(unsigned char *counter)
{
int n = 8;
unsigned char c;
do {
--n;
c = counter[n];
++c;
counter[n] = c;
if (c > 0)
return;
} while (n > 0);
}
/*
* Handle TLS GCM packet format. This consists of the last portion of the IV
* followed by the payload and finally the tag. On encrypt generate IV,
* encrypt payload and write the tag. On verify retrieve IV, decrypt payload
* and verify tag.
*/
static int gcm_tls_cipher(PROV_GCM_CTX *ctx, unsigned char *out, size_t *padlen,
const unsigned char *in, size_t len)
{
int rv = 0, arg = EVP_GCM_TLS_EXPLICIT_IV_LEN;
size_t plen = 0;
unsigned char *tag = NULL;
if (!ctx->key_set)
goto err;
/* Encrypt/decrypt must be performed in place */
if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
goto err;
/*
* Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness
* Requirements from SP 800-38D". The requirements is for one party to the
* communication to fail after 2^64 - 1 keys. We do this on the encrypting
* side only.
*/
if (ctx->enc && ++ctx->tls_enc_records == 0) {
PROVerr(0, EVP_R_TOO_MANY_RECORDS);
goto err;
}
if (ctx->iv_gen == 0)
goto err;
/*
* Set IV from start of buffer or generate IV and write to start of
* buffer.
*/
if (ctx->enc) {
if (!ctx->hw->setiv(ctx, ctx->iv, ctx->ivlen))
goto err;
if (arg > ctx->ivlen)
arg = ctx->ivlen;
memcpy(out, ctx->iv + ctx->ivlen - arg, arg);
/*
* Invocation field will be at least 8 bytes in size and so no need
* to check wrap around or increment more than last 8 bytes.
*/
ctr64_inc(ctx->iv + ctx->ivlen - 8);
} else {
memcpy(ctx->iv + ctx->ivlen - arg, out, arg);
if (!ctx->hw->setiv(ctx, ctx->iv, ctx->ivlen))
goto err;
}
ctx->iv_state = IV_STATE_COPIED;
/* Fix buffer and length to point to payload */
in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
tag = ctx->enc ? out + len : (unsigned char *)in + len;
if (!ctx->hw->oneshot(ctx, ctx->buf, ctx->tls_aad_len, in, len, out, tag,
EVP_GCM_TLS_TAG_LEN)) {
if (!ctx->enc)
OPENSSL_cleanse(out, len);
goto err;
}
if (ctx->enc)
plen = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
else
plen = len;
rv = 1;
err:
ctx->iv_state = IV_STATE_FINISHED;
ctx->tls_aad_len = -1;
*padlen = plen;
return rv;
}
#define IMPLEMENT_cipher(alg, lcmode, UCMODE, flags, kbits, blkbits, ivbits) \
static OSSL_OP_cipher_get_params_fn alg##_##kbits##_##lcmode##_get_params; \
static int alg##_##kbits##_##lcmode##_get_params(OSSL_PARAM params[]) \
{ \
return aes_get_params(params, EVP_CIPH_##UCMODE##_MODE, flags, \
kbits, blkbits, ivbits); \
} \
static OSSL_OP_cipher_newctx_fn alg##kbits##gcm_newctx; \
static void *alg##kbits##gcm_newctx(void *provctx) \
{ \
return alg##_gcm_newctx(provctx, kbits); \
} \
const OSSL_DISPATCH alg##kbits##gcm_functions[] = { \
