mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			3690 lines
		
	
	
		
			123 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3690 lines
		
	
	
		
			123 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
 | |
|  *
 | |
|  * Licensed under the Apache License 2.0 (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #undef SECONDS
 | |
| #define SECONDS          3
 | |
| #define PKEY_SECONDS    10
 | |
| 
 | |
| #define RSA_SECONDS     PKEY_SECONDS
 | |
| #define DSA_SECONDS     PKEY_SECONDS
 | |
| #define ECDSA_SECONDS   PKEY_SECONDS
 | |
| #define ECDH_SECONDS    PKEY_SECONDS
 | |
| #define EdDSA_SECONDS   PKEY_SECONDS
 | |
| #define SM2_SECONDS     PKEY_SECONDS
 | |
| #define FFDH_SECONDS    PKEY_SECONDS
 | |
| 
 | |
| /* We need to use some deprecated APIs */
 | |
| #define OPENSSL_SUPPRESS_DEPRECATED
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <math.h>
 | |
| #include "apps.h"
 | |
| #include "progs.h"
 | |
| #include <openssl/crypto.h>
 | |
| #include <openssl/rand.h>
 | |
| #include <openssl/err.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/objects.h>
 | |
| #include <openssl/core_names.h>
 | |
| #include <openssl/async.h>
 | |
| #if !defined(OPENSSL_SYS_MSDOS)
 | |
| # include <unistd.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(__TANDEM)
 | |
| # if defined(OPENSSL_TANDEM_FLOSS)
 | |
| #  include <floss.h(floss_fork)>
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| # include <windows.h>
 | |
| #endif
 | |
| 
 | |
| #include <openssl/bn.h>
 | |
| #include <openssl/rsa.h>
 | |
| #include "./testrsa.h"
 | |
| #ifndef OPENSSL_NO_DH
 | |
| # include <openssl/dh.h>
 | |
| #endif
 | |
| #include <openssl/x509.h>
 | |
| #include <openssl/dsa.h>
 | |
| #include "./testdsa.h"
 | |
| #include <openssl/modes.h>
 | |
| 
 | |
| #ifndef HAVE_FORK
 | |
| # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS)
 | |
| #  define HAVE_FORK 0
 | |
| # else
 | |
| #  define HAVE_FORK 1
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #if HAVE_FORK
 | |
| # undef NO_FORK
 | |
| #else
 | |
| # define NO_FORK
 | |
| #endif
 | |
| 
 | |
| #define MAX_MISALIGNMENT 63
 | |
| #define MAX_ECDH_SIZE   256
 | |
| #define MISALIGN        64
 | |
| #define MAX_FFDH_SIZE 1024
 | |
| 
 | |
| #ifndef RSA_DEFAULT_PRIME_NUM
 | |
| # define RSA_DEFAULT_PRIME_NUM 2
 | |
| #endif
 | |
| 
 | |
| typedef struct openssl_speed_sec_st {
 | |
|     int sym;
 | |
|     int rsa;
 | |
|     int dsa;
 | |
|     int ecdsa;
 | |
|     int ecdh;
 | |
|     int eddsa;
 | |
|     int sm2;
 | |
|     int ffdh;
 | |
| } openssl_speed_sec_t;
 | |
| 
 | |
| static volatile int run = 0;
 | |
| 
 | |
| static int mr = 0;  /* machine-readeable output format to merge fork results */
 | |
| static int usertime = 1;
 | |
| 
 | |
| static double Time_F(int s);
 | |
| static void print_message(const char *s, long num, int length, int tm);
 | |
| static void pkey_print_message(const char *str, const char *str2,
 | |
|                                long num, unsigned int bits, int sec);
 | |
| static void print_result(int alg, int run_no, int count, double time_used);
 | |
| #ifndef NO_FORK
 | |
| static int do_multi(int multi, int size_num);
 | |
| #endif
 | |
| 
 | |
| static const int lengths_list[] = {
 | |
|     16, 64, 256, 1024, 8 * 1024, 16 * 1024
 | |
| };
 | |
| #define SIZE_NUM         OSSL_NELEM(lengths_list)
 | |
| static const int *lengths = lengths_list;
 | |
| 
 | |
| static const int aead_lengths_list[] = {
 | |
|     2, 31, 136, 1024, 8 * 1024, 16 * 1024
 | |
| };
 | |
| 
 | |
| #define START   0
 | |
| #define STOP    1
 | |
| 
 | |
| #ifdef SIGALRM
 | |
| 
 | |
| static void alarmed(int sig)
 | |
| {
 | |
|     signal(SIGALRM, alarmed);
 | |
|     run = 0;
 | |
| }
 | |
| 
 | |
| static double Time_F(int s)
 | |
| {
 | |
|     double ret = app_tminterval(s, usertime);
 | |
|     if (s == STOP)
 | |
|         alarm(0);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #elif defined(_WIN32)
 | |
| 
 | |
| # define SIGALRM -1
 | |
| 
 | |
| static unsigned int lapse;
 | |
| static volatile unsigned int schlock;
 | |
| static void alarm_win32(unsigned int secs)
 | |
| {
 | |
|     lapse = secs * 1000;
 | |
| }
 | |
| 
 | |
| # define alarm alarm_win32
 | |
| 
 | |
| static DWORD WINAPI sleepy(VOID * arg)
 | |
| {
 | |
|     schlock = 1;
 | |
|     Sleep(lapse);
 | |
|     run = 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static double Time_F(int s)
 | |
| {
 | |
|     double ret;
 | |
|     static HANDLE thr;
 | |
| 
 | |
|     if (s == START) {
 | |
|         schlock = 0;
 | |
|         thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
 | |
|         if (thr == NULL) {
 | |
|             DWORD err = GetLastError();
 | |
|             BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
 | |
|             ExitProcess(err);
 | |
|         }
 | |
|         while (!schlock)
 | |
|             Sleep(0);           /* scheduler spinlock */
 | |
