mirror of https://github.com/openssl/openssl.git
1205 lines
34 KiB
C
1205 lines
34 KiB
C
/*
|
|
* Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/* We need to use the OPENSSL_fork_*() deprecated APIs */
|
|
#define OPENSSL_SUPPRESS_DEPRECATED
|
|
|
|
#if !defined(__GNUC__) || !defined(__ATOMIC_ACQ_REL) || \
|
|
defined(BROKEN_CLANG_ATOMICS) || defined(OPENSSL_NO_STDIO)
|
|
/*
|
|
* we only enable REPORT_RWLOCK_CONTENTION on clang/gcc when we have
|
|
* atomics available. We do this because we need to use an atomic to track
|
|
* when we can close the log file. We could use the CRYPTO_atomic_ api
|
|
* but that requires lock creation which gets us into a bad recursive loop
|
|
* when we try to initialize the file pointer
|
|
*/
|
|
# ifdef REPORT_RWLOCK_CONTENTION
|
|
# warning "RWLOCK CONTENTION REPORTING NOT SUPPORTED, Disabling"
|
|
# undef REPORT_RWLOCK_CONTENTION
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef REPORT_RWLOCK_CONTENTION
|
|
# define _GNU_SOURCE
|
|
# include <execinfo.h>
|
|
# include <unistd.h>
|
|
#endif
|
|
|
|
#include <openssl/crypto.h>
|
|
#include <crypto/cryptlib.h>
|
|
#include <crypto/sparse_array.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/threads_common.h"
|
|
#include "internal/rcu.h"
|
|
#ifdef REPORT_RWLOCK_CONTENTION
|
|
# include <fcntl.h>
|
|
# include <stdbool.h>
|
|
# include <sys/syscall.h>
|
|
# include <sys/uio.h>
|
|
# include "internal/time.h"
|
|
#endif
|
|
#include "rcu_internal.h"
|
|
|
|
#if defined(__clang__) && defined(__has_feature)
|
|
# if __has_feature(thread_sanitizer)
|
|
# define __SANITIZE_THREAD__
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(__SANITIZE_THREAD__)
|
|
# include <sanitizer/tsan_interface.h>
|
|
# define TSAN_FAKE_UNLOCK(x) __tsan_mutex_pre_unlock((x), 0); \
|
|
__tsan_mutex_post_unlock((x), 0)
|
|
|
|
# define TSAN_FAKE_LOCK(x) __tsan_mutex_pre_lock((x), 0); \
|
|
__tsan_mutex_post_lock((x), 0, 0)
|
|
#else
|
|
# define TSAN_FAKE_UNLOCK(x)
|
|
# define TSAN_FAKE_LOCK(x)
|
|
#endif
|
|
|
|
#if defined(__sun)
|
|
# include <atomic.h>
|
|
#endif
|
|
|
|
#if defined(__apple_build_version__) && __apple_build_version__ < 6000000
|
|
/*
|
|
* OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
|
|
* __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
|
|
* rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
|
|
* All of this makes impossible to use __atomic_is_lock_free here.
|
|
*
|
|
* See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
|
|
*/
|
|
# define BROKEN_CLANG_ATOMICS
|
|
#endif
|
|
|
|
#if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
|
|
|
|
# if defined(OPENSSL_SYS_UNIX)
|
|
# include <sys/types.h>
|
|
# include <unistd.h>
|
|
# endif
|
|
|
|
# include <assert.h>
|
|
|
|
/*
|
|
* The Non-Stop KLT thread model currently seems broken in its rwlock
|
|
* implementation
|
|
* Likewise is there a problem with the glibc implementation on riscv.
|
|
*/
|
|
# if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_) \
|
|
&& !defined(__riscv)
|
|
# define USE_RWLOCK
|
|
# endif
|
|
|
|
/*
|
|
* For all GNU/clang atomic builtins, we also need fallbacks, to cover all
|
|
* other compilers.
|
|
|
|
* Unfortunately, we can't do that with some "generic type", because there's no
|
|
* guarantee that the chosen generic type is large enough to cover all cases.
|
|
* Therefore, we implement fallbacks for each applicable type, with composed
|
|
* names that include the type they handle.
|
|
*
|
|
* (an anecdote: we previously tried to use |void *| as the generic type, with
|
|
* the thought that the pointer itself is the largest type. However, this is
|
|
* not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
|
|
*
|
|
* All applicable ATOMIC_ macros take the intended type as first parameter, so
|
|
* they can map to the correct fallback function. In the GNU/clang case, that
|
|
* parameter is simply ignored.