{ OSSL_FUNC_CIPHER_ENCRYPT_INIT, (void (*)(void))gcm_einit }, \
{ OSSL_FUNC_CIPHER_DECRYPT_INIT, (void (*)(void))gcm_dinit }, \
{ OSSL_FUNC_CIPHER_UPDATE, (void (*)(void))gcm_stream_update }, \
{ OSSL_FUNC_CIPHER_FINAL, (void (*)(void))gcm_stream_final }, \
{ OSSL_FUNC_CIPHER_CIPHER, (void (*)(void))gcm_cipher }, \
{ OSSL_FUNC_CIPHER_NEWCTX, (void (*)(void)) alg##kbits##gcm_newctx }, \
{ OSSL_FUNC_CIPHER_FREECTX, (void (*)(void)) alg##_gcm_freectx }, \
{ OSSL_FUNC_CIPHER_GET_PARAMS, \
(void (*)(void)) alg##_##kbits##_##lcmode##_get_params }, \
{ OSSL_FUNC_CIPHER_CTX_GET_PARAMS, \
(void (*)(void))gcm_ctx_get_params }, \
{ OSSL_FUNC_CIPHER_CTX_SET_PARAMS, \
(void (*)(void))gcm_ctx_set_params }, \
{ 0, NULL } \
}
static void *aes_gcm_newctx(void *provctx, size_t keybits)
{
PROV_AES_GCM_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx != NULL)
gcm_initctx(provctx, (PROV_GCM_CTX *)ctx, keybits,
PROV_AES_HW_gcm(keybits), 8);
return ctx;
}
static OSSL_OP_cipher_freectx_fn aes_gcm_freectx;
static void aes_gcm_freectx(void *vctx)
{
PROV_AES_GCM_CTX *ctx = (PROV_AES_GCM_CTX *)vctx;
gcm_deinitctx((PROV_GCM_CTX *)ctx);
OPENSSL_clear_free(ctx, sizeof(*ctx));
}
/* aes128gcm_functions */
IMPLEMENT_cipher(aes, gcm, GCM, AEAD_GCM_FLAGS, 128, 8, 96);
/* aes192gcm_functions */
IMPLEMENT_cipher(aes, gcm, GCM, AEAD_GCM_FLAGS, 192, 8, 96);
/* aes256gcm_functions */
IMPLEMENT_cipher(aes, gcm, GCM, AEAD_GCM_FLAGS, 256, 8, 96);
#if !defined(OPENSSL_NO_ARIA) && !defined(FIPS_MODE)
static void *aria_gcm_newctx(void *provctx, size_t keybits)
{
PROV_ARIA_GCM_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx != NULL)
gcm_initctx(provctx, (PROV_GCM_CTX *)ctx, keybits,
PROV_ARIA_HW_gcm(keybits), 4);
return ctx;
}
static OSSL_OP_cipher_freectx_fn aria_gcm_freectx;
static void aria_gcm_freectx(void *vctx)
{
PROV_ARIA_GCM_CTX *ctx = (PROV_ARIA_GCM_CTX *)vctx;
gcm_deinitctx((PROV_GCM_CTX *)ctx);
OPENSSL_clear_free(ctx, sizeof(*ctx));
}
/* aria128gcm_functions */
IMPLEMENT_cipher(aria, gcm, GCM, AEAD_GCM_FLAGS, 128, 8, 96);
/* aria192gcm_functions */
IMPLEMENT_cipher(aria, gcm, GCM, AEAD_GCM_FLAGS, 192, 8, 96);
/* aria256gcm_functions */
IMPLEMENT_cipher(aria, gcm, GCM, AEAD_GCM_FLAGS, 256, 8, 96);
#endif /* !defined(OPENSSL_NO_ARIA) && !defined(FIPS_MODE) */

View File

@ -0,0 +1,307 @@
/*
* Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "ciphers_locl.h"
#include "internal/aes_platform.h"
static const PROV_GCM_HW aes_gcm;
static int gcm_setiv(PROV_GCM_CTX *ctx, const unsigned char *iv, size_t ivlen);
static int gcm_aad_update(PROV_GCM_CTX *ctx, const unsigned char *aad,
size_t aad_len);
static int gcm_cipher_final(PROV_GCM_CTX *ctx, unsigned char *tag);