|         ret = app_tminterval(s, usertime);
 | |
|     } else {
 | |
|         ret = app_tminterval(s, usertime);
 | |
|         if (run)
 | |
|             TerminateThread(thr, 0);
 | |
|         CloseHandle(thr);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| #else
 | |
| # error "SIGALRM not defined and the platform is not Windows"
 | |
| #endif
 | |
| 
 | |
| static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
 | |
|                              const openssl_speed_sec_t *seconds);
 | |
| 
 | |
| static int opt_found(const char *name, unsigned int *result,
 | |
|                      const OPT_PAIR pairs[], unsigned int nbelem)
 | |
| {
 | |
|     unsigned int idx;
 | |
| 
 | |
|     for (idx = 0; idx < nbelem; ++idx, pairs++)
 | |
|         if (strcmp(name, pairs->name) == 0) {
 | |
|             *result = pairs->retval;
 | |
|             return 1;
 | |
|         }
 | |
|     return 0;
 | |
| }
 | |
| #define opt_found(value, pairs, result)\
 | |
|     opt_found(value, result, pairs, OSSL_NELEM(pairs))
 | |
| 
 | |
| typedef enum OPTION_choice {
 | |
|     OPT_COMMON,
 | |
|     OPT_ELAPSED, OPT_EVP, OPT_HMAC, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
 | |
|     OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM, OPT_PROV_ENUM,
 | |
|     OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD, OPT_CMAC
 | |
| } OPTION_CHOICE;
 | |
| 
 | |
| const OPTIONS speed_options[] = {
 | |
|     {OPT_HELP_STR, 1, '-', "Usage: %s [options] [algorithm...]\n"},
 | |
| 
 | |
|     OPT_SECTION("General"),
 | |
|     {"help", OPT_HELP, '-', "Display this summary"},
 | |
|     {"mb", OPT_MB, '-',
 | |
|      "Enable (tls1>=1) multi-block mode on EVP-named cipher"},
 | |
|     {"mr", OPT_MR, '-', "Produce machine readable output"},
 | |
| #ifndef NO_FORK
 | |
|     {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_ASYNC
 | |
|     {"async_jobs", OPT_ASYNCJOBS, 'p',
 | |
|      "Enable async mode and start specified number of jobs"},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_ENGINE
 | |
|     {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
 | |
| #endif
 | |
|     {"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"},
 | |
| 
 | |
|     OPT_SECTION("Selection"),
 | |
|     {"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"},
 | |
|     {"hmac", OPT_HMAC, 's', "HMAC using EVP-named digest"},
 | |
|     {"cmac", OPT_CMAC, 's', "CMAC using EVP-named cipher"},
 | |
|     {"decrypt", OPT_DECRYPT, '-',
 | |
|      "Time decryption instead of encryption (only EVP)"},
 | |
|     {"aead", OPT_AEAD, '-',
 | |
|      "Benchmark EVP-named AEAD cipher in TLS-like sequence"},
 | |
| 
 | |
|     OPT_SECTION("Timing"),
 | |
|     {"elapsed", OPT_ELAPSED, '-',
 | |
|      "Use wall-clock time instead of CPU user time as divisor"},
 | |
|     {"seconds", OPT_SECONDS, 'p',
 | |
|      "Run benchmarks for specified amount of seconds"},
 | |
|     {"bytes", OPT_BYTES, 'p',
 | |
|      "Run [non-PKI] benchmarks on custom-sized buffer"},
 | |
|     {"misalign", OPT_MISALIGN, 'p',
 | |
|      "Use specified offset to mis-align buffers"},
 | |
| 
 | |
|     OPT_R_OPTIONS,
 | |
|     OPT_PROV_OPTIONS,
 | |
| 
 | |
|     OPT_PARAMETERS(),
 | |
|     {"algorithm", 0, 0, "Algorithm(s) to test (optional; otherwise tests all)"},
 | |
|     {NULL}
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     D_MD2, D_MDC2, D_MD4, D_MD5, D_SHA1, D_RMD160,
 | |
|     D_SHA256, D_SHA512, D_WHIRLPOOL, D_HMAC,
 | |
|     D_CBC_DES, D_EDE3_DES, D_RC4, D_CBC_IDEA, D_CBC_SEED,
 | |
|     D_CBC_RC2, D_CBC_RC5, D_CBC_BF, D_CBC_CAST,
 | |
|     D_CBC_128_AES, D_CBC_192_AES, D_CBC_256_AES,
 | |
|     D_CBC_128_CML, D_CBC_192_CML, D_CBC_256_CML,
 | |
|     D_EVP, D_GHASH, D_RAND, D_EVP_CMAC, ALGOR_NUM
 | |
| };
 | |
| /* name of algorithms to test. MUST BE KEEP IN SYNC with above enum ! */
 | |
| static const char *names[ALGOR_NUM] = {
 | |
|     "md2", "mdc2", "md4", "md5", "sha1", "rmd160",
 | |
|     "sha256", "sha512", "whirlpool", "hmac(md5)",
 | |
|     "des-cbc", "des-ede3", "rc4", "idea-cbc", "seed-cbc",
 | |
|     "rc2-cbc", "rc5-cbc", "blowfish", "cast-cbc",
 | |
|     "aes-128-cbc", "aes-192-cbc", "aes-256-cbc",
 | |
|     "camellia-128-cbc", "camellia-192-cbc", "camellia-256-cbc",
 | |
|     "evp", "ghash", "rand", "cmac"
 | |
| };
 | |
| 
 | |
| /* list of configured algorithm (remaining), with some few alias */
 | |
| static const OPT_PAIR doit_choices[] = {
 | |
|     {"md2", D_MD2},
 | |
|     {"mdc2", D_MDC2},
 | |
|     {"md4", D_MD4},
 | |
|     {"md5", D_MD5},
 | |
|     {"hmac", D_HMAC},
 | |
|     {"sha1", D_SHA1},
 | |
|     {"sha256", D_SHA256},
 | |
|     {"sha512", D_SHA512},
 | |
|     {"whirlpool", D_WHIRLPOOL},
 | |
|     {"ripemd", D_RMD160},
 | |
|     {"rmd160", D_RMD160},
 | |
|     {"ripemd160", D_RMD160},
 | |
|     {"rc4", D_RC4},
 | |
|     {"des-cbc", D_CBC_DES},
 | |
|     {"des-ede3", D_EDE3_DES},
 | |
|     {"aes-128-cbc", D_CBC_128_AES},
