mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			222 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
/*
 | 
						|
 * Copyright 2023-2024 The OpenSSL Project Authors. All Rights Reserved.
 | 
						|
 *
 | 
						|
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 | 
						|
 * this file except in compliance with the License.  You can obtain a copy
 | 
						|
 * in the file LICENSE in the source distribution or at
 | 
						|
 * https://www.openssl.org/source/license.html
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <string.h>
 | 
						|
#include <openssl/core_names.h>
 | 
						|
#include <openssl/evp.h>
 | 
						|
#include <openssl/err.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * This is a demonstration of key exchange using ECDH.
 | 
						|
 *
 | 
						|
 * EC key exchange requires 2 parties (peers) to first agree on shared group
 | 
						|
 * parameters (the EC curve name). Each peer then generates a public/private
 | 
						|
 * key pair using the shared curve name. Each peer then gives their public key
 | 
						|
 * to the other peer. A peer can then derive the same shared secret using their
 | 
						|
 * private key and the other peers public key.
 | 
						|
 */
 | 
						|
 | 
						|
/* Object used to store information for a single Peer */
 | 
						|
typedef struct peer_data_st {
 | 
						|
    const char *name;               /* name of peer */
 | 
						|
    const char *curvename;          /* The shared curve name */
 | 
						|
    EVP_PKEY *priv;                 /* private keypair */
 | 
						|
    EVP_PKEY *pub;                  /* public key to send to other peer */
 | 
						|
    unsigned char *secret;          /* allocated shared secret buffer */
 | 
						|
    size_t secretlen;
 | 
						|
} PEER_DATA;
 | 
						|
 | 
						|
/*
 | 
						|
 * The public key needs to be given to the other peer
 | 
						|
 * The following code extracts the public key data from the private key
 | 
						|
 * and then builds an EVP_KEY public key.
 | 
						|
 */
 | 
						|
static int get_peer_public_key(PEER_DATA *peer, OSSL_LIB_CTX *libctx)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    EVP_PKEY_CTX *ctx;
 | 
						|
    OSSL_PARAM params[3];
 | 
						|
    unsigned char pubkeydata[256];
 | 
						|
    size_t pubkeylen;
 | 
						|
 | 
						|
    /* Get the EC encoded public key data from the peers private key */
 | 
						|
    if (!EVP_PKEY_get_octet_string_param(peer->priv, OSSL_PKEY_PARAM_PUB_KEY,
 | 
						|
                                         pubkeydata, sizeof(pubkeydata),
 | 
						|
                                         &pubkeylen))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    /* Create a EC public key from the public key data */
 | 
						|
    ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL);
 | 
						|
    if (ctx == NULL)
 | 
						|
        return 0;
 | 
						|
    params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
 | 
						|
                                                 (char *)peer->curvename, 0);
 | 
						|
    params[1] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
 | 
						|
                                                  pubkeydata, pubkeylen);
 | 
						|
    params[2] = OSSL_PARAM_construct_end();
 | 
						|
    ret = EVP_PKEY_fromdata_init(ctx) > 0
 | 
						|
          && (EVP_PKEY_fromdata(ctx, &peer->pub, EVP_PKEY_PUBLIC_KEY,
 | 
						|
                                params) > 0);
 | 
						|
    EVP_PKEY_CTX_free(ctx);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int create_peer(PEER_DATA *peer, OSSL_LIB_CTX *libctx)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    EVP_PKEY_CTX *ctx = NULL;
 | 
						|
    OSSL_PARAM params[2];
 | 
						|
 | 
						|
    params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
 | 
						|
                                                 (char *)peer->curvename, 0);
 | 
						|
    params[1] = OSSL_PARAM_construct_end();
 | 
						|
 | 
						|
    ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL);
 | 
						|
    if (ctx == NULL)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    if (EVP_PKEY_keygen_init(ctx) <= 0
 | 
						|
            || !EVP_PKEY_CTX_set_params(ctx, params)
 | 
						|
            || EVP_PKEY_generate(ctx, &peer->priv) <= 0
 | 
						|
            || !get_peer_public_key(peer, libctx)) {
 | 
						|
        EVP_PKEY_free(peer->priv);
 | 
						|
        peer->priv = NULL;
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
    ret = 1;
 | 
						|
err:
 | 
						|
    EVP_PKEY_CTX_free(ctx);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_peer(PEER_DATA *peer)
 | 
						|
{
 | 
						|
    EVP_PKEY_free(peer->priv);
 | 
						|
    EVP_PKEY_free(peer->pub);
 | 
						|
}
 | 
						|
 | 
						|
static int generate_secret(PEER_DATA *peerA, EVP_PKEY *peerBpub,
 | 
						|
                           OSSL_LIB_CTX *libctx)
 | 
						|
{
 | 
						|
    unsigned char *secret = NULL;
 | 
						|
    size_t secretlen = 0;
 | 
						|
    EVP_PKEY_CTX *derivectx;
 | 
						|
 | 
						|
    /* Create an EVP_PKEY_CTX that contains peerA's private key */
 | 
						|
    derivectx = EVP_PKEY_CTX_new_from_pkey(libctx, peerA->priv, NULL);
 | 
						|
    if (derivectx == NULL)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    if (EVP_PKEY_derive_init(derivectx) <= 0)
 | 
						|
        goto cleanup;
 | 
						|
    /* Set up peerB's public key */
 | 
						|
    if (EVP_PKEY_derive_set_peer(derivectx, peerBpub) <= 0)
 | 
						|
        goto cleanup;
 | 
						|
 | 
						|
    /*
 | 
						|
     * For backwards compatibility purposes the OpenSSL ECDH provider supports
 | 
						|
     * optionally using a X963KDF to expand the secret data. This can be done
 | 
						|
     * with code similar to the following.
