mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			497 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			497 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
/*
 | 
						|
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
 | 
						|
 *
 | 
						|
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 | 
						|
 * this file except in compliance with the License.  You can obtain a copy
 | 
						|
 * in the file LICENSE in the source distribution or at
 | 
						|
 * https://www.openssl.org/source/license.html
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include "internal/cryptlib.h"
 | 
						|
#include "internal/numbers.h"
 | 
						|
#include "internal/safe_math.h"
 | 
						|
#include <openssl/stack.h>
 | 
						|
#include <errno.h>
 | 
						|
#include <openssl/e_os2.h>      /* For ossl_inline */
 | 
						|
 | 
						|
OSSL_SAFE_MATH_SIGNED(int, int)
 | 
						|
 | 
						|
/*
 | 
						|
 * The initial number of nodes in the array.
 | 
						|
 */
 | 
						|
static const int min_nodes = 4;
 | 
						|
static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
 | 
						|
    ? (int)(SIZE_MAX / sizeof(void *)) : INT_MAX;
 | 
						|
 | 
						|
struct stack_st {
 | 
						|
    int num;
 | 
						|
    const void **data;
 | 
						|
    int sorted;
 | 
						|
    int num_alloc;
 | 
						|
    OPENSSL_sk_compfunc comp;
 | 
						|
    OPENSSL_sk_freefunc_thunk free_thunk;
 | 
						|
};
 | 
						|
 | 
						|
OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
 | 
						|
                                            OPENSSL_sk_compfunc c)
 | 
						|
{
 | 
						|
    OPENSSL_sk_compfunc old = sk->comp;
 | 
						|
 | 
						|
    if (sk->comp != c && sk->num > 1)
 | 
						|
        sk->sorted = 0;
 | 
						|
    sk->comp = c;
 | 
						|
 | 
						|
    return old;
 | 
						|
}
 | 
						|
 | 
						|
static OPENSSL_STACK *internal_copy(const OPENSSL_STACK *sk,
 | 
						|
                                    OPENSSL_sk_copyfunc copy_func,
 | 
						|
                                    OPENSSL_sk_freefunc free_func)
 | 
						|
{
 | 
						|
    OPENSSL_STACK *ret;
 | 
						|
    int i;
 | 
						|
 | 
						|
    if ((ret = OPENSSL_sk_new_null()) == NULL)
 | 
						|
        goto err;
 | 
						|
 | 
						|
    if (sk == NULL)
 | 
						|
        goto done;
 | 
						|
 | 
						|
    /* direct structure assignment */
 | 
						|
    *ret = *sk;
 | 
						|
    ret->data = NULL;
 | 
						|
    ret->num_alloc = 0;
 | 
						|
 | 
						|
    if (ret->num == 0)
 | 
						|
        goto done; /* nothing to copy */
 | 
						|
 | 
						|
    ret->num_alloc = ret->num > min_nodes ? ret->num : min_nodes;
 | 
						|
    ret->data = OPENSSL_calloc(ret->num_alloc, sizeof(*ret->data));
 | 
						|
    if (ret->data == NULL)
 | 
						|
        goto err;
 | 
						|
    if (copy_func == NULL) {
 | 
						|
        memcpy(ret->data, sk->data, sizeof(*ret->data) * ret->num);
 | 
						|
    } else {
 | 
						|
        for (i = 0; i < ret->num; ++i) {
 | 
						|
            if (sk->data[i] == NULL)
 | 
						|
                continue;
 | 
						|
            if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
 | 
						|
                while (--i >= 0)
 | 
						|
                    if (ret->data[i] != NULL)
 | 
						|
                        free_func((void *)ret->data[i]);
 | 
						|
                goto err;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
 done:
 | 
						|
    return ret;
 | 
						|
 | 
						|
 err:
 | 
						|
    OPENSSL_sk_free(ret);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
 | 
						|
                                    OPENSSL_sk_copyfunc copy_func,
 | 
						|
                                    OPENSSL_sk_freefunc free_func)
 | 
						|
{
 | 
						|
    return internal_copy(sk, copy_func, free_func);
 | 
						|
}
 | 
						|
 | 
						|
OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
 | 
						|
{
 | 
						|
    return internal_copy(sk, NULL, NULL);
 | 
						|
}
 | 
						|
 | 
						|
OPENSSL_STACK *OPENSSL_sk_new_null(void)
 | 
						|
{
 | 
						|
    return OPENSSL_sk_new_reserve(NULL, 0);
 | 
						|
}
 | 
						|
 | 
						|
OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
 | 
						|
{
 | 
						|
    return OPENSSL_sk_new_reserve(c, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the array growth based on the target size.
