This change makes the naming more consistent, because three different terms
were used for the same thing. (The term libctx was used by far most often.)
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12621)
Many of the new types introduced by OpenSSL 3.0 have an OSSL_ prefix,
e.g., OSSL_CALLBACK, OSSL_PARAM, OSSL_ALGORITHM, OSSL_SERIALIZER.
The OPENSSL_CTX type stands out a little by using a different prefix.
For consistency reasons, this type is renamed to OSSL_LIB_CTX.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12621)
The temporary copy that's made didn't have a lock, which could end up
with a crash. We now handle locks a bit better, and take extra care to
lock it and keep track of which lock is used where and which lock is
thrown away.
Fixes#12876
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12978)
Automatically rename all instances of _with_libctx() to _ex() as per
our coding style.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12970)
This also deprecates the function, as it is not necessary any more,
and should fall out of use.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12920)
ECX_KEY was not meant for public consumption, it was only to be
accessed indirectly via EVP routines. However, we still need internal
access for our decoders.
This partially reverts 7c664b1f1bFixes#12880
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12956)
This adds the convenience function EVP_PKEY_typenames_do_all(), which
does the same as EVP_KEYMGMT_names_do_all(), but without having to
expose all the internal ways to find out if the internal EVP_PKEY key
is legacy or provider-native.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12873)
This is purely to allow exporting without having to repeatedly specify
the keymgmt and keydata from the EVP_PKEY.
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12853)
PEM_write_bio_PrivateKey_traditional() didn't handle provider-native
keys very well. Originally, it would simply use the corresponding
encoder, which is likely to output modern PEM (not "traditional").
PEM_write_bio_PrivateKey_traditional() is now changed to try and get a
legacy copy of the input EVP_PKEY, and use that copy for traditional
output, if it has such support.
Internally, evp_pkey_copy_downgraded() is added, to be used when
evp_pkey_downgrade() is too intrusive for what it's needed for.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12738)
There are places that add an ERR_R_MALLOC_FAILURE record when any of
EVP_PKEY_CTX_new*() return NULL, which is 1) inaccurate, and 2)
shadows the more accurate error record generated when trying to create
the EVP_PKEY_CTX.
Reviewed-by: Paul Yang <kaishen.yy@antfin.com>
(Merged from https://github.com/openssl/openssl/pull/12785)
As long as there are internal legacy keys for EVP_PKEY, we need to preserve
the EVP_PKEY numeric identity when generating a key, and when creating the
EVP_PKEY_CTX.
For added consistency, the EVP_PKEY_CTX contructor tries a little
harder to find a EVP_PKEY_METHOD. Otherwise, we may run into
situations where the EVP_PKEY_CTX ends up having no associated methods
at all.
Reviewed-by: Paul Yang <kaishen.yy@antfin.com>
(Merged from https://github.com/openssl/openssl/pull/12785)
On failure by EVP_PKEY_CTX_new_from_name(), this function reported
ERR_R_MALLOC_FAILURE. However, that's not necessarily true, as it can
fail because the algorithm isn't present.
Either way, EVP_PKEY_CTX_new_from_name() records more accurate errors
on its own, and one of them - EVP_R_FETCH_FAILED - is significant for
test/evp_test.c.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12587)
We reuse concepts such as PROV_CIPHER, and make use of some common code
in provider_util.c
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12637)
The previous commits added support for HMAC, SIPHASH and Poly1305 into
the provider MAC bridge. We now extend that for CMAC too.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12637)
There are some EC keys that can't be exported to provider keymgmt,
because the keymgmt implementation doesn't support certain forms of EC
keys. This could lead to a crash caused by dereferencing a NULL
pointer, so we need to cover that case by returning an error instead.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12610)
Trust the returned value from EVP_PKEY_get_default_digest_name()! It
mimics exactly the values that EVP_PKEY_get_default_digest_nid() is
supposed to return, and that value should simply be passed unchanged.
Callers depend on it.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12586)
To be able to implement this, there was a need for the standard
EVP_PKEY_set1_, EVP_PKEY_get0_ and EVP_PKEY_get1_ functions for
ED25519, ED448, X25519 and X448, as well as the corresponding
EVP_PKEY_assign_ macros. There was also a need to extend the list of
hard coded names that EVP_PKEY_is_a() recognise.
Along with this, OSSL_FUNC_keymgmt_load() are implemented for all
those key types.
The deserializers for these key types are all implemented generically,
in providers/implementations/serializers/deserializer_der2key.c.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12544)
This makes the following functions available for libcrypto code:
evp_keymgmt_util_try_import() - callback function
evp_keymgmt_util_assign_pkey() - assigns keymgmt and keydata to an EVP_PKEY
evp_keymgmt_util_make_pkey() - creates an EVP_PKEY from keymgmt and keydata
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12410)
The commit claimed to make things more consistent. In fact it makes it
less so. Revert back to the previous namig convention.
