mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			414 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			414 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include "internal/numbers.h"
 | |
| #include <openssl/stack.h>
 | |
| #include <openssl/objects.h>
 | |
| #include <errno.h>
 | |
| #include <openssl/e_os2.h>      /* For ossl_inline */
 | |
| 
 | |
| /*
 | |
|  * The initial number of nodes in the array.
 | |
|  */
 | |
| static const int min_nodes = 4;
 | |
| static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
 | |
|                              ? (int)(SIZE_MAX / sizeof(void *))
 | |
|                              : INT_MAX;
 | |
| 
 | |
| struct stack_st {
 | |
|     int num;
 | |
|     const void **data;
 | |
|     int sorted;
 | |
|     int num_alloc;
 | |
|     OPENSSL_sk_compfunc comp;
 | |
| };
 | |
| 
 | |
| OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c)
 | |
| {
 | |
|     OPENSSL_sk_compfunc old = sk->comp;
 | |
| 
 | |
|     if (sk->comp != c)
 | |
|         sk->sorted = 0;
 | |
|     sk->comp = c;
 | |
| 
 | |
|     return old;
 | |
| }
 | |
| 
 | |
| OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
 | |
| {
 | |
|     OPENSSL_STACK *ret;
 | |
| 
 | |
|     if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
 | |
|         CRYPTOerr(CRYPTO_F_OPENSSL_SK_DUP, ERR_R_MALLOC_FAILURE);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* direct structure assignment */
 | |
|     *ret = *sk;
 | |
| 
 | |
|     if (sk->num == 0) {
 | |
|         /* postpone |ret->data| allocation */
 | |
|         ret->data = NULL;
 | |
|         ret->num_alloc = 0;
 | |
|         return ret;
 | |
|     }
 | |
|     /* duplicate |sk->data| content */
 | |
|     if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL)
 | |
|         goto err;
 | |
|     memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
 | |
|     return ret;
 | |
|  err:
 | |
|     OPENSSL_sk_free(ret);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
 | |
|                              OPENSSL_sk_copyfunc copy_func,
 | |
|                              OPENSSL_sk_freefunc free_func)
 | |
| {
 | |
|     OPENSSL_STACK *ret;
 | |
|     int i;
 | |
| 
 | |
|     if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
 | |
|         CRYPTOerr(CRYPTO_F_OPENSSL_SK_DEEP_COPY, ERR_R_MALLOC_FAILURE);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* direct structure assignment */
 | |
|     *ret = *sk;
 | |
| 
 | |
|     if (sk->num == 0) {
 | |
|         /* postpone |ret| data allocation */
 | |
|         ret->data = NULL;
 | |
|         ret->num_alloc = 0;
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
 | |
|     ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
 | |
|     if (ret->data == NULL) {
 | |
|         OPENSSL_free(ret);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < ret->num; ++i) {
 | |
|         if (sk->data[i] == NULL)
 | |
|             continue;
 | |
|         if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
 | |
|             while (--i >= 0)
 | |
|                 if (ret->data[i] != NULL)
 | |
|                     free_func((void *)ret->data[i]);
 | |
|             OPENSSL_sk_free(ret);
 | |
|             return NULL;
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| OPENSSL_STACK *OPENSSL_sk_new_null(void)
 | |
| {
 | |
|     return OPENSSL_sk_new_reserve(NULL, 0);
 | |
| }
 | |
| 
 | |
| OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
 | |
| {
 | |
|     return OPENSSL_sk_new_reserve(c, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the array growth based on the target size.
 | |
|  *
 | |
|  * The growth fraction is a rational number and is defined by a numerator
 | |
|  * and a denominator.  According to Andrew Koenig in his paper "Why Are
 | |
|  * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
 | |
|  * than the golden ratio (1.618...).
 | |
|  *
 | |
|  * We use 3/2 = 1.5 for simplicity of calculation and overflow checking.
 | |
|  * Another option 8/5 = 1.6 allows for slightly faster growth, although safe
 | |
|  * computation is more difficult.
 | |
|  *
 | |
|  * The limit to avoid overflow is spot on.  The modulo three correction term
 | |
|  * ensures that the limit is the largest number than can be expanded by the
 | |
|  * growth factor without exceeding the hard limit.
 | |
|  *
 | |
|  * Do not call it with |current| lower than 2, or it will infinitely loop.