 | 
						|
 *
 | 
						|
 * The growth factor is a rational number and is defined by a numerator
 | 
						|
 * and a denominator.  According to Andrew Koenig in his paper "Why Are
 | 
						|
 * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
 | 
						|
 * than the golden ratio (1.618...).
 | 
						|
 *
 | 
						|
 * Considering only the Fibonacci ratios less than the golden ratio, the
 | 
						|
 * number of steps from the minimum allocation to integer overflow is:
 | 
						|
 *      factor  decimal    growths
 | 
						|
 *       3/2     1.5          51
 | 
						|
 *       8/5     1.6          45
 | 
						|
 *      21/13    1.615...     44
 | 
						|
 *
 | 
						|
 * All larger factors have the same number of growths.
 | 
						|
 *
 | 
						|
 * 3/2 and 8/5 have nice power of two shifts, so seem like a good choice.
 | 
						|
 */
 | 
						|
static ossl_inline int compute_growth(int target, int current)
 | 
						|
{
 | 
						|
    int err = 0;
 | 
						|
 | 
						|
    while (current < target) {
 | 
						|
        if (current >= max_nodes)
 | 
						|
            return 0;
 | 
						|
 | 
						|
        current = safe_muldiv_int(current, 8, 5, &err);
 | 
						|
        if (err != 0)
 | 
						|
            return 0;
 | 
						|
        if (current >= max_nodes)
 | 
						|
            current = max_nodes;
 | 
						|
    }
 | 
						|
    return current;
 | 
						|
}
 | 
						|
 | 
						|
/* internal STACK storage allocation */
 | 
						|
static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
 | 
						|
{
 | 
						|
    const void **tmpdata;
 | 
						|
    int num_alloc;
 | 
						|
 | 
						|
    /* Check to see the reservation isn't exceeding the hard limit */
 | 
						|
    if (n > max_nodes - st->num) {
 | 
						|
        ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Figure out the new size */
 | 
						|
    num_alloc = st->num + n;
 | 
						|
    if (num_alloc < min_nodes)
 | 
						|
        num_alloc = min_nodes;
 | 
						|
 | 
						|
    /* If |st->data| allocation was postponed */
 | 
						|
    if (st->data == NULL) {
 | 
						|
        /*
 | 
						|
         * At this point, |st->num_alloc| and |st->num| are 0;
 | 
						|
         * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
 | 
						|
         */
 | 
						|
        if ((st->data = OPENSSL_calloc(num_alloc, sizeof(void *))) == NULL)
 | 
						|
            return 0;
 | 
						|
        st->num_alloc = num_alloc;
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!exact) {
 | 
						|
        if (num_alloc <= st->num_alloc)
 | 
						|
            return 1;
 | 
						|
        num_alloc = compute_growth(num_alloc, st->num_alloc);
 | 
						|
        if (num_alloc == 0) {
 | 
						|
            ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    } else if (num_alloc == st->num_alloc) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    tmpdata = OPENSSL_realloc_array((void *)st->data, num_alloc, sizeof(void *));
 | 
						|
    if (tmpdata == NULL)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    st->data = tmpdata;
 | 
						|
    st->num_alloc = num_alloc;
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
 | 
						|
{
 | 
						|
    OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
 | 
						|
 | 
						|
    if (st == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    st->comp = c;
 | 
						|
    st->sorted = 1; /* empty or single-element stack is considered sorted */
 | 
						|
 | 
						|
    if (n <= 0)
 | 
						|
        return st;
 | 
						|
 | 
						|
    if (!sk_reserve(st, n, 1)) {
 | 
						|
        OPENSSL_sk_free(st);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    return st;
 | 
						|
}
 | 
						|
 | 
						|
int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
 | 
						|
{
 | 
						|
    if (st == NULL) {
 | 
						|
        ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (n < 0)
 | 
						|
        return 1;
 | 
						|
    return sk_reserve(st, n, 1);
 | 
						|
}
 | 
						|
 | 
						|
OPENSSL_STACK *OPENSSL_sk_set_thunks(OPENSSL_STACK *st, OPENSSL_sk_freefunc_thunk f_thunk)
 | 
						|
{
 | 
						|
    if (st != NULL)
 | 
						|
        st->free_thunk = f_thunk;