|
|
*/
|
|
|
|
/*
|
|
* Internal types used with the ATOMIC_ macros, to make it possible to compose
|
|
* fallback function names.
|
|
*/
|
|
typedef void *pvoid;
|
|
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
|
|
&& !defined(USE_ATOMIC_FALLBACKS)
|
|
# define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
|
|
# define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
|
|
# define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
|
|
# define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
|
|
# define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
|
|
# else
|
|
static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
# define IMPL_fallback_atomic_load_n(t) \
|
|
static ossl_inline t fallback_atomic_load_n_##t(t *p) \
|
|
{ \
|
|
t ret; \
|
|
\
|
|
pthread_mutex_lock(&atomic_sim_lock); \
|
|
ret = *p; \
|
|
pthread_mutex_unlock(&atomic_sim_lock); \
|
|
return ret; \
|
|
}
|
|
IMPL_fallback_atomic_load_n(uint32_t)
|
|
IMPL_fallback_atomic_load_n(uint64_t)
|
|
IMPL_fallback_atomic_load_n(pvoid)
|
|
|
|
# define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
|
|
|
|
# define IMPL_fallback_atomic_store_n(t) \
|
|
static ossl_inline t fallback_atomic_store_n_##t(t *p, t v) \
|
|
{ \
|
|
t ret; \
|
|
\
|
|
pthread_mutex_lock(&atomic_sim_lock); \
|
|
ret = *p; \
|
|
*p = v; \
|
|
pthread_mutex_unlock(&atomic_sim_lock); \
|
|
return ret; \
|
|
}
|
|
IMPL_fallback_atomic_store_n(uint32_t)
|
|
|
|
# define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
|
|
|
|
# define IMPL_fallback_atomic_store(t) \
|
|
static ossl_inline void fallback_atomic_store_##t(t *p, t *v) \
|
|
{ \
|
|
pthread_mutex_lock(&atomic_sim_lock); \
|
|
*p = *v; \
|
|
pthread_mutex_unlock(&atomic_sim_lock); \
|
|
}
|
|
IMPL_fallback_atomic_store(pvoid)
|
|
|
|
# define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
|
|
|
|
/*
|
|
* The fallbacks that follow don't need any per type implementation, as
|
|
* they are designed for uint64_t only. If there comes a time when multiple
|
|
* types need to be covered, it's relatively easy to refactor them the same
|
|
* way as the fallbacks above.
|
|
*/
|
|
|
|
static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
|
|
{
|
|
uint64_t ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
*p += v;
|
|
ret = *p;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
|
|
|
|
static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
|
|
{
|
|
uint64_t ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
*p -= v;
|
|
ret = *p;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
|
|
# endif
|
|
|
|
/*
|
|
* This is the core of an rcu lock. It tracks the readers and writers for the
|
|
* current quiescence point for a given lock. Users is the 64 bit value that
|
|
* stores the READERS/ID as defined above
|
|
*
|
|
*/
|
|
struct rcu_qp {
|
|
uint64_t users;
|
|
};
|
|
|
|
struct thread_qp {
|
|
struct rcu_qp *qp;
|
|
unsigned int depth;
|
|
CRYPTO_RCU_LOCK *lock;
|
|
};
|
|
|
|
# define MAX_QPS 10
|
|
/*
|
|
* This is the per thread tracking data
|
|
* that is assigned to each thread participating
|
|
* in an rcu qp
|
|
*
|
|
* qp points to the qp that it last acquired
|
|
*
|
|
*/
|
|
struct rcu_thr_data {
|
|
struct thread_qp thread_qps[MAX_QPS];
|
|
};
|
|
|
|
/*
|
|
* This is the internal version of a CRYPTO_RCU_LOCK
|
|
* it is cast from CRYPTO_RCU_LOCK
|
|
*/
|
|
struct rcu_lock_st {
|
|
/* Callbacks to call for next ossl_synchronize_rcu */
|
|
struct rcu_cb_item *cb_items;
|
|
|
|
/* The context we are being created against */
|
|
OSSL_LIB_CTX *ctx;
|
|
|
|
/* Array of quiescent points for synchronization */
|
|
struct rcu_qp *qp_group;
|
|
|
|
/* rcu generation counter for in-order retirement */
|
|
uint32_t id_ctr;
|
|
|
|
/* Number of elements in qp_group array */
|
|
uint32_t group_count;
|
|
|
|
/* Index of the current qp in the qp_group array */
|
|
uint32_t reader_idx;
|
|
|
|
/* value of the next id_ctr value to be retired */
|
|
uint32_t next_to_retire;
|
|
|
|
/* index of the next free rcu_qp in the qp_group */
|
|
uint32_t current_alloc_idx;
|
|
|
|
/* number of qp's in qp_group array currently being retired */
|
|