 | 
						|
     *
 | 
						|
     *   OSSL_PARAM params[5];
 | 
						|
     *   size_t outlen = 128;
 | 
						|
     *   unsigned char ukm[] = { 1, 2, 3, 4 };
 | 
						|
     *   params[0] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_TYPE,
 | 
						|
     *                                                "X963KDF", 0);
 | 
						|
     *   params[1] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_DIGEST,
 | 
						|
     *                                                "SHA256", 0);
 | 
						|
     *   params[2] = OSSL_PARAM_construct_size_t(OSSL_EXCHANGE_PARAM_KDF_OUTLEN,
 | 
						|
     *                                           &outlen);
 | 
						|
     *   params[3] = OSSL_PARAM_construct_octet_string(OSSL_EXCHANGE_PARAM_KDF_UKM,
 | 
						|
     *                                                 ukm, sizeof(ukm));
 | 
						|
     *   params[4] = OSSL_PARAM_construct_end();
 | 
						|
     *   if (!EVP_PKEY_CTX_set_params(derivectx, params))
 | 
						|
     *       goto cleanup;
 | 
						|
     *
 | 
						|
     * Note: After the secret is generated below, the peer could alternatively
 | 
						|
     * pass the secret to a KDF to derive additional key data from the secret.
 | 
						|
     * See demos/kdf/hkdf.c for an example (where ikm is the secret key)
 | 
						|
     */
 | 
						|
 | 
						|
    /* Calculate the size of the secret and allocate space */
 | 
						|
    if (EVP_PKEY_derive(derivectx, NULL, &secretlen) <= 0)
 | 
						|
        goto cleanup;
 | 
						|
    secret = (unsigned char *)OPENSSL_malloc(secretlen);
 | 
						|
    if (secret == NULL)
 | 
						|
        goto cleanup;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Derive the shared secret. In this example 32 bytes are generated.
 | 
						|
     * For EC curves the secret size is related to the degree of the curve
 | 
						|
     * which is 256 bits for P-256.
 | 
						|
     */
 | 
						|
    if (EVP_PKEY_derive(derivectx, secret, &secretlen) <= 0)
 | 
						|
        goto cleanup;
 | 
						|
    peerA->secret = secret;
 | 
						|
    peerA->secretlen = secretlen;
 | 
						|
 | 
						|
    printf("Shared secret (%s):\n", peerA->name);
 | 
						|
    BIO_dump_indent_fp(stdout, peerA->secret, peerA->secretlen, 2);
 | 
						|
    putchar('\n');
 | 
						|
 | 
						|
    return 1;
 | 
						|
cleanup:
 | 
						|
    OPENSSL_free(secret);
 | 
						|
    EVP_PKEY_CTX_free(derivectx);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int main(void)
 | 
						|
{
 | 
						|
    int ret = EXIT_FAILURE;
 | 
						|
    /* Initialise the 2 peers that will share a secret */
 | 
						|
    PEER_DATA peer1 = {"peer 1", "P-256"};
 | 
						|
    PEER_DATA peer2 = {"peer 2", "P-256"};
 | 
						|
    /*
 | 
						|
     * Setting libctx to NULL uses the default library context
 | 
						|
     * Use OSSL_LIB_CTX_new() to create a non default library context
 | 
						|
     */
 | 
						|
    OSSL_LIB_CTX *libctx = NULL;
 | 
						|
 | 
						|
    /* Each peer creates a (Ephemeral) keypair */
 | 
						|
    if (!create_peer(&peer1, libctx)
 | 
						|
            || !create_peer(&peer2, libctx)) {
 | 
						|
        fprintf(stderr, "Create peer failed\n");
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Each peer uses its private key and the other peers public key to
 | 
						|
     * derive a shared secret
 | 
						|
     */
 | 
						|
    if (!generate_secret(&peer1, peer2.pub, libctx)
 | 
						|
            || !generate_secret(&peer2, peer1.pub, libctx)) {
 | 
						|
        fprintf(stderr, "Generate secrets failed\n");
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    /* For illustrative purposes demonstrate that the derived secrets are equal */
 | 
						|
    if (peer1.secretlen != peer2.secretlen
 | 
						|
            || CRYPTO_memcmp(peer1.secret, peer2.secret, peer1.secretlen) != 0) {
 | 
						|
        fprintf(stderr, "Derived secrets do not match\n");
 | 
						|
        goto cleanup;
 | 
						|
    } else {
 | 
						|
        fprintf(stdout, "Derived secrets match\n");
 | 
						|
    }
 | 
						|
 | 
						|
    ret = EXIT_SUCCESS;
 | 
						|
cleanup:
 | 
						|
    if (ret != EXIT_SUCCESS)
 | 
						|
        ERR_print_errors_fp(stderr);
 | 
						|
    destroy_peer(&peer2);
 | 
						|
    destroy_peer(&peer1);
 | 
						|
    return ret;
 | 
						|
}
 |