Compare commits

...

9 Commits

Author SHA1 Message Date
Michael A. a05d969d7d
Merge 4f45a7f264 into 1a1c10f5d7 2025-07-29 15:57:42 +02:00
Michael Adjedj 4f45a7f264 Update the CHANGES.md file 2025-07-15 18:44:29 +03:00
Michael Adjedj 166d1ed8f8 Remove unused functions. 2025-07-15 15:44:00 +03:00
Michael Adjedj 3fbb2330c6 Add newline at end of file 2025-06-10 15:41:29 +03:00
Michael Adjedj 778e49b50c Update the CHANGES.md file 2025-06-10 15:40:48 +03:00
Michael Adjedj bb4c4a5b6b Use `constant_time_select_64` whenever relevant for CMOV operations 2025-06-10 15:37:10 +03:00
Michael Adjedj 0b0e26d8a5 Last step to make it constant time whenever relevant. 2025-06-10 15:14:58 +03:00
Michael Adjedj 697816c191 First update to constant-time implementation 2025-06-09 17:59:59 +03:00
Michael Adjedj 905a176875 Add optimized C implementation for `secp256k1` curve. 2024-11-26 13:30:40 +02:00
7 changed files with 3738 additions and 3 deletions

View File

@ -405,7 +405,7 @@ static double ffdh_results[FFDH_NUM][1]; /* 1 op: derivation */
#endif /* OPENSSL_NO_DH */
enum ec_curves_t {
R_EC_P160, R_EC_P192, R_EC_P224, R_EC_P256, R_EC_P384, R_EC_P521,
R_EC_P160, R_EC_P192, R_EC_P224, R_EC_P256, R_EC_K256, R_EC_P384, R_EC_P521,
#ifndef OPENSSL_NO_EC2M
R_EC_K163, R_EC_K233, R_EC_K283, R_EC_K409, R_EC_K571,
R_EC_B163, R_EC_B233, R_EC_B283, R_EC_B409, R_EC_B571,
@ -419,6 +419,7 @@ static const OPT_PAIR ecdsa_choices[ECDSA_NUM] = {
{"ecdsap192", R_EC_P192},
{"ecdsap224", R_EC_P224},
{"ecdsap256", R_EC_P256},
{"ecdsak256", R_EC_K256},
{"ecdsap384", R_EC_P384},
{"ecdsap521", R_EC_P521},
#ifndef OPENSSL_NO_EC2M
@ -453,6 +454,7 @@ static const OPT_PAIR ecdh_choices[EC_NUM] = {
{"ecdhp192", R_EC_P192},
{"ecdhp224", R_EC_P224},
{"ecdhp256", R_EC_P256},
{"ecdhk256", R_EC_K256},
{"ecdhp384", R_EC_P384},
{"ecdhp521", R_EC_P521},
#ifndef OPENSSL_NO_EC2M
@ -1970,6 +1972,7 @@ int speed_main(int argc, char **argv)
{"nistp192", NID_X9_62_prime192v1, 192},
{"nistp224", NID_secp224r1, 224},
{"nistp256", NID_X9_62_prime256v1, 256},
{"secp256k1", NID_secp256k1, 256},
{"nistp384", NID_secp384r1, 384},
{"nistp521", NID_secp521r1, 521},
#ifndef OPENSSL_NO_EC2M

View File

@ -82,7 +82,7 @@ IF[{- !$disabled{'ecx'} -}]
ENDIF
IF[{- !$disabled{'ec_nistp_64_gcc_128'} -}]
$COMMON=$COMMON ecp_nistp224.c ecp_nistp256.c ecp_nistp384.c ecp_nistp521.c ecp_nistputil.c
$COMMON=$COMMON ecp_nistp224.c ecp_nistp256.c ecp_nistp384.c ecp_nistp521.c ecp_nistputil.c ecp_secp256k1.c
ENDIF
SOURCE[../../libcrypto]=$COMMON ec_ameth.c ec_pmeth.c \