uint32_t writers_alloced;
|
|
|
|
/* lock protecting write side operations */
|
|
pthread_mutex_t write_lock;
|
|
|
|
/* lock protecting updates to writers_alloced/current_alloc_idx */
|
|
pthread_mutex_t alloc_lock;
|
|
|
|
/* signal to wake threads waiting on alloc_lock */
|
|
pthread_cond_t alloc_signal;
|
|
|
|
/* lock to enforce in-order retirement */
|
|
pthread_mutex_t prior_lock;
|
|
|
|
/* signal to wake threads waiting on prior_lock */
|
|
pthread_cond_t prior_signal;
|
|
};
|
|
|
|
/* Read side acquisition of the current qp */
|
|
static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
|
|
{
|
|
uint32_t qp_idx;
|
|
|
|
/* get the current qp index */
|
|
for (;;) {
|
|
qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_RELAXED);
|
|
|
|
/*
|
|
* Notes on use of __ATOMIC_ACQUIRE
|
|
* We need to ensure the following:
|
|
* 1) That subsequent operations aren't optimized by hoisting them above
|
|
* this operation. Specifically, we don't want the below re-load of
|
|
* qp_idx to get optimized away
|
|
* 2) We want to ensure that any updating of reader_idx on the write side
|
|
* of the lock is flushed from a local cpu cache so that we see any
|
|
* updates prior to the load. This is a non-issue on cache coherent
|
|
* systems like x86, but is relevant on other arches
|
|
*/
|
|
ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
|
|
__ATOMIC_ACQUIRE);
|
|
|
|
/* if the idx hasn't changed, we're good, else try again */
|
|
if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx,
|
|
__ATOMIC_ACQUIRE))
|
|
break;
|
|
|
|
ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
|
|
__ATOMIC_RELAXED);
|
|
}
|
|
|
|
return &lock->qp_group[qp_idx];
|
|
}
|
|
|
|
static void ossl_rcu_free_local_data(void *arg)
|
|
{
|
|
OSSL_LIB_CTX *ctx = arg;
|
|
struct rcu_thr_data *data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, ctx);
|
|
|
|
CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, ctx, NULL);
|
|
OPENSSL_free(data);
|
|
}
|
|
|
|
int ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
struct rcu_thr_data *data;
|
|
int i, available_qp = -1;
|
|
|
|
/*
|
|
* we're going to access current_qp here so ask the
|
|
* processor to fetch it
|
|
*/
|
|
data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx);
|
|
|
|
if (data == NULL) {
|
|
data = OPENSSL_zalloc(sizeof(*data));
|
|
if (data == NULL)
|
|
return 0;
|
|
|
|
if (!CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx, data)) {
|
|
OPENSSL_free(data);
|
|
return 0;
|
|
}
|
|
if (!ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data)) {
|
|
OPENSSL_free(data);
|
|
CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx, NULL);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < MAX_QPS; i++) {
|
|
if (data->thread_qps[i].qp == NULL && available_qp == -1)
|
|
available_qp = i;
|
|
/* If we have a hold on this lock already, we're good */
|
|
if (data->thread_qps[i].lock == lock) {
|
|
data->thread_qps[i].depth++;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if we get here, then we don't have a hold on this lock yet
|
|
*/
|
|
assert(available_qp != -1);
|
|
|
|
data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
|
|
data->thread_qps[available_qp].depth = 1;
|
|
data->thread_qps[available_qp].lock = lock;
|
|
return 1;
|
|
}
|
|
|
|
void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
int i;
|
|
struct rcu_thr_data *data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx);
|
|
uint64_t ret;
|
|
|
|
assert(data != NULL);
|
|
|
|
for (i = 0; i < MAX_QPS; i++) {
|
|
if (data->thread_qps[i].lock == lock) {
|
|
/*
|
|
* we have to use __ATOMIC_RELEASE here
|
|
* to ensure that all preceding read instructions complete
|
|
* before the decrement is visible to ossl_synchronize_rcu
|
|
*/
|
|
data->thread_qps[i].depth--;
|
|
if (data->thread_qps[i].depth == 0) {
|
|
ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users,
|
|
(uint64_t)1, __ATOMIC_RELEASE);
|
|
OPENSSL_assert(ret != UINT64_MAX);
|
|
data->thread_qps[i].qp = NULL;
|
|
data->thread_qps[i].lock = NULL;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* If we get here, we're trying to unlock a lock that we never acquired -
|
|
* that's fatal.