 | |
|     {"aes-192-cbc", D_CBC_192_AES},
 | |
|     {"aes-256-cbc", D_CBC_256_AES},
 | |
|     {"camellia-128-cbc", D_CBC_128_CML},
 | |
|     {"camellia-192-cbc", D_CBC_192_CML},
 | |
|     {"camellia-256-cbc", D_CBC_256_CML},
 | |
|     {"rc2-cbc", D_CBC_RC2},
 | |
|     {"rc2", D_CBC_RC2},
 | |
|     {"rc5-cbc", D_CBC_RC5},
 | |
|     {"rc5", D_CBC_RC5},
 | |
|     {"idea-cbc", D_CBC_IDEA},
 | |
|     {"idea", D_CBC_IDEA},
 | |
|     {"seed-cbc", D_CBC_SEED},
 | |
|     {"seed", D_CBC_SEED},
 | |
|     {"bf-cbc", D_CBC_BF},
 | |
|     {"blowfish", D_CBC_BF},
 | |
|     {"bf", D_CBC_BF},
 | |
|     {"cast-cbc", D_CBC_CAST},
 | |
|     {"cast", D_CBC_CAST},
 | |
|     {"cast5", D_CBC_CAST},
 | |
|     {"ghash", D_GHASH},
 | |
|     {"rand", D_RAND}
 | |
| };
 | |
| 
 | |
| static double results[ALGOR_NUM][SIZE_NUM];
 | |
| 
 | |
| enum { R_DSA_512, R_DSA_1024, R_DSA_2048, DSA_NUM };
 | |
| static const OPT_PAIR dsa_choices[DSA_NUM] = {
 | |
|     {"dsa512", R_DSA_512},
 | |
|     {"dsa1024", R_DSA_1024},
 | |
|     {"dsa2048", R_DSA_2048}
 | |
| };
 | |
| static double dsa_results[DSA_NUM][2];  /* 2 ops: sign then verify */
 | |
| 
 | |
| enum {
 | |
|     R_RSA_512, R_RSA_1024, R_RSA_2048, R_RSA_3072, R_RSA_4096, R_RSA_7680,
 | |
|     R_RSA_15360, RSA_NUM
 | |
| };
 | |
| static const OPT_PAIR rsa_choices[RSA_NUM] = {
 | |
|     {"rsa512", R_RSA_512},
 | |
|     {"rsa1024", R_RSA_1024},
 | |
|     {"rsa2048", R_RSA_2048},
 | |
|     {"rsa3072", R_RSA_3072},
 | |
|     {"rsa4096", R_RSA_4096},
 | |
|     {"rsa7680", R_RSA_7680},
 | |
|     {"rsa15360", R_RSA_15360}
 | |
| };
 | |
| 
 | |
| static double rsa_results[RSA_NUM][2];  /* 2 ops: sign then verify */
 | |
| 
 | |
| #ifndef OPENSSL_NO_DH
 | |
| enum ff_params_t {
 | |
|     R_FFDH_2048, R_FFDH_3072, R_FFDH_4096, R_FFDH_6144, R_FFDH_8192, FFDH_NUM
 | |
| };
 | |
| 
 | |
| static const OPT_PAIR ffdh_choices[FFDH_NUM] = {
 | |
|     {"ffdh2048", R_FFDH_2048},
 | |
|     {"ffdh3072", R_FFDH_3072},
 | |
|     {"ffdh4096", R_FFDH_4096},
 | |
|     {"ffdh6144", R_FFDH_6144},
 | |
|     {"ffdh8192", R_FFDH_8192},
 | |
| };
 | |
| 
 | |
| static double ffdh_results[FFDH_NUM][1];  /* 1 op: derivation */
 | |
| #endif /* OPENSSL_NO_DH */
 | |
| 
 | |
| enum ec_curves_t {
 | |
|     R_EC_P160, R_EC_P192, R_EC_P224, R_EC_P256, R_EC_P384, R_EC_P521,
 | |
| #ifndef OPENSSL_NO_EC2M
 | |
|     R_EC_K163, R_EC_K233, R_EC_K283, R_EC_K409, R_EC_K571,
 | |
|     R_EC_B163, R_EC_B233, R_EC_B283, R_EC_B409, R_EC_B571,
 | |
| #endif
 | |
|     R_EC_BRP256R1, R_EC_BRP256T1, R_EC_BRP384R1, R_EC_BRP384T1,
 | |
|     R_EC_BRP512R1, R_EC_BRP512T1, ECDSA_NUM
 | |
| };
 | |
| /* list of ecdsa curves */
 | |
| static const OPT_PAIR ecdsa_choices[ECDSA_NUM] = {
 | |
|     {"ecdsap160", R_EC_P160},
 | |
|     {"ecdsap192", R_EC_P192},
 | |
|     {"ecdsap224", R_EC_P224},
 | |
|     {"ecdsap256", R_EC_P256},
 | |
|     {"ecdsap384", R_EC_P384},
 | |
|     {"ecdsap521", R_EC_P521},
 | |
| #ifndef OPENSSL_NO_EC2M
 | |
|     {"ecdsak163", R_EC_K163},
 | |
|     {"ecdsak233", R_EC_K233},
 | |
|     {"ecdsak283", R_EC_K283},
 | |
|     {"ecdsak409", R_EC_K409},
 | |
|     {"ecdsak571", R_EC_K571},
 | |
|     {"ecdsab163", R_EC_B163},
 | |
|     {"ecdsab233", R_EC_B233},
 | |
|     {"ecdsab283", R_EC_B283},
 | |
|     {"ecdsab409", R_EC_B409},
 | |
|     {"ecdsab571", R_EC_B571},
 | |
| #endif
 | |
|     {"ecdsabrp256r1", R_EC_BRP256R1},
 | |
|     {"ecdsabrp256t1", R_EC_BRP256T1},
 | |
|     {"ecdsabrp384r1", R_EC_BRP384R1},
 | |
|     {"ecdsabrp384t1", R_EC_BRP384T1},
 | |
|     {"ecdsabrp512r1", R_EC_BRP512R1},
 | |
|     {"ecdsabrp512t1", R_EC_BRP512T1}
 | |
| };
 | |
| enum { R_EC_X25519 = ECDSA_NUM, R_EC_X448, EC_NUM };
 | |
| /* list of ecdh curves, extension of |ecdsa_choices| list above */
 | |
| static const OPT_PAIR ecdh_choices[EC_NUM] = {
 | |
|     {"ecdhp160", R_EC_P160},
 | |
|     {"ecdhp192", R_EC_P192},
 | |
|     {"ecdhp224", R_EC_P224},
 | |
|     {"ecdhp256", R_EC_P256},
 | |
|     {"ecdhp384", R_EC_P384},
 | |
|     {"ecdhp521", R_EC_P521},
 | |
| #ifndef OPENSSL_NO_EC2M
 | |
|     {"ecdhk163", R_EC_K163},
 | |
|     {"ecdhk233", R_EC_K233},
 | |
|     {"ecdhk283", R_EC_K283},
 | |
|     {"ecdhk409", R_EC_K409},
 | |
|     {"ecdhk571", R_EC_K571},
 | |
|     {"ecdhb163", R_EC_B163},
 | |
|     {"ecdhb233", R_EC_B233},
 | |
|     {"ecdhb283", R_EC_B283},
 | |
|     {"ecdhb409", R_EC_B409},
 | |
|     {"ecdhb571", R_EC_B571},
 | |
| #endif
 | |
|     {"ecdhbrp256r1", R_EC_BRP256R1},
 | |
|     {"ecdhbrp256t1", R_EC_BRP256T1},
 | |
|     {"ecdhbrp384r1", R_EC_BRP384R1},
 | |
|     {"ecdhbrp384t1", R_EC_BRP384T1},
 | |
|     {"ecdhbrp512r1", R_EC_BRP512R1},
 | |
|     {"ecdhbrp512t1", R_EC_BRP512T1},
 | |
|     {"ecdhx25519", R_EC_X25519},
 | |
|     {"ecdhx448", R_EC_X448}
 | |
| };
 | |
| 
 | |
| static double ecdh_results[EC_NUM][1];      /* 1 op: derivation */
 | |
| static double ecdsa_results[ECDSA_NUM][2];  /* 2 ops: sign then verify */