View File

@ -2935,7 +2935,12 @@ static const ec_list_element curve_list[] = {
{NID_secp224r1, &_EC_NIST_PRIME_224.h, 0,
"NIST/SECG curve over a 224 bit prime field"},
# endif
{NID_secp256k1, &_EC_SECG_PRIME_256K1.h, 0,
{NID_secp256k1, &_EC_SECG_PRIME_256K1.h,
# if !defined(OPENSSL_NO_EC_NISTP_64_GCC_128)
EC_GFp_secp256k1_method,
# else
0,
#endif
"SECG curve over a 256 bit prime field"},
/* SECG secp256r1 is the same as X9.62 prime256v1 and hence omitted */
{NID_secp384r1, &_EC_NIST_PRIME_384.h,

View File

@ -646,6 +646,13 @@ const EC_METHOD *EC_GFp_s390x_nistp384_method(void);
const EC_METHOD *EC_GFp_s390x_nistp521_method(void);
#endif
#if !defined(OPENSSL_NO_EC_NISTP_64_GCC_128)
/** Returns optimized methods for secp256k1 curve.
* \return EC_METHOD object
*/
const EC_METHOD *EC_GFp_secp256k1_method(void);
#endif
size_t ossl_ec_key_simple_priv2oct(const EC_KEY *eckey,
unsigned char *buf, size_t len);
int ossl_ec_key_simple_oct2priv(EC_KEY *eckey, const unsigned char *buf,