This reverts commit d9c2fd51e2.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12186)
We rename these function to EVP_PKEY_CTX_get_group_name and
EVP_PKEY_CTX_set_group_name so that they can be used for other algorithms
other than EC.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/11914)
functions are now EVP_MAC functions, usually with ctx in their names.
Before 3.0 is released, the names are mutable and this prevents more
inconsistencies being introduced.
There are no functional or code changes.
Just the renaming and a little reformatting.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11997)
EVP_PKEY_[get1|set1]_tls_encodedpoint() only worked if an ameth was present
which isn't the case for provided keys. Support has been added to dh,
ec and ecx keys.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/11898)
EVP_PKEYs with provider side internal keys got the key type
EVP_PKEY_NONE. This turned out to be too disruptive, so we try
instead to find a matching EVP_PKEY_ASN1_METHOD and use whatever
EVP_PKEY type it uses.
To make internal coding easier, we introduce a few internal macros to
distinguish what can be expected from a EVP_PKEY:
- evp_pkey_is_blank(), to detect an unassigned EVP_PKEY.
- evp_pkey_is_typed(), to detect that an EVP_PKEY has been assigned a
type, which may be an old style type number or a EVP_KEYMGMT method.
- evp_pkey_is_assigned(), to detect that an EVP_PKEY has been assigned
an key value.
- evp_pkey_is_legacy(), to detect that the internal EVP_PKEY key is a
legacy one, i.e. will be handled via an EVP_PKEY_ASN1_METHOD and an
EVP_PKEY_METHOD.
- evp_pkey_is_provided(), to detect that the internal EVP_PKEY key is
a provider side one, i.e. will be handdled via an EVP_KEYMGMT and
other provider methods.
This also introduces EVP_PKEY_KEYMGMT, to indicate that this EVP_PKEY
contains a provider side key for which there are no known
EVP_PKEY_ASN1_METHODs or EVP_PKEY_METHODs, i.e. these can only be
handled via EVP_KEYMGMT and other provider methods.
Fixes#11823
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11913)
This macro is used to determine if certain pieces of code should
become part of the FIPS module or not. The old name was confusing.
Fixes#11538
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/11539)
... and only *define* them in the source files that need them.
Use DEFINE_OR_DECLARE which is set appropriately for internal builds
and not non-deprecated builds.
Deprecate stack-of-block
Better documentation
Move some ASN1 struct typedefs to types.h
Update ParseC to handle this. Most of all, ParseC needed to be more
consistent. The handlers are "recursive", in so far that they are called
again and again until they terminate, which depends entirely on what the
"massager" returns. There's a comment at the beginning of ParseC that
explains how that works. {Richard Levtte}
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10669)
evp_keymgmt_util_get_deflt_digest_name() is a refactor of the provider
side key part of EVP_PKEY_get_default_digest_name(), that takes
EVP_KEYMGMT and provider keydata pointers instead of an EVP_PKEY
pointer.
We also ensure that it uses SN_undef as the default name if the
provider implementation gave us an empty string, since this is what
EVP_PKEY_get_default_digest_name() responds when getting the digest
name via a EVP_PKEY_ASN1_METHOD ctrl call that returns NID_undef.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/11576)
Previously import_to just took an EVP_PKEY as the argument. However we
need to some additional context data as well - specifically the libctx.
Therefore we pass an EVP_PKEY_CTX instead to hold the combination of
both of these things.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11536)
Moved some shared FFC code into the FFC files.
Added extra paramgen parameters for seed, gindex.
Fixed bug in ossl_prov util to print bignums.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11303)
The EVP_KEYMGMT pointer in the pkey is removed when downgrading, but
wasn't necessarily freed when need, thus leaving an incorrect
reference count.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/11328)
The EC export_to function calls EC_POINT_point2buf that can later
generate a random number in some circumstances. Therefore we pass in a
BN_CTX associated with the library context. This means we have to change
the export_to function signature to accept the library context.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11493)
libssl code uses EVP_PKEY_get0_EC_KEY() to extract certain basic data
from the EC_KEY. We replace that with internal EVP_PKEY functions.
This may or may not be refactored later on.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11358)
EVP_PKEY_is_a() is the provider side key checking function corresponding
to checking EVP_PKEY_id() or an EVP_PKEY against macros like EVP_PKEY_EC.
It also works with legacy internal keys.
We also add a warning indoc/man3/EVP_PKEY_set1_RSA.pod regarding the
reliability of certain functions that only understand legacy keys.
Finally, we take the opportunity to clean up doc/man3/EVP_PKEY_set1_RSA.pod
to better conform with man-page layout norms, see man-pages(7) on Linux.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11358)