static int gcm_one_shot(PROV_GCM_CTX *ctx, unsigned char *aad, size_t aad_len,
const unsigned char *in, size_t in_len,
unsigned char *out, unsigned char *tag, size_t tag_len);
static int gcm_cipher_update(PROV_GCM_CTX *ctx, const unsigned char *in,
size_t len, unsigned char *out);
#define SET_KEY_CTR_FN(ks, fn_set_enc_key, fn_block, fn_ctr) \
ctx->ks = ks; \
fn_set_enc_key(key, keylen * 8, ks); \
CRYPTO_gcm128_init(&ctx->gcm, ks, (block128_f)fn_block); \
ctx->ctr = (ctr128_f)fn_ctr; \
ctx->key_set = 1;
#if defined(AESNI_CAPABLE)
/* AES-NI section */
static int aesni_gcm_init_key(PROV_GCM_CTX *ctx, const unsigned char *key,
size_t keylen)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
AES_KEY *ks = &actx->ks.ks;
SET_KEY_CTR_FN(ks, aesni_set_encrypt_key, aesni_encrypt,
aesni_ctr32_encrypt_blocks);
return 1;
}
static const PROV_GCM_HW aesni_gcm = {
aesni_gcm_init_key,
gcm_setiv,
gcm_aad_update,
gcm_cipher_update,
gcm_cipher_final,
gcm_one_shot
};
const PROV_GCM_HW *PROV_AES_HW_gcm(size_t keybits)
{
return AESNI_CAPABLE ? &aesni_gcm : &aes_gcm;
}
#elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
/* Fujitsu SPARC64 X support */
static int t4_aes_gcm_init_key(PROV_GCM_CTX *ctx, const unsigned char *key,
size_t keylen)
{
ctr128_f ctr;
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
AES_KEY *ks = &actx->ks.ks;
switch (keylen) {
case 16:
ctr = (ctr128_f)aes128_t4_ctr32_encrypt;
break;
case 24:
ctr = (ctr128_f)aes192_t4_ctr32_encrypt;
break;
case 32:
ctr = (ctr128_f)aes256_t4_ctr32_encrypt;
break;
default:
return 0;
}
SET_KEY_CTR_FN(ks, aes_t4_set_encrypt_key, aes_t4_encrypt, ctr);
return 1;
}
static const PROV_GCM_HW t4_aes_gcm = {
t4_aes_gcm_init_key,
gcm_setiv,
gcm_aad_update,
gcm_cipher_update,
gcm_cipher_final,
gcm_one_shot
};
const PROV_GCM_HW *PROV_AES_HW_gcm(size_t keybits)
{
return SPARC_AES_CAPABLE ? &t4_aes_gcm : &aes_gcm;
}
#elif defined(OPENSSL_CPUID_OBJ) && defined(__s390__)
# include "gcm_s390x.c"
#else
const PROV_GCM_HW *PROV_AES_HW_gcm(size_t keybits)
{
return &aes_gcm;
}
#endif
static int generic_aes_gcm_init_key(PROV_GCM_CTX *ctx, const unsigned char *key,
size_t keylen)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
AES_KEY *ks = &actx->ks.ks;
# ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) {
# ifdef HWAES_ctr32_encrypt_blocks
SET_KEY_CTR_FN(ks, HWAES_set_encrypt_key, HWAES_encrypt,
HWAES_ctr32_encrypt_blocks);
# else
SET_KEY_CTR_FN(ks, HWAES_set_encrypt_key, HWAES_encrypt, NULL);
# endif /* HWAES_ctr32_encrypt_blocks */
} else
# endif /* HWAES_CAPABLE */
# ifdef BSAES_CAPABLE
if (BSAES_CAPABLE) {
SET_KEY_CTR_FN(ks, AES_set_encrypt_key, AES_encrypt,
bsaes_ctr32_encrypt_blocks);