 | |
|  */
 | |
| static ossl_inline int compute_growth(int target, int current)
 | |
| {
 | |
|     const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0);
 | |
| 
 | |
|     while (current < target) {
 | |
|         /* Check to see if we're at the hard limit */
 | |
|         if (current >= max_nodes)
 | |
|             return 0;
 | |
| 
 | |
|         /* Expand the size by a factor of 3/2 if it is within range */
 | |
|         current = current < limit ? current + current / 2 : max_nodes;
 | |
|     }
 | |
|     return current;
 | |
| }
 | |
| 
 | |
| /* internal STACK storage allocation */
 | |
| static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
 | |
| {
 | |
|     const void **tmpdata;
 | |
|     int num_alloc;
 | |
| 
 | |
|     /* Check to see the reservation isn't exceeding the hard limit */
 | |
|     if (n > max_nodes - st->num)
 | |
|         return 0;
 | |
| 
 | |
|     /* Figure out the new size */
 | |
|     num_alloc = st->num + n;
 | |
|     if (num_alloc < min_nodes)
 | |
|         num_alloc = min_nodes;
 | |
| 
 | |
|     /* If |st->data| allocation was postponed */
 | |
|     if (st->data == NULL) {
 | |
|         /*
 | |
|          * At this point, |st->num_alloc| and |st->num| are 0;
 | |
|          * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
 | |
|          */
 | |
|         if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) {
 | |
|             CRYPTOerr(CRYPTO_F_SK_RESERVE, ERR_R_MALLOC_FAILURE);
 | |
|             return 0;
 | |
|         }
 | |
|         st->num_alloc = num_alloc;
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (!exact) {
 | |
|         if (num_alloc <= st->num_alloc)
 | |
|             return 1;
 | |
|         num_alloc = compute_growth(num_alloc, st->num_alloc);
 | |
|         if (num_alloc == 0)
 | |
|             return 0;
 | |
|     } else if (num_alloc == st->num_alloc) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
 | |
|     if (tmpdata == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     st->data = tmpdata;
 | |
|     st->num_alloc = num_alloc;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
 | |
| {
 | |
|     OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
 | |
| 
 | |
|     if (st == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     st->comp = c;
 | |
| 
 | |
|     if (n <= 0)
 | |
|         return st;
 | |
| 
 | |
|     if (!sk_reserve(st, n, 1)) {
 | |
|         OPENSSL_sk_free(st);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return st;
 | |
| }
 | |
| 
 | |
| int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
 | |
| {
 | |
|     if (st == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (n < 0)
 | |
|         return 1;
 | |
|     return sk_reserve(st, n, 1);
 | |
| }
 | |
| 
 | |
| int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
 | |
| {
 | |
|     if (st == NULL || st->num == max_nodes)
 | |
|         return 0;
 | |
| 
 | |
|     if (!sk_reserve(st, 1, 0))
 | |
|         return 0;
 | |
| 
 | |
|     if ((loc >= st->num) || (loc < 0)) {
 | |
|         st->data[st->num] = data;
 | |
|     } else {
 | |
|         memmove(&st->data[loc + 1], &st->data[loc],
 | |
|                 sizeof(st->data[0]) * (st->num - loc));
 | |
|         st->data[loc] = data;
 | |
|     }
 | |
|     st->num++;
 | |
|     st->sorted = 0;
 | |
|     return st->num;
 | |
| }
 | |
| 
 | |
| static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
 | |
| {
 | |
|     const void *ret = st->data[loc];
 | |
| 
 | |
|     if (loc != st->num - 1)
 | |
|          memmove(&st->data[loc], &st->data[loc + 1],
 | |
|                  sizeof(st->data[0]) * (st->num - loc - 1));
 | |
|     st->num--;
 | |
| 
 | |
|     return (void *)ret;
 | |
| }
 | |
| 
 | |
| void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < st->num; i++)
 | |
|         if (st->data[i] == p)
 | |
|             return internal_delete(st, i);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