2121
crypto/ec/ecp_secp256k1.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,423 @@
/***********************************************************************
* Copyright (c) 2020 Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODINV64_IMPL_H
#define SECP256K1_MODINV64_IMPL_H
#include <stdint.h>
#include "internal/numbers.h"
#ifndef INT128_MAX
# error "Your compiler doesn't appear to support 128-bit integer types"
#endif
/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
* modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
*
* For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
* implementation for N=62, using 62-bit signed limbs represented as int64_t.
*/
typedef uint128_t secp256k1_uint128;
typedef int128_t secp256k1_int128;
/* Data type for transition matrices (see section 3 of explanation).
*
* t = [ u v ]
* [ q r ]
*/
typedef struct {
int64_t u, v, q, r;
} secp256k1_modinv64_trans2x2;
/* A signed 62-bit limb representation of integers.
*
* Its value is sum(v[i] * 2^(62*i), i=0..4). */
typedef struct {
int64_t v[5];
} secp256k1_modinv64_signed62;
typedef struct {
/* The modulus in signed62 notation, must be odd and in [3, 2^256]. */
secp256k1_modinv64_signed62 modulus;
/* modulus^{-1} mod 2^62 */
uint64_t modulus_inv62;
} secp256k1_modinv64_modinfo;
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_fe = {
{{-0x1000003D1LL, 0, 0, 0, 256}},
0x27C7F6E22DDACACFLL
};
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_scalar = {
{{0x3FD25E8CD0364141LL, 0x2ABB739ABD2280EELL, -0x15LL, 0, 256}},
0x34F20099AA774EC1LL
};
static ossl_inline int secp256k1_ctz64_var(uint64_t x) {
static const uint8_t debruijn[64] = {
0, 1, 2, 53, 3, 7, 54, 27, 4, 38, 41, 8, 34, 55, 48, 28,
62, 5, 39, 46, 44, 42, 22, 9, 24, 35, 59, 56, 49, 18, 29, 11,
63, 52, 6, 26, 37, 40, 33, 47, 61, 45, 43, 21, 23, 58, 17, 10,
51, 25, 36, 32, 60, 20, 57, 16, 50, 31, 19, 15, 30, 14, 13, 12
};
return debruijn[(uint64_t)((x & -x) * 0x022FDD63CC95386DU) >> 58];
}
static ossl_inline void secp256k1_u128_load(secp256k1_uint128 *r, uint64_t hi, uint64_t lo) {
*r = (((uint128_t)hi) << 64) + lo;
}
static ossl_inline void secp256k1_u128_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b) {
*r = (uint128_t)a * b;
}
static ossl_inline void secp256k1_u128_accum_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b) {
*r += (uint128_t)a * b;
}
static ossl_inline void secp256k1_u128_accum_u64(secp256k1_uint128 *r, uint64_t a) {
*r += a;
}
static ossl_inline void secp256k1_u128_rshift(secp256k1_uint128 *r, unsigned int n) {
*r >>= n;
}
static ossl_inline uint64_t secp256k1_u128_to_u64(const secp256k1_uint128 *a) {
return (uint64_t)(*a);
}
static ossl_inline uint64_t secp256k1_u128_hi_u64(const secp256k1_uint128 *a) {
return (uint64_t)(*a >> 64);
}
static ossl_inline void secp256k1_u128_from_u64(secp256k1_uint128 *r, uint64_t a) {
*r = a;
}
static ossl_inline int secp256k1_u128_check_bits(const secp256k1_uint128 *r, unsigned int n) {
return (*r >> n == 0);
}
static ossl_inline void secp256k1_i128_load(secp256k1_int128 *r, int64_t hi, uint64_t lo) {
*r = (((uint128_t)(uint64_t)hi) << 64) + lo;
}
static ossl_inline void secp256k1_i128_mul(secp256k1_int128 *r, int64_t a, int64_t b) {
*r = (int128_t)a * b;
}
static ossl_inline void secp256k1_i128_accum_mul(secp256k1_int128 *r, int64_t a, int64_t b) {
int128_t ab = (int128_t)a * b;
*r += ab;
}
static ossl_inline void secp256k1_i128_det(secp256k1_int128 *r, int64_t a, int64_t b, int64_t c, int64_t d) {
int128_t ad = (int128_t)a * d;
int128_t bc = (int128_t)b * c;
*r = ad - bc;
}
static ossl_inline void secp256k1_i128_rshift(secp256k1_int128 *r, unsigned int n) {
*r >>= n;
}
static ossl_inline uint64_t secp256k1_i128_to_u64(const secp256k1_int128 *a) {
return (uint64_t)*a;
}
static ossl_inline int64_t secp256k1_i128_to_i64(const secp256k1_int128 *a) {
return *a;
}
static ossl_inline void secp256k1_i128_from_i64(secp256k1_int128 *r, int64_t a) {
*r = a;
}
static ossl_inline int secp256k1_i128_eq_var(const secp256k1_int128 *a, const secp256k1_int128 *b) {
return *a == *b;
}
static ossl_inline int secp256k1_i128_check_pow2(const secp256k1_int128 *r, unsigned int n, int sign) {
return (*r == (int128_t)((uint128_t)sign << n));
}
/* Take as input a signed62 number in range (-2*modulus,modulus), and add a multiple of the modulus
* to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
* process. The input must have limbs in range (-2^62,2^62). The output will have limbs in range
* [0,2^62). */
static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int64_t sign, const secp256k1_modinv64_modinfo *modinfo) {
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4];
volatile int64_t cond_add, cond_negate;
/* In a first step, add the modulus if the input is negative, and then negate if requested.
* This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
* limbs are in range (-2^62,2^62), this cannot overflow an int64_t. Note that the right
* shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
* indeed the behavior of the right shift operator). */
cond_add = r4 >> 63;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
cond_negate = sign >> 63;
r0 = (r0 ^ cond_negate) - cond_negate;
r1 = (r1 ^ cond_negate) - cond_negate;
r2 = (r2 ^ cond_negate) - cond_negate;
r3 = (r3 ^ cond_negate) - cond_negate;
r4 = (r4 ^ cond_negate) - cond_negate;
/* Propagate the top bits, to bring limbs back to range (-2^62,2^62). */
r1 += r0 >> 62; r0 &= M62;
r2 += r1 >> 62; r1 &= M62;
r3 += r2 >> 62; r2 &= M62;
r4 += r3 >> 62; r3 &= M62;
/* In a second step add the modulus again if the result is still negative, bringing
* r to range [0,modulus). */
cond_add = r4 >> 63;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
/* And propagate again. */
r1 += r0 >> 62; r0 &= M62;
r2 += r1 >> 62; r1 &= M62;
r3 += r2 >> 62; r2 &= M62;
r4 += r3 >> 62; r3 &= M62;
r->v[0] = r0;
r->v[1] = r1;
r->v[2] = r2;
r->v[3] = r3;
r->v[4] = r4;
}
/* Compute (t/2^62) * [f, g], where t is a transition matrix scaled by 2^62.
*
* This implements the update_fg function from the explanation.
*/
static void secp256k1_modinv64_update_fg_62(secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) {
const uint64_t M62 = UINT64_MAX >> 2;
const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4];
const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4];
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
secp256k1_int128 cf, cg;
/* Start computing t*[f,g]. */
secp256k1_i128_mul(&cf, u, f0);
secp256k1_i128_accum_mul(&cf, v, g0);
secp256k1_i128_mul(&cg, q, f0);
secp256k1_i128_accum_mul(&cg, r, g0);
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
secp256k1_i128_rshift(&cf, 62);
secp256k1_i128_rshift(&cg, 62);
/* Compute limb 1 of t*[f,g], and store it as output limb 0 (= down shift). */
secp256k1_i128_accum_mul(&cf, u, f1);
secp256k1_i128_accum_mul(&cf, v, g1);
secp256k1_i128_accum_mul(&cg, q, f1);
secp256k1_i128_accum_mul(&cg, r, g1);
f->v[0] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
g->v[0] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
/* Compute limb 2 of t*[f,g], and store it as output limb 1. */
secp256k1_i128_accum_mul(&cf, u, f2);
secp256k1_i128_accum_mul(&cf, v, g2);
secp256k1_i128_accum_mul(&cg, q, f2);
secp256k1_i128_accum_mul(&cg, r, g2);
f->v[1] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
g->v[1] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
/* Compute limb 3 of t*[f,g], and store it as output limb 2. */
secp256k1_i128_accum_mul(&cf, u, f3);
secp256k1_i128_accum_mul(&cf, v, g3);
secp256k1_i128_accum_mul(&cg, q, f3);
secp256k1_i128_accum_mul(&cg, r, g3);
f->v[2] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
g->v[2] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
/* Compute limb 4 of t*[f,g], and store it as output limb 3. */
secp256k1_i128_accum_mul(&cf, u, f4);
secp256k1_i128_accum_mul(&cf, v, g4);
secp256k1_i128_accum_mul(&cg, q, f4);
secp256k1_i128_accum_mul(&cg, r, g4);
f->v[3] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
g->v[3] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
/* What remains is limb 5 of t*[f,g]; store it as output limb 4. */
f->v[4] = secp256k1_i128_to_i64(&cf);
g->v[4] = secp256k1_i128_to_i64(&cg);
}
/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62.
*
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
* (-2^62,2^62).
*
* This implements the update_de function from the explanation.
*/
static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp256k1_modinv64_signed62 *e, const secp256k1_modinv64_trans2x2 *t, const secp256k1_modinv64_modinfo* modinfo) {
const uint64_t M62 = UINT64_MAX >> 2;
const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4];
const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4];
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
int64_t md, me, sd, se;
secp256k1_int128 cd, ce;
/* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
sd = d4 >> 63;
se = e4 >> 63;
md = (u & sd) + (v & se);
me = (q & sd) + (r & se);
/* Begin computing t*[d,e]. */
secp256k1_i128_mul(&cd, u, d0);
secp256k1_i128_accum_mul(&cd, v, e0);
secp256k1_i128_mul(&ce, q, d0);
secp256k1_i128_accum_mul(&ce, r, e0);
/* Correct md,me so that t*[d,e]+modulus*[md,me] has 62 zero bottom bits. */
md -= (modinfo->modulus_inv62 * secp256k1_i128_to_u64(&cd) + md) & M62;
me -= (modinfo->modulus_inv62 * secp256k1_i128_to_u64(&ce) + me) & M62;
/* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[0], md);
secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[0], me);
/* Verify that the low 62 bits of the computation are indeed zero, and then throw them away. */
secp256k1_i128_rshift(&cd, 62);
secp256k1_i128_rshift(&ce, 62);
/* Compute limb 1 of t*[d,e]+modulus*[md,me], and store it as output limb 0 (= down shift). */
secp256k1_i128_accum_mul(&cd, u, d1);
secp256k1_i128_accum_mul(&cd, v, e1);