} else
# endif /* BSAES_CAPABLE */
# ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
SET_KEY_CTR_FN(ks, vpaes_set_encrypt_key, vpaes_encrypt, NULL);
} else
# endif /* VPAES_CAPABLE */
{
# ifdef AES_CTR_ASM
SET_KEY_CTR_FN(ks, AES_set_encrypt_key, AES_encrypt, AES_ctr32_encrypt);
# else
SET_KEY_CTR_FN(ks, AES_set_encrypt_key, AES_encrypt, NULL);
# endif /* AES_CTR_ASM */
}
ctx->key_set = 1;
return 1;
}
static int gcm_setiv(PROV_GCM_CTX *ctx, const unsigned char *iv, size_t ivlen)
{
CRYPTO_gcm128_setiv(&ctx->gcm, iv, ivlen);
return 1;
}
static int gcm_aad_update(PROV_GCM_CTX *ctx,
const unsigned char *aad, size_t aad_len)
{
return CRYPTO_gcm128_aad(&ctx->gcm, aad, aad_len) == 0;
}
static int gcm_cipher_update(PROV_GCM_CTX *ctx, const unsigned char *in,
size_t len, unsigned char *out)
{
if (ctx->enc) {
if (ctx->ctr != NULL) {
#if defined(AES_GCM_ASM)
size_t bulk = 0;
if (len >= 32 && AES_GCM_ASM(ctx)) {
size_t res = (16 - ctx->gcm.mres) % 16;
if (CRYPTO_gcm128_encrypt(&ctx->gcm, in, out, res))
return 0;
bulk = aesni_gcm_encrypt(in + res, out + res, len - res,
ctx->gcm.key,
ctx->gcm.Yi.c, ctx->gcm.Xi.u);
ctx->gcm.len.u[1] += bulk;
bulk += res;
}
if (CRYPTO_gcm128_encrypt_ctr32(&ctx->gcm, in + bulk, out + bulk,
len - bulk, ctx->ctr))
return 0;
#else
if (CRYPTO_gcm128_encrypt_ctr32(&ctx->gcm, in, out, len, ctx->ctr))
return 0;
#endif /* AES_GCM_ASM */
} else {
if (CRYPTO_gcm128_encrypt(&ctx->gcm, in, out, len))
return 0;
}
} else {
if (ctx->ctr != NULL) {
#if defined(AES_GCM_ASM)
size_t bulk = 0;
if (len >= 16 && AES_GCM_ASM(ctx)) {
size_t res = (16 - ctx->gcm.mres) % 16;
if (CRYPTO_gcm128_decrypt(&ctx->gcm, in, out, res))
return -1;
bulk = aesni_gcm_decrypt(in + res, out + res, len - res,
ctx->gcm.key,
ctx->gcm.Yi.c, ctx->gcm.Xi.u);
ctx->gcm.len.u[1] += bulk;
bulk += res;
}
if (CRYPTO_gcm128_decrypt_ctr32(&ctx->gcm, in + bulk, out + bulk,
len - bulk, ctx->ctr))
return 0;
#else
if (CRYPTO_gcm128_decrypt_ctr32(&ctx->gcm, in, out, len, ctx->ctr))
return 0;
#endif /* AES_GCM_ASM */
} else {
if (CRYPTO_gcm128_decrypt(&ctx->gcm, in, out, len))
return 0;
}
}
return 1;
}
static int gcm_cipher_final(PROV_GCM_CTX *ctx, unsigned char *tag)
{
if (ctx->enc) {
CRYPTO_gcm128_tag(&ctx->gcm, tag, GCM_TAG_MAX_SIZE);
ctx->taglen = GCM_TAG_MAX_SIZE;
} else {
if (ctx->taglen < 0
|| CRYPTO_gcm128_finish(&ctx->gcm, tag, ctx->taglen) != 0)
return 0;
}
return 1;
}
static int gcm_one_shot(PROV_GCM_CTX *ctx, unsigned char *aad, size_t aad_len,
const unsigned char *in, size_t in_len,
unsigned char *out, unsigned char *tag, size_t tag_len)
{
int ret = 0;
/* Use saved AAD */
if (!ctx->hw->aadupdate(ctx, aad, aad_len))
goto err;
if (!ctx->hw->cipherupdate(ctx, in, in_len, out))