 | |
| {
 | |
|     if (st == NULL || loc < 0 || loc >= st->num)
 | |
|         return NULL;
 | |
| 
 | |
|     return internal_delete(st, loc);
 | |
| }
 | |
| 
 | |
| static int internal_find(OPENSSL_STACK *st, const void *data,
 | |
|                          int ret_val_options)
 | |
| {
 | |
|     const void *r;
 | |
|     int i;
 | |
| 
 | |
|     if (st == NULL || st->num == 0)
 | |
|         return -1;
 | |
| 
 | |
|     if (st->comp == NULL) {
 | |
|         for (i = 0; i < st->num; i++)
 | |
|             if (st->data[i] == data)
 | |
|                 return i;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!st->sorted) {
 | |
|         if (st->num > 1)
 | |
|             qsort(st->data, st->num, sizeof(void *), st->comp);
 | |
|         st->sorted = 1; /* empty or single-element stack is considered sorted */
 | |
|     }
 | |
|     if (data == NULL)
 | |
|         return -1;
 | |
|     r = OBJ_bsearch_ex_(&data, st->data, st->num, sizeof(void *), st->comp,
 | |
|                         ret_val_options);
 | |
| 
 | |
|     return r == NULL ? -1 : (int)((const void **)r - st->data);
 | |
| }
 | |
| 
 | |
| int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
 | |
| {
 | |
|     return internal_find(st, data, OBJ_BSEARCH_FIRST_VALUE_ON_MATCH);
 | |
| }
 | |
| 
 | |
| int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
 | |
| {
 | |
|     return internal_find(st, data, OBJ_BSEARCH_VALUE_ON_NOMATCH);
 | |
| }
 | |
| 
 | |
| int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
 | |
| {
 | |
|     if (st == NULL)
 | |
|         return -1;
 | |
|     return OPENSSL_sk_insert(st, data, st->num);
 | |
| }
 | |
| 
 | |
| int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
 | |
| {
 | |
|     return OPENSSL_sk_insert(st, data, 0);
 | |
| }
 | |
| 
 | |
| void *OPENSSL_sk_shift(OPENSSL_STACK *st)
 | |
| {
 | |
|     if (st == NULL || st->num == 0)
 | |
|         return NULL;
 | |
|     return internal_delete(st, 0);
 | |
| }
 | |
| 
 | |
| void *OPENSSL_sk_pop(OPENSSL_STACK *st)
 | |
| {
 | |
|     if (st == NULL || st->num == 0)
 | |
|         return NULL;
 | |
|     return internal_delete(st, st->num - 1);
 | |
| }
 | |
| 
 | |
| void OPENSSL_sk_zero(OPENSSL_STACK *st)
 | |
| {
 | |
|     if (st == NULL || st->num == 0)
 | |
|         return;
 | |
|     memset(st->data, 0, sizeof(*st->data) * st->num);
 | |
|     st->num = 0;
 | |
| }
 | |
| 
 | |
| void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (st == NULL)
 | |
|         return;
 | |
|     for (i = 0; i < st->num; i++)
 | |
|         if (st->data[i] != NULL)
 | |
|             func((char *)st->data[i]);
 | |
|     OPENSSL_sk_free(st);
 | |
| }
 | |
| 
 | |
| void OPENSSL_sk_free(OPENSSL_STACK *st)
 | |
| {
 | |
|     if (st == NULL)
 | |
|         return;
 | |
|     OPENSSL_free(st->data);
 | |
|     OPENSSL_free(st);
 | |
| }
 | |
| 
 | |
| int OPENSSL_sk_num(const OPENSSL_STACK *st)
 | |
| {
 | |
|     return st == NULL ? -1 : st->num;
 | |
| }
 | |
| 
 | |
| void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
 | |
| {
 | |
|     if (st == NULL || i < 0 || i >= st->num)
 | |
|         return NULL;
 | |
|     return (void *)st->data[i];
 | |
| }
 | |
| 
 | |
| void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
 | |
| {
 | |
|     if (st == NULL || i < 0 || i >= st->num)
 | |
|         return NULL;
 | |
|     st->data[i] = data;
 | |
|     st->sorted = 0;
 | |
|     return (void *)st->data[i];
 | |
| }
 | |
| 
 | |
| void OPENSSL_sk_sort(OPENSSL_STACK *st)
 | |
| {
 | |
|     if (st != NULL && !st->sorted && st->comp != NULL) {
 | |
|         if (st->num > 1)
 | |
|             qsort(st->data, st->num, sizeof(void *), st->comp);
 | |
|         st->sorted = 1; /* empty or single-element stack is considered sorted */
 | |
|     }
 | |
| }
 | |
| 
 | |
| int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
 | |
| {
 | |
|     return st == NULL ? 1 : st->sorted;
 | |
| }
 |