 | 
						|
 | 
						|
    return st;
 | 
						|
}
 | 
						|
 | 
						|
int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
 | 
						|
{
 | 
						|
    if (st == NULL) {
 | 
						|
        ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (st->num == max_nodes) {
 | 
						|
        ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!sk_reserve(st, 1, 0))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    if ((loc >= st->num) || (loc < 0)) {
 | 
						|
        loc = st->num;
 | 
						|
        st->data[loc] = data;
 | 
						|
    } else {
 | 
						|
        memmove(&st->data[loc + 1], &st->data[loc],
 | 
						|
                sizeof(st->data[0]) * (st->num - loc));
 | 
						|
        st->data[loc] = data;
 | 
						|
    }
 | 
						|
    st->num++;
 | 
						|
    if (st->sorted && st->num > 1) {
 | 
						|
        if (st->comp != NULL) {
 | 
						|
            if (loc > 0 && (st->comp(&st->data[loc - 1], &st->data[loc]) > 0))
 | 
						|
                st->sorted = 0;
 | 
						|
            if (loc < st->num - 1
 | 
						|
                && (st->comp(&st->data[loc + 1], &st->data[loc]) < 0))
 | 
						|
                st->sorted = 0;
 | 
						|
        } else {
 | 
						|
            st->sorted = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return st->num;
 | 
						|
}
 | 
						|
 | 
						|
static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
 | 
						|
{
 | 
						|
    const void *ret = st->data[loc];
 | 
						|
 | 
						|
    if (loc != st->num - 1)
 | 
						|
        memmove(&st->data[loc], &st->data[loc + 1],
 | 
						|
                sizeof(st->data[0]) * (st->num - loc - 1));
 | 
						|
    st->num--;
 | 
						|
    st->sorted = st->sorted || st->num <= 1;
 | 
						|
 | 
						|
    return (void *)ret;
 | 
						|
}
 | 
						|
 | 
						|
void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (st == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    for (i = 0; i < st->num; i++)
 | 
						|
        if (st->data[i] == p)
 | 
						|
            return internal_delete(st, i);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
 | 
						|
{
 | 
						|
    if (st == NULL || loc < 0 || loc >= st->num)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    return internal_delete(st, loc);
 | 
						|
}
 | 
						|
 | 
						|
static int internal_find(const OPENSSL_STACK *st, const void *data,
 | 
						|
                         int ret_val_options, int *pnum_matched)
 | 
						|
{
 | 
						|
    const void *r;
 | 
						|
    int i, count = 0;
 | 
						|
    int *pnum = pnum_matched;
 | 
						|
 | 
						|
    if (st == NULL || st->num == 0)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    if (pnum == NULL)
 | 
						|
        pnum = &count;
 | 
						|
 | 
						|
    if (st->comp == NULL) {
 | 
						|
        for (i = 0; i < st->num; i++)
 | 
						|
            if (st->data[i] == data) {
 | 
						|
                *pnum = 1;
 | 
						|
                return i;
 | 
						|
            }
 | 
						|
        *pnum = 0;
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (data == NULL)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    if (!st->sorted) {
 | 
						|
        int res = -1;
 | 
						|
 | 
						|
        for (i = 0; i < st->num; i++)
 | 
						|
            if (st->comp(&data, st->data + i) == 0) {
 | 
						|
                if (res == -1)
 | 
						|
                    res = i;
 | 
						|
                ++*pnum;
 | 
						|
                /* Check if only one result is wanted and exit if so */
 | 
						|
                if (pnum_matched == NULL)
 | 
						|
                    return i;
 | 
						|
            }
 | 
						|
        if (res == -1)
 | 
						|
            *pnum = 0;
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    if (pnum_matched != NULL)
 | 
						|
        ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH;
 | 
						|
    r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp,
 | 
						|
                     ret_val_options);
 | 
						|
 | 
						|
    if (pnum_matched != NULL) {
 | 
						|
        *pnum = 0;
 | 
						|
        if (r != NULL) {
 | 
						|
            const void **p = (const void **)r;