goto err;
ctx->taglen = GCM_TAG_MAX_SIZE;
if (!ctx->hw->cipherfinal(ctx, tag))
goto err;
ret = 1;
err:
return ret;
}
static const PROV_GCM_HW aes_gcm = {
generic_aes_gcm_init_key,
gcm_setiv,
gcm_aad_update,
gcm_cipher_update,
gcm_cipher_final,
gcm_one_shot
};
#if !defined(OPENSSL_NO_ARIA) && !defined(FIPS_MODE)
static int aria_gcm_init_key(PROV_GCM_CTX *ctx, const unsigned char *key,
size_t keylen)
{
PROV_ARIA_GCM_CTX *actx = (PROV_ARIA_GCM_CTX *)ctx;
ARIA_KEY *ks = &actx->ks.ks;
SET_KEY_CTR_FN(ks, aria_set_encrypt_key, aria_encrypt, NULL);
return 1;
}
static int aria_cipher_update(PROV_GCM_CTX *ctx, const unsigned char *in,
size_t len, unsigned char *out)
{
if (ctx->enc) {
if (CRYPTO_gcm128_encrypt(&ctx->gcm, in, out, len))
return 0;
} else {
if (CRYPTO_gcm128_decrypt(&ctx->gcm, in, out, len))
return 0;
}
return 1;
}
static const PROV_GCM_HW aria_gcm = {
aria_gcm_init_key,
gcm_setiv,
gcm_aad_update,
aria_cipher_update,
gcm_cipher_final,
gcm_one_shot
};
const PROV_GCM_HW *PROV_ARIA_HW_gcm(size_t keybits)
{
return &aria_gcm;
}
#endif /* !defined(OPENSSL_NO_ARIA) && !defined(FIPS_MODE) */

View File

@ -0,0 +1,303 @@
/*
* Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* IBM S390X AES GCM support
* Note this file is included by aes_gcm_hw.c
*/
/* iv + padding length for iv lengths != 12 */
#define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16)
static int s390x_aes_gcm_init_key(PROV_GCM_CTX *ctx,
const unsigned char *key, size_t keylen)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
ctx->key_set = 1;
memcpy(&actx->plat.s390x.param.kma.k, key, keylen);
actx->plat.s390x.fc = S390X_AES_FC(keylen);
if (!ctx->enc)
actx->plat.s390x.fc |= S390X_DECRYPT;
return 1;
}
static int s390x_aes_gcm_setiv(PROV_GCM_CTX *ctx, const unsigned char *iv,
size_t ivlen)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
kma->t.g[0] = 0;
kma->t.g[1] = 0;
kma->tpcl = 0;
kma->taadl = 0;
actx->plat.s390x.mreslen = 0;
actx->plat.s390x.areslen = 0;
actx->plat.s390x.kreslen = 0;
if (ivlen == AES_GCM_IV_DEFAULT_SIZE) {
memcpy(&kma->j0, iv, ivlen);
kma->j0.w[3] = 1;
kma->cv.w = 1;
} else {
unsigned long long ivbits = ivlen << 3;
size_t len = S390X_gcm_ivpadlen(ivlen);
unsigned char iv_zero_pad[S390X_gcm_ivpadlen(AES_GCM_IV_MAX_SIZE)];
/*
* The IV length needs to be zero padded to be a multiple of 16 bytes
* followed by 8 bytes of zeros and 8 bytes for the IV length.
* The GHASH of this value can then be calculated.
*/
memcpy(iv_zero_pad, iv, ivlen);
memset(iv_zero_pad + ivlen, 0, len - ivlen);
memcpy(iv_zero_pad + len - sizeof(ivbits), &ivbits, sizeof(ivbits));
/*
* Calculate the ghash of the iv - the result is stored into the tag
* param.