|
|
*/
|
|
assert(0);
|
|
}
|
|
|
|
/*
|
|
* Write side allocation routine to get the current qp
|
|
* and replace it with a new one
|
|
*/
|
|
static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id)
|
|
{
|
|
uint32_t current_idx;
|
|
|
|
pthread_mutex_lock(&lock->alloc_lock);
|
|
|
|
/*
|
|
* we need at least one qp to be available with one
|
|
* left over, so that readers can start working on
|
|
* one that isn't yet being waited on
|
|
*/
|
|
while (lock->group_count - lock->writers_alloced < 2)
|
|
/* we have to wait for one to be free */
|
|
pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
|
|
|
|
current_idx = lock->current_alloc_idx;
|
|
|
|
/* Allocate the qp */
|
|
lock->writers_alloced++;
|
|
|
|
/* increment the allocation index */
|
|
lock->current_alloc_idx =
|
|
(lock->current_alloc_idx + 1) % lock->group_count;
|
|
|
|
*curr_id = lock->id_ctr;
|
|
lock->id_ctr++;
|
|
|
|
/*
|
|
* make the current state of everything visible by this release
|
|
* when get_hold_current_qp acquires the next qp
|
|
*/
|
|
ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx,
|
|
__ATOMIC_RELEASE);
|
|
|
|
/*
|
|
* this should make sure that the new value of reader_idx is visible in
|
|
* get_hold_current_qp, directly after incrementing the users count
|
|
*/
|
|
ATOMIC_ADD_FETCH(&lock->qp_group[current_idx].users, (uint64_t)0,
|
|
__ATOMIC_RELEASE);
|
|
|
|
/* wake up any waiters */
|
|
pthread_cond_signal(&lock->alloc_signal);
|
|
pthread_mutex_unlock(&lock->alloc_lock);
|
|
return &lock->qp_group[current_idx];
|
|
}
|
|
|
|
static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
|
|
{
|
|
pthread_mutex_lock(&lock->alloc_lock);
|
|
lock->writers_alloced--;
|
|
pthread_cond_signal(&lock->alloc_signal);
|
|
pthread_mutex_unlock(&lock->alloc_lock);
|
|
}
|
|
|
|
static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
|
|
uint32_t count)
|
|
{
|
|
struct rcu_qp *new =
|
|
OPENSSL_calloc(count, sizeof(*new));
|
|
|
|
lock->group_count = count;
|
|
return new;
|
|
}
|
|
|
|
void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
pthread_mutex_lock(&lock->write_lock);
|
|
TSAN_FAKE_UNLOCK(&lock->write_lock);
|
|
}
|
|
|
|
void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
TSAN_FAKE_LOCK(&lock->write_lock);
|
|
pthread_mutex_unlock(&lock->write_lock);
|
|
}
|
|
|
|
void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
struct rcu_qp *qp;
|
|
uint64_t count;
|
|
uint32_t curr_id;
|
|
struct rcu_cb_item *cb_items, *tmpcb;
|
|
|
|
pthread_mutex_lock(&lock->write_lock);
|
|
cb_items = lock->cb_items;
|
|
lock->cb_items = NULL;
|
|
pthread_mutex_unlock(&lock->write_lock);
|
|
|
|
qp = update_qp(lock, &curr_id);
|
|
|
|
/* retire in order */
|
|
pthread_mutex_lock(&lock->prior_lock);
|
|
while (lock->next_to_retire != curr_id)
|
|
pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
|
|
|
|
/*
|
|
* wait for the reader count to reach zero
|
|
* Note the use of __ATOMIC_ACQUIRE here to ensure that any
|
|
* prior __ATOMIC_RELEASE write operation in ossl_rcu_read_unlock
|
|
* is visible prior to our read
|
|