 | |
| 
 | |
| enum { R_EC_Ed25519, R_EC_Ed448, EdDSA_NUM };
 | |
| static const OPT_PAIR eddsa_choices[EdDSA_NUM] = {
 | |
|     {"ed25519", R_EC_Ed25519},
 | |
|     {"ed448", R_EC_Ed448}
 | |
| 
 | |
| };
 | |
| static double eddsa_results[EdDSA_NUM][2];    /* 2 ops: sign then verify */
 | |
| 
 | |
| #ifndef OPENSSL_NO_SM2
 | |
| enum { R_EC_CURVESM2, SM2_NUM };
 | |
| static const OPT_PAIR sm2_choices[SM2_NUM] = {
 | |
|     {"curveSM2", R_EC_CURVESM2}
 | |
| };
 | |
| # define SM2_ID        "TLSv1.3+GM+Cipher+Suite"
 | |
| # define SM2_ID_LEN    sizeof("TLSv1.3+GM+Cipher+Suite") - 1
 | |
| static double sm2_results[SM2_NUM][2];    /* 2 ops: sign then verify */
 | |
| #endif /* OPENSSL_NO_SM2 */
 | |
| 
 | |
| #define COND(unused_cond) (run && count < 0x7fffffff)
 | |
| #define COUNT(d) (count)
 | |
| 
 | |
| typedef struct loopargs_st {
 | |
|     ASYNC_JOB *inprogress_job;
 | |
|     ASYNC_WAIT_CTX *wait_ctx;
 | |
|     unsigned char *buf;
 | |
|     unsigned char *buf2;
 | |
|     unsigned char *buf_malloc;
 | |
|     unsigned char *buf2_malloc;
 | |
|     unsigned char *key;
 | |
|     size_t buflen;
 | |
|     size_t sigsize;
 | |
|     EVP_PKEY_CTX *rsa_sign_ctx[RSA_NUM];
 | |
|     EVP_PKEY_CTX *rsa_verify_ctx[RSA_NUM];
 | |
|     EVP_PKEY_CTX *dsa_sign_ctx[DSA_NUM];
 | |
|     EVP_PKEY_CTX *dsa_verify_ctx[DSA_NUM];
 | |
|     EVP_PKEY_CTX *ecdsa_sign_ctx[ECDSA_NUM];
 | |
|     EVP_PKEY_CTX *ecdsa_verify_ctx[ECDSA_NUM];
 | |
|     EVP_PKEY_CTX *ecdh_ctx[EC_NUM];
 | |
|     EVP_MD_CTX *eddsa_ctx[EdDSA_NUM];
 | |
|     EVP_MD_CTX *eddsa_ctx2[EdDSA_NUM];
 | |
| #ifndef OPENSSL_NO_SM2
 | |
|     EVP_MD_CTX *sm2_ctx[SM2_NUM];
 | |
|     EVP_MD_CTX *sm2_vfy_ctx[SM2_NUM];
 | |
|     EVP_PKEY *sm2_pkey[SM2_NUM];
 | |
| #endif
 | |
|     unsigned char *secret_a;
 | |
|     unsigned char *secret_b;
 | |
|     size_t outlen[EC_NUM];
 | |
| #ifndef OPENSSL_NO_DH
 | |
|     EVP_PKEY_CTX *ffdh_ctx[FFDH_NUM];
 | |
|     unsigned char *secret_ff_a;
 | |
|     unsigned char *secret_ff_b;
 | |
| #endif
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     EVP_MAC_CTX *mctx;
 | |
| } loopargs_t;
 | |
| static int run_benchmark(int async_jobs, int (*loop_function) (void *),
 | |
|                          loopargs_t * loopargs);
 | |
| 
 | |
| static unsigned int testnum;
 | |
| 
 | |
| /* Nb of iterations to do per algorithm and key-size */
 | |
| static long c[ALGOR_NUM][SIZE_NUM];
 | |
| 
 | |
| static char *evp_mac_mdname = "md5";
 | |
| static char *evp_hmac_name = NULL;
 | |
| static const char *evp_md_name = NULL;
 | |
| static char *evp_mac_ciphername = "aes-128-cbc";
 | |
| static char *evp_cmac_name = NULL;
 | |
| 
 | |
| static int have_md(const char *name)
 | |
| {
 | |
|     int ret = 0;
 | |
|     EVP_MD *md = NULL;
 | |
| 
 | |
|     if (opt_md_silent(name, &md)) {
 | |
|         EVP_MD_CTX *ctx = EVP_MD_CTX_new();
 | |
| 
 | |
|         if (ctx != NULL && EVP_DigestInit(ctx, md) > 0)
 | |
|             ret = 1;
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         EVP_MD_free(md);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int have_cipher(const char *name)
 | |
| {
 | |
|     int ret = 0;
 | |
|     EVP_CIPHER *cipher = NULL;
 | |
| 
 | |
|     if (opt_cipher_silent(name, &cipher)) {
 | |
|         EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 | |
| 
 | |
|         if (ctx != NULL
 | |
|             && EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, 1) > 0)
 | |
|             ret = 1;
 | |
|         EVP_CIPHER_CTX_free(ctx);
 | |
|         EVP_CIPHER_free(cipher);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int EVP_Digest_loop(const char *mdname, int algindex, void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char digest[EVP_MAX_MD_SIZE];
 | |
|     int count;
 | |
|     EVP_MD *md = NULL;
 | |
| 
 | |
|     if (!opt_md_silent(mdname, &md))
 | |
|         return -1;
 | |
|     for (count = 0; COND(c[algindex][testnum]); count++) {
 | |
|         if (!EVP_Digest(buf, (size_t)lengths[testnum], digest, NULL, md,
 | |
|                         NULL)) {
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     EVP_MD_free(md);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int EVP_Digest_md_loop(void *args)
 | |
| {
 | |
|     return EVP_Digest_loop(evp_md_name, D_EVP, args);
 | |
| }
 | |
| 
 | |
| static int EVP_Digest_MD2_loop(void *args)
 | |
| {
 | |
|     return EVP_Digest_loop("md2", D_MD2, args);
 | |
| }
 | |
| 
 | |
| static int EVP_Digest_MDC2_loop(void *args)
 | |
| {
 | |
|     return EVP_Digest_loop("mdc2", D_MDC2, args);
 | |
| }
 | |
| 
 | |
| static int EVP_Digest_MD4_loop(void *args)
 | |
| {
 | |
|     return EVP_Digest_loop("md4", D_MD4, args);
 | |
| }
 | |
| 
 | |
| static int MD5_loop(void *args)
 | |
| {
 | |
|     return EVP_Digest_loop("md5", D_MD5, args);
 | |
| }
 | |
| 
 | |
| static int EVP_MAC_loop(int algindex, void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_MAC_CTX *mctx = tempargs->mctx;