*/
s390x_kma(iv_zero_pad, len, NULL, 0, NULL, actx->plat.s390x.fc, kma);
actx->plat.s390x.fc |= S390X_KMA_HS; /* The hash subkey is set */
/* Copy the 128 bit GHASH result into J0 and clear the tag */
kma->j0.g[0] = kma->t.g[0];
kma->j0.g[1] = kma->t.g[1];
kma->t.g[0] = 0;
kma->t.g[1] = 0;
/* Set the 32 bit counter */
kma->cv.w = kma->j0.w[3];
}
return 1;
}
static int s390x_aes_gcm_cipher_final(PROV_GCM_CTX *ctx, unsigned char *tag)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
unsigned char out[AES_BLOCK_SIZE];
int rc;
kma->taadl <<= 3;
kma->tpcl <<= 3;
s390x_kma(actx->plat.s390x.ares, actx->plat.s390x.areslen,
actx->plat.s390x.mres, actx->plat.s390x.mreslen, out,
actx->plat.s390x.fc | S390X_KMA_LAAD | S390X_KMA_LPC, kma);
/* gctx->mres already returned to the caller */
OPENSSL_cleanse(out, actx->plat.s390x.mreslen);
if (ctx->enc) {
ctx->taglen = AES_GCM_TAG_MAX_SIZE;
memcpy(tag, kma->t.b, ctx->taglen);
rc = 1;
} else {
if (ctx->taglen < 0)
rc = 0;
else
rc = (CRYPTO_memcmp(tag, kma->t.b, ctx->taglen) == 0);
}
return rc;
}
static int s390x_aes_gcm_one_shot(PROV_GCM_CTX *ctx,
unsigned char *aad, size_t aad_len,
const unsigned char *in, size_t in_len,
unsigned char *out,
unsigned char *tag, size_t taglen)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
int rc;
kma->taadl = aad_len << 3;
kma->tpcl = in_len << 3;
s390x_kma(aad, aad_len, in, in_len, out,
actx->plat.s390x.fc | S390X_KMA_LAAD | S390X_KMA_LPC, kma);
if (ctx->enc) {
memcpy(tag, kma->t.b, taglen);
rc = 1;
} else {
rc = (CRYPTO_memcmp(tag, kma->t.b, taglen) == 0);
}
return rc;
}
/*
* Process additional authenticated data. Returns 1 on success. Code is
* big-endian.
*/
static int s390x_aes_gcm_aad_update(PROV_GCM_CTX *ctx,
const unsigned char *aad, size_t len)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
unsigned long long alen;
int n, rem;
/* If already processed pt/ct then error */
if (kma->tpcl != 0)
return 0;
/* update the total aad length */
alen = kma->taadl + len;
if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
return 0;
kma->taadl = alen;
/* check if there is any existing aad data from a previous add */
n = actx->plat.s390x.areslen;
if (n) {
/* add additional data to a buffer until it has 16 bytes */
while (n && len) {
actx->plat.s390x.ares[n] = *aad;
++aad;
--len;
n = (n + 1) & 0xf;
}
/* ctx->ares contains a complete block if offset has wrapped around */
if (!n) {
s390x_kma(actx->plat.s390x.ares, 16, NULL, 0, NULL,
actx->plat.s390x.fc, kma);
actx->plat.s390x.fc |= S390X_KMA_HS;
}
actx->plat.s390x.areslen = n;
}
/* If there are leftover bytes (< 128 bits) save them for next time */
rem = len & 0xf;
/* Add any remaining 16 byte blocks (128 bit each) */
len &= ~(size_t)0xf;
if (len) {
s390x_kma(aad, len, NULL, 0, NULL, actx->plat.s390x.fc, kma);
actx->plat.s390x.fc |= S390X_KMA_HS;
aad += len;
}
if (rem) {
actx->plat.s390x.areslen = rem;
do {
--rem;
actx->plat.s390x.ares[rem] = aad[rem];
} while (rem);
}
return 1;
}
/*-
* En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 1 for
* success. Code is big-endian.
*/
static int s390x_aes_gcm_cipher_update(PROV_GCM_CTX *ctx,
const unsigned char *in, size_t len,
unsigned char *out)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
const unsigned char *inptr;
unsigned long long mlen;
union {
unsigned int w[4];
unsigned char b[16];
} buf;
size_t inlen;
int n, rem, i;
mlen = kma->tpcl + len;
if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
return 0;
kma->tpcl = mlen;
n = actx->plat.s390x.mreslen;
if (n) {
inptr = in;
inlen = len;
while (n && inlen) {
actx->plat.s390x.mres[n] = *inptr;
n = (n + 1) & 0xf;
++inptr;
--inlen;
}
/* ctx->mres contains a complete block if offset has wrapped around */
if (!n) {
s390x_kma(actx->plat.s390x.ares, actx->plat.s390x.areslen,
actx->plat.s390x.mres, 16, buf.b,
actx->plat.s390x.fc | S390X_KMA_LAAD, kma);
actx->plat.s390x.fc |= S390X_KMA_HS;
actx->plat.s390x.areslen = 0;
/* previous call already encrypted/decrypted its remainder,
* see comment below */
n = actx->plat.s390x.mreslen;
while (n) {
*out = buf.b[n];
n = (n + 1) & 0xf;
++out;
++in;
--len;
}
actx->plat.s390x.mreslen = 0;
}
}
rem = len & 0xf;
len &= ~(size_t)0xf;
if (len) {
s390x_kma(actx->plat.s390x.ares, actx->plat.s390x.areslen, in, len, out,
actx->plat.s390x.fc | S390X_KMA_LAAD, kma);
in += len;
out += len;
actx->plat.s390x.fc |= S390X_KMA_HS;
actx->plat.s390x.areslen = 0;
}
/*-
* If there is a remainder, it has to be saved such that it can be
* processed by kma later. However, we also have to do the for-now
* unauthenticated encryption/decryption part here and now...