* however this is likely just necessary to silence a tsan warning
|
|
* because the read side should not do any write operation
|
|
* outside the atomic itself
|
|
*/
|
|
do {
|
|
count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
|
|
} while (count != (uint64_t)0);
|
|
|
|
lock->next_to_retire++;
|
|
pthread_cond_broadcast(&lock->prior_signal);
|
|
pthread_mutex_unlock(&lock->prior_lock);
|
|
|
|
retire_qp(lock, qp);
|
|
|
|
/* handle any callbacks that we have */
|
|
while (cb_items != NULL) {
|
|
tmpcb = cb_items;
|
|
cb_items = cb_items->next;
|
|
tmpcb->fn(tmpcb->data);
|
|
OPENSSL_free(tmpcb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note: This call assumes its made under the protection of
|
|
* ossl_rcu_write_lock
|
|
*/
|
|
int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
|
|
{
|
|
struct rcu_cb_item *new =
|
|
OPENSSL_zalloc(sizeof(*new));
|
|
|
|
if (new == NULL)
|
|
return 0;
|
|
|
|
new->data = data;
|
|
new->fn = cb;
|
|
|
|
new->next = lock->cb_items;
|
|
lock->cb_items = new;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void *ossl_rcu_uptr_deref(void **p)
|
|
{
|
|
return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
|
|
}
|
|
|
|
void ossl_rcu_assign_uptr(void **p, void **v)
|
|
{
|
|
ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
|
|
}
|
|
|
|
CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
|
|
{
|
|
struct rcu_lock_st *new;
|
|
|
|
/*
|
|
* We need a minimum of 2 qp's
|
|
*/
|
|
if (num_writers < 2)
|
|
num_writers = 2;
|
|
|
|
ctx = ossl_lib_ctx_get_concrete(ctx);
|
|
if (ctx == NULL)
|
|
return 0;
|
|
|
|
new = OPENSSL_zalloc(sizeof(*new));
|
|
if (new == NULL)
|
|
return NULL;
|
|
|
|
new->ctx = ctx;
|
|
pthread_mutex_init(&new->write_lock, NULL);
|
|
pthread_mutex_init(&new->prior_lock, NULL);
|
|
pthread_mutex_init(&new->alloc_lock, NULL);
|
|
pthread_cond_init(&new->prior_signal, NULL);
|
|
pthread_cond_init(&new->alloc_signal, NULL);
|
|
|
|
new->qp_group = allocate_new_qp_group(new, num_writers);
|
|
if (new->qp_group == NULL) {
|
|
OPENSSL_free(new);
|
|
new = NULL;
|
|
}
|
|
|
|
return new;
|
|
}
|
|
|
|
void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
|
|
|
|
if (lock == NULL)
|
|
return;
|
|
|
|
/* make sure we're synchronized */
|
|
ossl_synchronize_rcu(rlock);
|
|
|
|
OPENSSL_free(rlock->qp_group);
|
|
/* There should only be a single qp left now */
|
|
OPENSSL_free(rlock);
|
|
}
|
|
|
|
# ifdef REPORT_RWLOCK_CONTENTION
|
|
/*
|
|
* Normally we would use a BIO here to do this, but we create locks during
|
|
* library initialization, and creating a bio too early, creates a recursive set
|
|
* of stack calls that leads us to call CRYPTO_thread_run_once while currently
|
|
* executing the init routine for various run_once functions, which leads to
|
|
* deadlock. Avoid that by just using a FILE pointer. Also note that we
|
|
* directly use a pthread_mutex_t to protect access from multiple threads
|
|
* to the contention log file. We do this because we want to avoid use
|
|
* of the CRYPTO_THREAD api so as to prevent recursive blocking reports.