 | |
|     unsigned char mac[EVP_MAX_MD_SIZE];
 | |
|     int count;
 | |
| 
 | |
|     for (count = 0; COND(c[algindex][testnum]); count++) {
 | |
|         size_t outl;
 | |
| 
 | |
|         if (!EVP_MAC_init(mctx, NULL, 0, NULL)
 | |
|             || !EVP_MAC_update(mctx, buf, lengths[testnum])
 | |
|             || !EVP_MAC_final(mctx, mac, &outl, sizeof(mac)))
 | |
|             return -1;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int HMAC_loop(void *args)
 | |
| {
 | |
|     return EVP_MAC_loop(D_HMAC, args);
 | |
| }
 | |
| 
 | |
| static int CMAC_loop(void *args)
 | |
| {
 | |
|     return EVP_MAC_loop(D_EVP_CMAC, args);
 | |
| }
 | |
| 
 | |
| static int SHA1_loop(void *args)
 | |
| {
 | |
|     return EVP_Digest_loop("sha1", D_SHA1, args);
 | |
| }
 | |
| 
 | |
| static int SHA256_loop(void *args)
 | |
| {
 | |
|     return EVP_Digest_loop("sha256", D_SHA256, args);
 | |
| }
 | |
| 
 | |
| static int SHA512_loop(void *args)
 | |
| {
 | |
|     return EVP_Digest_loop("sha512", D_SHA512, args);
 | |
| }
 | |
| 
 | |
| static int WHIRLPOOL_loop(void *args)
 | |
| {
 | |
|     return EVP_Digest_loop("whirlpool", D_WHIRLPOOL, args);
 | |
| }
 | |
| 
 | |
| static int EVP_Digest_RMD160_loop(void *args)
 | |
| {
 | |
|     return EVP_Digest_loop("ripemd160", D_RMD160, args);
 | |
| }
 | |
| 
 | |
| static int algindex;
 | |
| 
 | |
| static int EVP_Cipher_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     int count;
 | |
| 
 | |
|     if (tempargs->ctx == NULL)
 | |
|         return -1;
 | |
|     for (count = 0; COND(c[algindex][testnum]); count++)
 | |
|         if (EVP_Cipher(tempargs->ctx, buf, buf, (size_t)lengths[testnum]) <= 0)
 | |
|             return -1;
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int GHASH_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_MAC_CTX *mctx = tempargs->mctx;
 | |
|     int count;
 | |
| 
 | |
|     /* just do the update in the loop to be comparable with 1.1.1 */
 | |
|     for (count = 0; COND(c[D_GHASH][testnum]); count++) {
 | |
|         if (!EVP_MAC_update(mctx, buf, lengths[testnum]))
 | |
|             return -1;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| #define MAX_BLOCK_SIZE 128
 | |
| 
 | |
| static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
 | |
| 
 | |
| static EVP_CIPHER_CTX *init_evp_cipher_ctx(const char *ciphername,
 | |
|                                            const unsigned char *key,
 | |
|                                            int keylen)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx = NULL;
 | |
|     EVP_CIPHER *cipher = NULL;
 | |
| 
 | |
|     if (!opt_cipher_silent(ciphername, &cipher))
 | |
|         return NULL;
 | |
| 
 | |
|     if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
 | |
|         goto end;
 | |
| 
 | |
|     if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, 1)) {
 | |
|         EVP_CIPHER_CTX_free(ctx);
 | |
|         ctx = NULL;
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     if (!EVP_CIPHER_CTX_set_key_length(ctx, keylen)) {
 | |
|         EVP_CIPHER_CTX_free(ctx);
 | |
|         ctx = NULL;
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     if (!EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, 1)) {
 | |
|         EVP_CIPHER_CTX_free(ctx);
 | |
|         ctx = NULL;
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
| end:
 | |
|     EVP_CIPHER_free(cipher);
 | |
|     return ctx;
 | |
| }
 | |
| 
 | |
| static int RAND_bytes_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     int count;
 | |
| 
 | |
|     for (count = 0; COND(c[D_RAND][testnum]); count++)
 | |
|         RAND_bytes(buf, lengths[testnum]);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int decrypt = 0;
 | |
| static int EVP_Update_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_CIPHER_CTX *ctx = tempargs->ctx;
 | |
|     int outl, count, rc;
 | |
| 
 | |
|     if (decrypt) {
 | |
|         for (count = 0; COND(c[D_EVP][testnum]); count++) {
 | |
|             rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
 | |
|             if (rc != 1) {
 | |
|                 /* reset iv in case of counter overflow */
 | |
|                 EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         for (count = 0; COND(c[D_EVP][testnum]); count++) {
 | |
|             rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
 | |
|             if (rc != 1) {
 | |
|                 /* reset iv in case of counter overflow */
 | |
|                 EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (decrypt)
 | |
|         EVP_DecryptFinal_ex(ctx, buf, &outl);
 | |
|     else
 | |
|         EVP_EncryptFinal_ex(ctx, buf, &outl);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CCM does not support streaming. For the purpose of performance measurement,
 | |
|  * each message is encrypted using the same (key,iv)-pair. Do not use this
 | |
|  * code in your application.