*/
if (rem) {
if (!actx->plat.s390x.mreslen) {
buf.w[0] = kma->j0.w[0];
buf.w[1] = kma->j0.w[1];
buf.w[2] = kma->j0.w[2];
buf.w[3] = kma->cv.w + 1;
s390x_km(buf.b, 16, actx->plat.s390x.kres,
actx->plat.s390x.fc & 0x1f, &kma->k);
}
n = actx->plat.s390x.mreslen;
for (i = 0; i < rem; i++) {
actx->plat.s390x.mres[n + i] = in[i];
out[i] = in[i] ^ actx->plat.s390x.kres[n + i];
}
actx->plat.s390x.mreslen += rem;
}
return 1;
}
static const PROV_GCM_HW s390x_aes_gcm = {
s390x_aes_gcm_init_key,
s390x_aes_gcm_setiv,
s390x_aes_gcm_aad_update,
s390x_aes_gcm_cipher_update,
s390x_aes_gcm_cipher_final,
s390x_aes_gcm_one_shot
};
const PROV_GCM_HW *PROV_AES_HW_gcm(size_t keybits)
{
if ((keybits == 128 && S390X_aes_128_gcm_CAPABLE)
|| (keybits == 192 && S390X_aes_192_gcm_CAPABLE)
|| (keybits == 256 && S390X_aes_256_gcm_CAPABLE))
return &s390x_aes_gcm;
return &aes_gcm;
}

View File

@ -57,6 +57,14 @@ extern const OSSL_DISPATCH aes128cfb8_functions[];
extern const OSSL_DISPATCH aes256ctr_functions[]; extern const OSSL_DISPATCH aes256ctr_functions[];
extern const OSSL_DISPATCH aes192ctr_functions[]; extern const OSSL_DISPATCH aes192ctr_functions[];
extern const OSSL_DISPATCH aes128ctr_functions[]; extern const OSSL_DISPATCH aes128ctr_functions[];
extern const OSSL_DISPATCH aes256gcm_functions[];
extern const OSSL_DISPATCH aes192gcm_functions[];
extern const OSSL_DISPATCH aes128gcm_functions[];
#ifndef OPENSSL_NO_ARIA
extern const OSSL_DISPATCH aria256gcm_functions[];
extern const OSSL_DISPATCH aria192gcm_functions[];
extern const OSSL_DISPATCH aria128gcm_functions[];
#endif /* OPENSSL_NO_ARIA */
/* Key management */ /* Key management */
extern const OSSL_DISPATCH dh_keymgmt_functions[]; extern const OSSL_DISPATCH dh_keymgmt_functions[];

View File

@ -49,7 +49,10 @@ int ERR_load_PROV_strings(void);
# define PROV_R_CIPHER_OPERATION_FAILED 102 # define PROV_R_CIPHER_OPERATION_FAILED 102
# define PROV_R_FAILED_TO_GET_PARAMETER 103 # define PROV_R_FAILED_TO_GET_PARAMETER 103
# define PROV_R_FAILED_TO_SET_PARAMETER 104 # define PROV_R_FAILED_TO_SET_PARAMETER 104
# define PROV_R_INVALID_AAD 108
# define PROV_R_INVALID_IVLEN 109
# define PROV_R_INVALID_KEYLEN 105 # define PROV_R_INVALID_KEYLEN 105
# define PROV_R_INVALID_TAG 110
# define PROV_R_OUTPUT_BUFFER_TOO_SMALL 106 # define PROV_R_OUTPUT_BUFFER_TOO_SMALL 106
# define PROV_R_WRONG_FINAL_BLOCK_LENGTH 107 # define PROV_R_WRONG_FINAL_BLOCK_LENGTH 107

View File