|
|
*/
|
|
static CRYPTO_ONCE init_contention_data_flag = CRYPTO_ONCE_STATIC_INIT;
|
|
pthread_mutex_t log_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
CRYPTO_THREAD_LOCAL thread_contention_data;
|
|
|
|
struct stack_info {
|
|
unsigned int nptrs;
|
|
int write;
|
|
OSSL_TIME start;
|
|
OSSL_TIME duration;
|
|
char **strings;
|
|
};
|
|
|
|
# define STACKS_COUNT 32
|
|
# define BT_BUF_SIZE 1024
|
|
struct stack_traces {
|
|
int fd;
|
|
int lock_depth;
|
|
size_t idx;
|
|
struct stack_info stacks[STACKS_COUNT];
|
|
};
|
|
|
|
/* The glibc gettid() definition presents only since 2.30. */
|
|
static ossl_inline pid_t get_tid(void)
|
|
{
|
|
return syscall(SYS_gettid);
|
|
}
|
|
|
|
# ifdef FIPS_MODULE
|
|
# define FIPS_SFX "-fips"
|
|
# else
|
|
# define FIPS_SFX ""
|
|
# endif
|
|
static void *init_contention_data(void)
|
|
{
|
|
struct stack_traces *traces;
|
|
char fname_fmt[] = "lock-contention-log" FIPS_SFX ".%d.txt";
|
|
char fname[sizeof(fname_fmt) + sizeof(int) * 3];
|
|
|
|
traces = OPENSSL_zalloc(sizeof(struct stack_traces));
|
|
|
|
snprintf(fname, sizeof(fname), fname_fmt, get_tid());
|
|
|
|
traces->fd = open(fname, O_WRONLY | O_APPEND | O_CLOEXEC | O_CREAT, 0600);
|
|
|
|
return traces;
|
|
}
|
|
|
|
static void destroy_contention_data(void *data)
|
|
{
|
|
struct stack_traces *st = data;
|
|
|
|
close(st->fd);
|
|
OPENSSL_free(data);
|
|
}
|
|
|
|
static void init_contention_data_once(void)
|
|
{
|
|
/*
|
|
* Create a thread local key here to store our list of stack traces
|
|
* to be printed when we unlock the lock we are holding
|
|
*/
|
|
CRYPTO_THREAD_init_local(&thread_contention_data, destroy_contention_data);
|
|
return;
|
|
}
|
|
|
|
static struct stack_traces *get_stack_traces(bool init)
|
|
{
|
|
struct stack_traces *traces = CRYPTO_THREAD_get_local(&thread_contention_data);
|
|
|
|
if (!traces && init) {
|
|
traces = init_contention_data();
|
|
CRYPTO_THREAD_set_local(&thread_contention_data, traces);
|
|
}
|
|
|
|
return traces;
|
|
}
|
|
|
|
static void print_stack_traces(struct stack_traces *traces)
|
|
{
|
|
unsigned int j;
|
|
struct iovec *iov;
|
|
int iovcnt;
|
|
|
|
while (traces != NULL && traces->idx >= 1) {
|
|
traces->idx--;
|
|
dprintf(traces->fd,
|
|
"lock blocked on %s for %zu usec at time %zu tid %d\n",
|
|
traces->stacks[traces->idx].write == 1 ? "WRITE" : "READ",
|
|
ossl_time2us(traces->stacks[traces->idx].duration),
|
|
ossl_time2us(traces->stacks[traces->idx].start),
|
|
get_tid());
|
|
if (traces->stacks[traces->idx].strings != NULL) {
|
|
static const char lf = '\n';
|
|
|
|
iovcnt = traces->stacks[traces->idx].nptrs * 2 + 1;
|
|
iov = alloca(iovcnt * sizeof(*iov));
|
|
for (j = 0; j < traces->stacks[traces->idx].nptrs; j++) {
|
|
iov[2 * j].iov_base = traces->stacks[traces->idx].strings[j];
|
|
iov[2 * j].iov_len = strlen(traces->stacks[traces->idx].strings[j]);
|
|
iov[2 * j + 1].iov_base = (char *) &lf;
|
|
iov[2 * j + 1].iov_len = 1;
|
|
}
|
|
iov[traces->stacks[traces->idx].nptrs * 2].iov_base = (char *) &lf;
|
|
iov[traces->stacks[traces->idx].nptrs * 2].iov_len = 1;
|
|
} else {
|
|
static const char no_bt[] = "No stack trace available\n\n";
|
|
|
|
iovcnt = 1;
|
|
iov = alloca(iovcnt * sizeof(*iov));
|
|
iov[0].iov_base = (char *) no_bt;
|
|
iov[0].iov_len = sizeof(no_bt) - 1;
|
|
}
|
|
writev(traces->fd, iov, iovcnt);
|
|
free(traces->stacks[traces->idx].strings);
|
|
}
|
|
}
|
|
|
|
static ossl_inline void ossl_init_rwlock_contention_data(void)
|
|