 | |
|  */
 | |
| static int EVP_Update_loop_ccm(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_CIPHER_CTX *ctx = tempargs->ctx;
 | |
|     int outl, count;
 | |
|     unsigned char tag[12];
 | |
| 
 | |
|     if (decrypt) {
 | |
|         for (count = 0; COND(c[D_EVP][testnum]); count++) {
 | |
|             (void)EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag),
 | |
|                                       tag);
 | |
|             /* reset iv */
 | |
|             (void)EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
 | |
|             /* counter is reset on every update */
 | |
|             (void)EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
 | |
|         }
 | |
|     } else {
 | |
|         for (count = 0; COND(c[D_EVP][testnum]); count++) {
 | |
|             /* restore iv length field */
 | |
|             (void)EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]);
 | |
|             /* counter is reset on every update */
 | |
|             (void)EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
 | |
|         }
 | |
|     }
 | |
|     if (decrypt)
 | |
|         (void)EVP_DecryptFinal_ex(ctx, buf, &outl);
 | |
|     else
 | |
|         (void)EVP_EncryptFinal_ex(ctx, buf, &outl);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To make AEAD benchmarking more relevant perform TLS-like operations,
 | |
|  * 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as
 | |
|  * payload length is not actually limited by 16KB...
 | |
|  */
 | |
| static int EVP_Update_loop_aead(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_CIPHER_CTX *ctx = tempargs->ctx;
 | |
|     int outl, count;
 | |
|     unsigned char aad[13] = { 0xcc };
 | |
|     unsigned char faketag[16] = { 0xcc };
 | |
| 
 | |
|     if (decrypt) {
 | |
|         for (count = 0; COND(c[D_EVP][testnum]); count++) {
 | |
|             (void)EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
 | |
|             (void)EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
 | |
|                                       sizeof(faketag), faketag);
 | |
|             (void)EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad));
 | |
|             (void)EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
 | |
|             (void)EVP_DecryptFinal_ex(ctx, buf + outl, &outl);
 | |
|         }
 | |
|     } else {
 | |
|         for (count = 0; COND(c[D_EVP][testnum]); count++) {
 | |
|             (void)EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv);
 | |
|             (void)EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad));
 | |
|             (void)EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
 | |
|             (void)EVP_EncryptFinal_ex(ctx, buf + outl, &outl);
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static long rsa_c[RSA_NUM][2];  /* # RSA iteration test */
 | |
| 
 | |
| static int RSA_sign_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     size_t *rsa_num = &tempargs->sigsize;
 | |
|     EVP_PKEY_CTX **rsa_sign_ctx = tempargs->rsa_sign_ctx;
 | |
|     int ret, count;
 | |
| 
 | |
|     for (count = 0; COND(rsa_c[testnum][0]); count++) {
 | |
|         *rsa_num = tempargs->buflen;
 | |
|         ret = EVP_PKEY_sign(rsa_sign_ctx[testnum], buf2, rsa_num, buf, 36);
 | |
|         if (ret <= 0) {
 | |
|             BIO_printf(bio_err, "RSA sign failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int RSA_verify_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     size_t rsa_num = tempargs->sigsize;
 | |
|     EVP_PKEY_CTX **rsa_verify_ctx = tempargs->rsa_verify_ctx;
 | |
|     int ret, count;
 | |
| 
 | |
|     for (count = 0; COND(rsa_c[testnum][1]); count++) {
 | |
|         ret = EVP_PKEY_verify(rsa_verify_ctx[testnum], buf2, rsa_num, buf, 36);
 | |
|         if (ret <= 0) {
 | |
|             BIO_printf(bio_err, "RSA verify failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| #ifndef OPENSSL_NO_DH
 | |
| static long ffdh_c[FFDH_NUM][1];
 | |
| 
 | |
| static int FFDH_derive_key_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     EVP_PKEY_CTX *ffdh_ctx = tempargs->ffdh_ctx[testnum];
 | |
|     unsigned char *derived_secret = tempargs->secret_ff_a;
 | |
|     size_t outlen = MAX_FFDH_SIZE;
 | |
|     int count;
 | |
| 
 | |
|     for (count = 0; COND(ffdh_c[testnum][0]); count++)
 | |
|         EVP_PKEY_derive(ffdh_ctx, derived_secret, &outlen);
 | |
|     return count;
 | |
| }
 | |
| #endif /* OPENSSL_NO_DH */
 | |
| 
 | |
| static long dsa_c[DSA_NUM][2];
 | |
| static int DSA_sign_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     size_t *dsa_num = &tempargs->sigsize;
 | |
|     EVP_PKEY_CTX **dsa_sign_ctx = tempargs->dsa_sign_ctx;
 | |
|     int ret, count;
 | |
| 
 | |
|     for (count = 0; COND(dsa_c[testnum][0]); count++) {
 | |
|         *dsa_num = tempargs->buflen;
 | |
|         ret = EVP_PKEY_sign(dsa_sign_ctx[testnum], buf2, dsa_num, buf, 20);
 | |
|         if (ret <= 0) {
 | |
|             BIO_printf(bio_err, "DSA sign failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int DSA_verify_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     size_t dsa_num = tempargs->sigsize;
 | |
|     EVP_PKEY_CTX **dsa_verify_ctx = tempargs->dsa_verify_ctx;
 | |
|     int ret, count;
 | |
| 
 | |
|     for (count = 0; COND(dsa_c[testnum][1]); count++) {
 | |
|         ret = EVP_PKEY_verify(dsa_verify_ctx[testnum], buf2, dsa_num, buf, 20);
 | |
|         if (ret <= 0) {
 | |
|             BIO_printf(bio_err, "DSA verify failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static long ecdsa_c[ECDSA_NUM][2];
 | |
| static int ECDSA_sign_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     size_t *ecdsa_num = &tempargs->sigsize;
 | |
|     EVP_PKEY_CTX **ecdsa_sign_ctx = tempargs->ecdsa_sign_ctx;
 | |
|     int ret, count;
 | |
| 
 | |
|     for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
 | |
|         *ecdsa_num = tempargs->buflen;
 | |
|         ret = EVP_PKEY_sign(ecdsa_sign_ctx[testnum], buf2, ecdsa_num, buf, 20);
 | |
|         if (ret <= 0) {
 | |
|             BIO_printf(bio_err, "ECDSA sign failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int ECDSA_verify_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     size_t ecdsa_num = tempargs->sigsize;
 | |