 | 
						|
 | 
						|
            while (p < st->data + st->num) {
 | 
						|
                if (st->comp(&data, p) != 0)
 | 
						|
                    break;
 | 
						|
                ++*pnum;
 | 
						|
                ++p;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return r == NULL ? -1 : (int)((const void **)r - st->data);
 | 
						|
}
 | 
						|
 | 
						|
int OPENSSL_sk_find(const OPENSSL_STACK *st, const void *data)
 | 
						|
{
 | 
						|
    return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL);
 | 
						|
}
 | 
						|
 | 
						|
int OPENSSL_sk_find_ex(const OPENSSL_STACK *st, const void *data)
 | 
						|
{
 | 
						|
    return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL);
 | 
						|
}
 | 
						|
 | 
						|
int OPENSSL_sk_find_all(const OPENSSL_STACK *st, const void *data, int *pnum)
 | 
						|
{
 | 
						|
    return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum);
 | 
						|
}
 | 
						|
 | 
						|
int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
 | 
						|
{
 | 
						|
    if (st == NULL)
 | 
						|
        return 0;
 | 
						|
    return OPENSSL_sk_insert(st, data, st->num);
 | 
						|
}
 | 
						|
 | 
						|
int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
 | 
						|
{
 | 
						|
    return OPENSSL_sk_insert(st, data, 0);
 | 
						|
}
 | 
						|
 | 
						|
void *OPENSSL_sk_shift(OPENSSL_STACK *st)
 | 
						|
{
 | 
						|
    if (st == NULL || st->num == 0)
 | 
						|
        return NULL;
 | 
						|
    return internal_delete(st, 0);
 | 
						|
}
 | 
						|
 | 
						|
void *OPENSSL_sk_pop(OPENSSL_STACK *st)
 | 
						|
{
 | 
						|
    if (st == NULL || st->num == 0)
 | 
						|
        return NULL;
 | 
						|
    return internal_delete(st, st->num - 1);
 | 
						|
}
 | 
						|
 | 
						|
void OPENSSL_sk_zero(OPENSSL_STACK *st)
 | 
						|
{
 | 
						|
    if (st == NULL || st->num == 0)
 | 
						|
        return;
 | 
						|
    memset(st->data, 0, sizeof(*st->data) * st->num);
 | 
						|
    st->num = 0;
 | 
						|
}
 | 
						|
 | 
						|
void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (st == NULL)
 | 
						|
        return;
 | 
						|
 | 
						|
    for (i = 0; i < st->num; i++) {
 | 
						|
        if (st->data[i] != NULL) {
 | 
						|
            if (st->free_thunk != NULL)
 | 
						|
                st->free_thunk(func, (void *)st->data[i]);
 | 
						|
            else
 | 
						|
                func((void *)st->data[i]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    OPENSSL_sk_free(st);
 | 
						|
}
 | 
						|
 | 
						|
void OPENSSL_sk_free(OPENSSL_STACK *st)
 | 
						|
{
 | 
						|
    if (st == NULL)
 | 
						|
        return;
 | 
						|
    OPENSSL_free(st->data);
 | 
						|
    OPENSSL_free(st);
 | 
						|
}
 | 
						|
 | 
						|
int OPENSSL_sk_num(const OPENSSL_STACK *st)
 | 
						|
{
 | 
						|
    return st == NULL ? -1 : st->num;
 | 
						|
}
 | 
						|
 | 
						|
void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
 | 
						|
{
 | 
						|
    if (st == NULL || i < 0 || i >= st->num)
 | 
						|
        return NULL;
 | 
						|
    return (void *)st->data[i];
 | 
						|
}
 | 
						|
 | 
						|
void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
 | 
						|
{
 | 
						|
    if (st == NULL) {
 | 
						|
        ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (i < 0 || i >= st->num) {
 | 
						|
        ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT,
 | 
						|
                       "i=%d", i);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    st->data[i] = data;
 | 
						|
    st->sorted = st->num <= 1;
 | 
						|
    return (void *)st->data[i];
 | 
						|
}
 | 
						|
 | 
						|
void OPENSSL_sk_sort(OPENSSL_STACK *st)
 | 
						|
{
 | 
						|
    if (st != NULL && !st->sorted && st->comp != NULL) {
 | 
						|
        if (st->num > 1)
 | 
						|
            qsort(st->data, st->num, sizeof(void *), st->comp);
 | 
						|
        st->sorted = 1; /* empty or single-element stack is considered sorted */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
 | 
						|
{
 | 
						|
    return st == NULL ? 1 : st->sorted;
 | 
						|
}
 |