{
|
|
CRYPTO_THREAD_run_once(&init_contention_data_flag, init_contention_data_once);
|
|
}
|
|
|
|
static int record_lock_contention(pthread_rwlock_t *lock,
|
|
struct stack_traces *traces, bool write)
|
|
{
|
|
void *buffer[BT_BUF_SIZE];
|
|
OSSL_TIME start, end;
|
|
int ret;
|
|
|
|
start = ossl_time_now();
|
|
ret = (write ? pthread_rwlock_wrlock : pthread_rwlock_rdlock)(lock);
|
|
if (ret)
|
|
return ret;
|
|
end = ossl_time_now();
|
|
traces->stacks[traces->idx].nptrs = backtrace(buffer, BT_BUF_SIZE);
|
|
traces->stacks[traces->idx].strings = backtrace_symbols(buffer,
|
|
traces->stacks[traces->idx].nptrs);
|
|
traces->stacks[traces->idx].duration = ossl_time_subtract(end, start);
|
|
traces->stacks[traces->idx].start = start;
|
|
traces->stacks[traces->idx].write = write;
|
|
traces->idx++;
|
|
if (traces->idx >= STACKS_COUNT) {
|
|
fprintf(stderr, "STACK RECORD OVERFLOW!\n");
|
|
print_stack_traces(traces);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ossl_inline int ossl_rwlock_rdlock(pthread_rwlock_t *lock)
|
|
{
|
|
struct stack_traces *traces = get_stack_traces(true);
|
|
|
|
if (ossl_unlikely(traces == NULL))
|
|
return ENOMEM;
|
|
|
|
traces->lock_depth++;
|
|
if (pthread_rwlock_tryrdlock(lock)) {
|
|
int ret = record_lock_contention(lock, traces, false);
|
|
|
|
if (ret)
|
|
traces->lock_depth--;
|
|
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ossl_inline int ossl_rwlock_wrlock(pthread_rwlock_t *lock)
|
|
{
|
|
struct stack_traces *traces = get_stack_traces(true);
|
|
|
|
if (ossl_unlikely(traces == NULL))
|
|
return ENOMEM;
|
|
|
|
traces->lock_depth++;
|
|
if (pthread_rwlock_trywrlock(lock)) {
|
|
int ret = record_lock_contention(lock, traces, true);
|
|
|
|
if (ret)
|
|
traces->lock_depth--;
|
|
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ossl_inline int ossl_rwlock_unlock(pthread_rwlock_t *lock)
|
|
{
|
|
int ret;
|
|
|
|
ret = pthread_rwlock_unlock(lock);
|
|
if (ret)
|
|
return ret;
|
|
|
|
{
|
|
struct stack_traces *traces = get_stack_traces(false);
|
|
|
|
if (traces != NULL) {
|
|
traces->lock_depth--;
|
|
assert(traces->lock_depth >= 0);
|
|
if (traces->lock_depth == 0)
|
|
print_stack_traces(traces);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
# else /* !REPORT_RWLOCK_CONTENTION */
|
|
|
|
static ossl_inline void ossl_init_rwlock_contention_data(void)
|
|
{
|
|
}
|
|
|
|
static ossl_inline int ossl_rwlock_rdlock(pthread_rwlock_t *rwlock)
|
|
{
|
|
return pthread_rwlock_rdlock(rwlock);
|
|
}
|
|
|
|
static ossl_inline int ossl_rwlock_wrlock(pthread_rwlock_t *rwlock)
|
|
{
|
|
return pthread_rwlock_wrlock(rwlock);
|
|
}
|
|
|
|
static ossl_inline int ossl_rwlock_unlock(pthread_rwlock_t *rwlock)
|
|
{
|
|
return pthread_rwlock_unlock(rwlock);
|
|
}
|
|
# endif /* REPORT_RWLOCK_CONTENTION */
|
|
|
|
CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
|
|
{
|
|
# ifdef USE_RWLOCK
|
|
CRYPTO_RWLOCK *lock;
|
|
|
|
ossl_init_rwlock_contention_data();
|
|
|
|
if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
|
|
/* Don't set error, to avoid recursion blowup. */
|
|
return NULL;
|
|
|
|
if (pthread_rwlock_init(lock, NULL) != 0) {
|
|
OPENSSL_free(lock);
|
|
return NULL;
|
|
}
|
|
# else
|
|
pthread_mutexattr_t attr;
|
|
CRYPTO_RWLOCK *lock;
|
|
|
|
if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
|
|
/* Don't set error, to avoid recursion blowup. */
|
|
return NULL;
|
|
|
|
/*
|
|
* We don't use recursive mutexes, but try to catch errors if we do.