secp256k1_i128_accum_mul(&ce, q, d1);
secp256k1_i128_accum_mul(&ce, r, e1);
if (modinfo->modulus.v[1]) { /* Optimize for the case where limb of modulus is zero. */
secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[1], md);
secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[1], me);
}
d->v[0] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
e->v[0] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
/* Compute limb 2 of t*[d,e]+modulus*[md,me], and store it as output limb 1. */
secp256k1_i128_accum_mul(&cd, u, d2);
secp256k1_i128_accum_mul(&cd, v, e2);
secp256k1_i128_accum_mul(&ce, q, d2);
secp256k1_i128_accum_mul(&ce, r, e2);
if (modinfo->modulus.v[2]) { /* Optimize for the case where limb of modulus is zero. */
secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[2], md);
secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[2], me);
}
d->v[1] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
e->v[1] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
/* Compute limb 3 of t*[d,e]+modulus*[md,me], and store it as output limb 2. */
secp256k1_i128_accum_mul(&cd, u, d3);
secp256k1_i128_accum_mul(&cd, v, e3);
secp256k1_i128_accum_mul(&ce, q, d3);
secp256k1_i128_accum_mul(&ce, r, e3);
if (modinfo->modulus.v[3]) { /* Optimize for the case where limb of modulus is zero. */
secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[3], md);
secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[3], me);
}
d->v[2] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
e->v[2] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
/* Compute limb 4 of t*[d,e]+modulus*[md,me], and store it as output limb 3. */
secp256k1_i128_accum_mul(&cd, u, d4);
secp256k1_i128_accum_mul(&cd, v, e4);
secp256k1_i128_accum_mul(&ce, q, d4);
secp256k1_i128_accum_mul(&ce, r, e4);
secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[4], md);
secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[4], me);
d->v[3] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
e->v[3] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
/* What remains is limb 5 of t*[d,e]+modulus*[md,me]; store it as output limb 4. */
d->v[4] = secp256k1_i128_to_i64(&cd);
e->v[4] = secp256k1_i128_to_i64(&ce);
}
/* Compute the transition matrix and eta for 59 divsteps (where zeta=-(delta+1/2)).
* Note that the transformation matrix is scaled by 2^62 and not 2^59.
*
* Input: zeta: initial zeta
* f0: bottom limb of initial f
* g0: bottom limb of initial g
* Output: t: transition matrix
* Return: final zeta
*
* Implements the divsteps_n_matrix function from the explanation.
*/
static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
/* u,v,q,r are the elements of the transformation matrix being built up,
* starting with the identity matrix times 8 (because the caller expects
* a result scaled by 2^62). Semantically they are signed integers
* in range [-2^62,2^62], but here represented as unsigned mod 2^64. This
* permits left shifting (which is UB for negative numbers). The range
* being inside [-2^63,2^63) means that casting to signed works correctly.
*/
uint64_t u = 8, v = 0, q = 0, r = 8;
volatile uint64_t c1, c2;
uint64_t mask1, mask2, f = f0, g = g0, x, y, z;
int i;
for (i = 3; i < 62; ++i) {
/* Compute conditional masks for (zeta < 0) and for (g & 1). */
c1 = zeta >> 63;
mask1 = c1;
c2 = g & 1;
mask2 = -c2;
/* Compute x,y,z, conditionally negated versions of f,u,v. */
x = (f ^ mask1) - mask1;
y = (u ^ mask1) - mask1;
z = (v ^ mask1) - mask1;
/* Conditionally add x,y,z to g,q,r. */
g += x & mask2;
q += y & mask2;
r += z & mask2;
/* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
mask1 &= mask2;
/* Conditionally change zeta into -zeta-2 or zeta-1. */
zeta = (zeta ^ mask1) - 1;
/* Conditionally add g,q,r to f,u,v. */
f += g & mask1;
u += q & mask1;
v += r & mask1;
/* Shifts */
g >>= 1;
u <<= 1;
v <<= 1;
}
/* Return data in t and return value. */
t->u = (int64_t)u;
t->v = (int64_t)v;
t->q = (int64_t)q;
t->r = (int64_t)r;
return zeta;
}
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
/* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
secp256k1_modinv64_signed62 f = modinfo->modulus;
secp256k1_modinv64_signed62 g = *x;
int i;
int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */
/* Do 10 iterations of 59 divsteps each = 590 divsteps. This suffices for 256-bit inputs. */
for (i = 0; i < 10; ++i) {
/* Compute transition matrix and new zeta after 59 divsteps. */
secp256k1_modinv64_trans2x2 t;
zeta = secp256k1_modinv64_divsteps_59(zeta, f.v[0], g.v[0], &t);
/* Update d,e using that transition matrix. */
secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
secp256k1_modinv64_update_fg_62(&f, &g, &t);
}
/* Optionally negate d, normalize to [0,modulus), and return it. */
secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo);
*x = d;
}
#endif /* SECP256K1_MODINV64_IMPL_H */

File diff suppressed because it is too large Load Diff