@ -23,7 +23,10 @@ static const ERR_STRING_DATA PROV_str_reasons[] = {
"failed to get parameter"}, "failed to get parameter"},
{ERR_PACK(ERR_LIB_PROV, 0, PROV_R_FAILED_TO_SET_PARAMETER), {ERR_PACK(ERR_LIB_PROV, 0, PROV_R_FAILED_TO_SET_PARAMETER),
"failed to set parameter"}, "failed to set parameter"},
{ERR_PACK(ERR_LIB_PROV, 0, PROV_R_INVALID_AAD), "invalid aad"},
{ERR_PACK(ERR_LIB_PROV, 0, PROV_R_INVALID_IVLEN), "invalid ivlen"},
{ERR_PACK(ERR_LIB_PROV, 0, PROV_R_INVALID_KEYLEN), "invalid keylen"}, {ERR_PACK(ERR_LIB_PROV, 0, PROV_R_INVALID_KEYLEN), "invalid keylen"},
{ERR_PACK(ERR_LIB_PROV, 0, PROV_R_INVALID_TAG), "invalid tag"},
{ERR_PACK(ERR_LIB_PROV, 0, PROV_R_OUTPUT_BUFFER_TOO_SMALL), {ERR_PACK(ERR_LIB_PROV, 0, PROV_R_OUTPUT_BUFFER_TOO_SMALL),
"output buffer too small"}, "output buffer too small"},
{ERR_PACK(ERR_LIB_PROV, 0, PROV_R_WRONG_FINAL_BLOCK_LENGTH), {ERR_PACK(ERR_LIB_PROV, 0, PROV_R_WRONG_FINAL_BLOCK_LENGTH),

View File

@ -111,6 +111,14 @@ static const OSSL_ALGORITHM deflt_ciphers[] = {
{ "AES-256-CTR", "default=yes", aes256ctr_functions }, { "AES-256-CTR", "default=yes", aes256ctr_functions },
{ "AES-192-CTR", "default=yes", aes192ctr_functions }, { "AES-192-CTR", "default=yes", aes192ctr_functions },
{ "AES-128-CTR", "default=yes", aes128ctr_functions }, { "AES-128-CTR", "default=yes", aes128ctr_functions },
{ "id-aes256-GCM", "default=yes", aes256gcm_functions },
{ "id-aes192-GCM", "default=yes", aes192gcm_functions },
{ "id-aes128-GCM", "default=yes", aes128gcm_functions },
#ifndef OPENSSL_NO_ARIA
{ "ARIA-256-GCM", "default=yes", aria256gcm_functions },
{ "ARIA-192-GCM", "default=yes", aria192gcm_functions },
{ "ARIA-128-GCM", "default=yes", aria128gcm_functions },
#endif /* OPENSSL_NO_ARIA */
{ NULL, NULL, NULL } { NULL, NULL, NULL }
}; };

View File

@ -250,6 +250,9 @@ static const OSSL_ALGORITHM fips_ciphers[] = {
{ "AES-256-CTR", "fips=yes", aes256ctr_functions }, { "AES-256-CTR", "fips=yes", aes256ctr_functions },
{ "AES-192-CTR", "fips=yes", aes192ctr_functions }, { "AES-192-CTR", "fips=yes", aes192ctr_functions },
{ "AES-128-CTR", "fips=yes", aes128ctr_functions }, { "AES-128-CTR", "fips=yes", aes128ctr_functions },
{ "id-aes256-GCM", "fips=yes", aes256gcm_functions },
{ "id-aes192-GCM", "fips=yes", aes192gcm_functions },
{ "id-aes128-GCM", "fips=yes", aes128gcm_functions },
{ NULL, NULL, NULL } { NULL, NULL, NULL }
}; };