|
|
*/
|
|
pthread_mutexattr_init(&attr);
|
|
# if !defined (__TANDEM) && !defined (_SPT_MODEL_)
|
|
# if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
|
|
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
|
|
# endif
|
|
# else
|
|
/* The SPT Thread Library does not define MUTEX attributes. */
|
|
# endif
|
|
|
|
if (pthread_mutex_init(lock, &attr) != 0) {
|
|
pthread_mutexattr_destroy(&attr);
|
|
OPENSSL_free(lock);
|
|
return NULL;
|
|
}
|
|
|
|
pthread_mutexattr_destroy(&attr);
|
|
# endif
|
|
|
|
return lock;
|
|
}
|
|
|
|
__owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
|
|
{
|
|
# ifdef USE_RWLOCK
|
|
if (!ossl_assert(ossl_rwlock_rdlock(lock) == 0))
|
|
return 0;
|
|
# else
|
|
if (pthread_mutex_lock(lock) != 0) {
|
|
assert(errno != EDEADLK && errno != EBUSY);
|
|
return 0;
|
|
}
|
|
# endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
__owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
|
|
{
|
|
# ifdef USE_RWLOCK
|
|
if (!ossl_assert(ossl_rwlock_wrlock(lock) == 0))
|
|
return 0;
|
|
# else
|
|
if (pthread_mutex_lock(lock) != 0) {
|
|
assert(errno != EDEADLK && errno != EBUSY);
|
|
return 0;
|
|
}
|
|
# endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
|
|
{
|
|
# ifdef USE_RWLOCK
|
|
if (ossl_rwlock_unlock(lock) != 0)
|
|
return 0;
|
|
# else
|
|
if (pthread_mutex_unlock(lock) != 0) {
|
|
assert(errno != EPERM);
|
|
return 0;
|
|
}
|
|
# endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
|
|
{
|
|
if (lock == NULL)
|
|
return;
|
|
|
|
# ifdef USE_RWLOCK
|
|
pthread_rwlock_destroy(lock);
|
|
# else
|
|
pthread_mutex_destroy(lock);
|
|
# endif
|
|
OPENSSL_free(lock);
|
|
|
|
return;
|
|
}
|
|
|
|
int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
|
|
{
|
|
if (ossl_unlikely(pthread_once(once, init) != 0))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
|
|
{
|
|
if (pthread_key_create(key, cleanup) != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
|
|
{
|
|
return pthread_getspecific(*key);
|
|
}
|
|
|
|
int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
|
|
{
|
|
if (pthread_setspecific(*key, val) != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
|
|
{
|
|
if (pthread_key_delete(*key) != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
|
|
{
|
|
return pthread_self();
|
|
}
|
|
|
|
int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
|
|
{
|
|
return pthread_equal(a, b);
|
|
}
|
|
|
|
int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
*ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
|
return 0;
|
|
|
|
*val += amount;
|
|
*ret = *val;
|
|
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
|
|
CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
*ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_add_64_nv(val, op);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
|
return 0;
|
|
*val += op;
|
|
*ret = *val;
|
|
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
|
|
CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
*ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_and_64_nv(val, op);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
|
return 0;
|
|
*val &= op;
|
|
*ret = *val;
|
|
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
|
|
CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
*ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_or_64_nv(val, op);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
|
return 0;
|
|
*val |= op;
|
|
*ret = *val;
|
|
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
__atomic_load(val, ret, __ATOMIC_ACQUIRE);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_or_64_nv(val, 0);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
|
|
return 0;
|
|
*ret = *val;
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*dst), dst)) {
|
|
__atomic_store(dst, &val, __ATOMIC_RELEASE);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (dst != NULL) {
|
|
atomic_swap_64(dst, val);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
|
return 0;
|
|
*dst = val;
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
__atomic_load(val, ret, __ATOMIC_ACQUIRE);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = (int)atomic_or_uint_nv((unsigned int *)val, 0);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
|
|
return 0;
|
|
*ret = *val;
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
# ifndef FIPS_MODULE
|
|
int openssl_init_fork_handlers(void)
|
|
{
|
|
return 1;
|
|
}
|
|
# endif /* FIPS_MODULE */
|
|
|
|
int openssl_get_fork_id(void)
|
|
{
|
|
return getpid();
|
|
}
|
|
#endif
|