|     EVP_PKEY_CTX **ecdsa_verify_ctx = tempargs->ecdsa_verify_ctx;
 | |
|     int ret, count;
 | |
| 
 | |
|     for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
 | |
|         ret = EVP_PKEY_verify(ecdsa_verify_ctx[testnum], buf2, ecdsa_num,
 | |
|                               buf, 20);
 | |
|         if (ret <= 0) {
 | |
|             BIO_printf(bio_err, "ECDSA verify failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| /* ******************************************************************** */
 | |
| static long ecdh_c[EC_NUM][1];
 | |
| 
 | |
| static int ECDH_EVP_derive_key_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum];
 | |
|     unsigned char *derived_secret = tempargs->secret_a;
 | |
|     int count;
 | |
|     size_t *outlen = &(tempargs->outlen[testnum]);
 | |
| 
 | |
|     for (count = 0; COND(ecdh_c[testnum][0]); count++)
 | |
|         EVP_PKEY_derive(ctx, derived_secret, outlen);
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static long eddsa_c[EdDSA_NUM][2];
 | |
| static int EdDSA_sign_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_MD_CTX **edctx = tempargs->eddsa_ctx;
 | |
|     unsigned char *eddsasig = tempargs->buf2;
 | |
|     size_t *eddsasigsize = &tempargs->sigsize;
 | |
|     int ret, count;
 | |
| 
 | |
|     for (count = 0; COND(eddsa_c[testnum][0]); count++) {
 | |
|         ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
 | |
|         if (ret == 0) {
 | |
|             BIO_printf(bio_err, "EdDSA sign failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int EdDSA_verify_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_MD_CTX **edctx = tempargs->eddsa_ctx2;
 | |
|     unsigned char *eddsasig = tempargs->buf2;
 | |
|     size_t eddsasigsize = tempargs->sigsize;
 | |
|     int ret, count;
 | |
| 
 | |
|     for (count = 0; COND(eddsa_c[testnum][1]); count++) {
 | |
|         ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
 | |
|         if (ret != 1) {
 | |
|             BIO_printf(bio_err, "EdDSA verify failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| #ifndef OPENSSL_NO_SM2
 | |
| static long sm2_c[SM2_NUM][2];
 | |
| static int SM2_sign_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_MD_CTX **sm2ctx = tempargs->sm2_ctx;
 | |
|     unsigned char *sm2sig = tempargs->buf2;
 | |
|     size_t sm2sigsize;
 | |
|     int ret, count;
 | |
|     EVP_PKEY **sm2_pkey = tempargs->sm2_pkey;
 | |
|     const size_t max_size = EVP_PKEY_get_size(sm2_pkey[testnum]);
 | |
| 
 | |
|     for (count = 0; COND(sm2_c[testnum][0]); count++) {
 | |
|         sm2sigsize = max_size;
 | |
| 
 | |
|         if (!EVP_DigestSignInit(sm2ctx[testnum], NULL, EVP_sm3(),
 | |
|                                 NULL, sm2_pkey[testnum])) {
 | |
|             BIO_printf(bio_err, "SM2 init sign failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|         ret = EVP_DigestSign(sm2ctx[testnum], sm2sig, &sm2sigsize,
 | |
|                              buf, 20);
 | |
|         if (ret == 0) {
 | |
|             BIO_printf(bio_err, "SM2 sign failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|         /* update the latest returned size and always use the fixed buffer size */
 | |
|         tempargs->sigsize = sm2sigsize;
 | |
|     }
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int SM2_verify_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_MD_CTX **sm2ctx = tempargs->sm2_vfy_ctx;
 | |
|     unsigned char *sm2sig = tempargs->buf2;
 | |
|     size_t sm2sigsize = tempargs->sigsize;
 | |
|     int ret, count;
 | |
|     EVP_PKEY **sm2_pkey = tempargs->sm2_pkey;
 | |
| 
 | |
|     for (count = 0; COND(sm2_c[testnum][1]); count++) {
 | |
|         if (!EVP_DigestVerifyInit(sm2ctx[testnum], NULL, EVP_sm3(),
 | |
|                                   NULL, sm2_pkey[testnum])) {
 | |
|             BIO_printf(bio_err, "SM2 verify init failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|         ret = EVP_DigestVerify(sm2ctx[testnum], sm2sig, sm2sigsize,
 | |
|                                buf, 20);
 | |
|         if (ret != 1) {
 | |
|             BIO_printf(bio_err, "SM2 verify failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| #endif                         /* OPENSSL_NO_SM2 */
 | |
| 
 | |
| static int run_benchmark(int async_jobs,
 | |
|                          int (*loop_function) (void *), loopargs_t * loopargs)
 | |
| {
 | |
|     int job_op_count = 0;
 | |
|     int total_op_count = 0;
 | |
|     int num_inprogress = 0;
 | |
|     int error = 0, i = 0, ret = 0;
 | |
|     OSSL_ASYNC_FD job_fd = 0;
 | |
|     size_t num_job_fds = 0;
 | |
| 
 | |
|     if (async_jobs == 0) {
 | |
|         return loop_function((void *)&loopargs);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < async_jobs && !error; i++) {
 | |
|         loopargs_t *looparg_item = loopargs + i;
 | |
| 
 | |
|         /* Copy pointer content (looparg_t item address) into async context */
 | |
|         ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx,
 | |
|                               &job_op_count, loop_function,
 | |
|                               (void *)&looparg_item, sizeof(looparg_item));
 | |
|         switch (ret) {
 | |
|         case ASYNC_PAUSE:
 | |
|             ++num_inprogress;
 | |
|             break;
 | |
|         case ASYNC_FINISH:
 | |
|             if (job_op_count == -1) {
 | |
|                 error = 1;
 | |
|             } else {
 | |
|                 total_op_count += job_op_count;
 | |
|             }
 | |
|             break;
 | |
|         case ASYNC_NO_JOBS:
 | |
|         case ASYNC_ERR:
 | |
|             BIO_printf(bio_err, "Failure in the job\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             error = 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     while (num_inprogress > 0) {
 | |
| #if defined(OPENSSL_SYS_WINDOWS)
 | |
|         DWORD avail = 0;
 | |
| #elif defined(OPENSSL_SYS_UNIX)
 | |
|         int select_result = 0;
 | |
|         OSSL_ASYNC_FD max_fd = 0;
 | |
|         fd_set waitfdset;
 | |
| 
 | |
|         FD_ZERO(&waitfdset);
 | |
| 
 | |
|         for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
 | |
|             if (loopargs[i].inprogress_job == NULL)
 | |
|                 continue;
 | |
| 
 | |
|             if (!ASYNC_WAIT_CTX_get_all_fds
 | |
|                 (loopargs[i].wait_ctx, NULL, &num_job_fds)
 | |
|                 || num_job_fds > 1) {
 | |
|                 BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 error = 1;
 | |
|                 break;
 | |
|             }
 | |
|             ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
 | |
|                                        &num_job_fds);
 | |
|             FD_SET(job_fd, &waitfdset);
 | |
|             if (job_fd > max_fd)
 | |
|                 max_fd = job_fd;
 | |
|         }
 | |
| 
 | |
|         if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
 | |
|                        "Decrease the value of async_jobs\n",
 | |
|                        max_fd, FD_SETSIZE);
 | |
|             ERR_print_errors(bio_err);
 | |
|             error = 1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
 | |
|         if (select_result == -1 && errno == EINTR)
 | |
|             continue;
 | |
| 
 | |
|         if (select_result == -1) {
 | |
|             BIO_printf(bio_err, "Failure in the select\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             error = 1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (select_result == 0)
 | |
|             continue;
 | |
| #endif
 | |
| 
 | |
|         for (i = 0; i < async_jobs; i++) {
 | |
|             if (loopargs[i].inprogress_job == NULL)
 | |
|                 continue;
 | |
| 
 | |
|             if (!ASYNC_WAIT_CTX_get_all_fds
 | |
|                 (loopargs[i].wait_ctx, NULL, &num_job_fds)
 | |
|                 || num_job_fds > 1) {
 | |
|                 BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 error = 1;
 | |
|                 break;
 | |
|             }
 | |
|             ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
 | |
|                                        &num_job_fds);
 | |
| 
 | |
| #if defined(OPENSSL_SYS_UNIX)
 | |
|             if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
 | |
|                 continue;
 | |
| #elif defined(OPENSSL_SYS_WINDOWS)
 | |
|             if (num_job_fds == 1
 | |
|                 && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL)
 | |
|                 && avail > 0)
 | |
|                 continue;
 | |
| #endif
 | |
| 
 | |
|             ret = ASYNC_start_job(&loopargs[i].inprogress_job,
 | |
|                                   loopargs[i].wait_ctx, &job_op_count,
 | |
|                                   loop_function, (void *)(loopargs + i),
 | |
|                                   sizeof(loopargs_t));
 | |
|             switch (ret) {
 | |
|             case ASYNC_PAUSE:
 | |
|                 break;
 | |
|             case ASYNC_FINISH:
 | |
|                 if (job_op_count == -1) {
 | |
|                     error = 1;
 | |
|                 } else {
 | |
|                     total_op_count += job_op_count;
 | |
|                 }
 | |
|                 --num_inprogress;
 | |
|                 loopargs[i].inprogress_job = NULL;
 | |
|                 break;
 | |
|             case ASYNC_NO_JOBS:
 | |
|             case ASYNC_ERR:
 | |
|                 --num_inprogress;
 | |
|                 loopargs[i].inprogress_job = NULL;
 | |
|                 BIO_printf(bio_err, "Failure in the job\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 error = 1;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return error ? -1 : total_op_count;
 | |
| }
 | |
| 
 | |
| typedef struct ec_curve_st {
 | |
|     const char *name;
 | |
|     unsigned int nid;
 | |
|     unsigned int bits;
 | |
|     size_t sigsize; /* only used for EdDSA curves */
 | |
| } EC_CURVE;
 | |
| 
 | |
| static EVP_PKEY *get_ecdsa(const EC_CURVE *curve)
 | |
| {
 | |
|     EVP_PKEY_CTX *kctx = NULL;
 | |
|     EVP_PKEY *key = NULL;
 | |
| 
 | |
|     /* Ensure that the error queue is empty */
 | |
|     if (ERR_peek_error()) {
 | |
|         BIO_printf(bio_err,
 | |
|                    "WARNING: the error queue contains previous unhandled errors.\n");
 | |
|         ERR_print_errors(bio_err);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Let's try to create a ctx directly from the NID: this works for
 | |
|      * curves like Curve25519 that are not implemented through the low
 | |
|      * level EC interface.
 | |
|      * If this fails we try creating a EVP_PKEY_EC generic param ctx,
 | |
|      * then we set the curve by NID before deriving the actual keygen
 | |
|      * ctx for that specific curve.
 | |
|      */
 | |
|     kctx = EVP_PKEY_CTX_new_id(curve->nid, NULL);
 | |
|     if (kctx == NULL) {
 | |
|         EVP_PKEY_CTX *pctx = NULL;
 | |
|         EVP_PKEY *params = NULL;
 | |
|         /*
 | |
|          * If we reach this code EVP_PKEY_CTX_new_id() failed and a
 | |
|          * "int_ctx_new:unsupported algorithm" error was added to the
 | |
|          * error queue.
 | |
|          * We remove it from the error queue as we are handling it.
 | |
|          */
 | |
|         unsigned long error = ERR_peek_error();
 | |
| 
 | |
|         if (error == ERR_peek_last_error() /* oldest and latest errors match */
 | |
|             /* check that the error origin matches */
 | |
|             && ERR_GET_LIB(error) == ERR_LIB_EVP
 | |
|             && (ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM
 | |
|                 || ERR_GET_REASON(error) == ERR_R_UNSUPPORTED))
 | |
|             ERR_get_error(); /* pop error from queue */
 | |
|         if (ERR_peek_error()) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "Unhandled error in the error queue during EC key setup.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
|         /* Create the context for parameter generation */
 | |
|         if ((pctx = EVP_PKEY_CTX_new_from_name(NULL, "EC", NULL)) == NULL
 | |
|             || EVP_PKEY_paramgen_init(pctx) <= 0
 | |
|             || EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
 | |
|                                                       curve->nid) <= 0
 | |
|             || EVP_PKEY_paramgen(pctx, ¶ms) <= 0) {
 | |
|             BIO_printf(bio_err, "EC params init failure.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             EVP_PKEY_CTX_free(pctx);
 | |
|             return NULL;
 | |
|         }
 | |
|         EVP_PKEY_CTX_free(pctx);
 | |
| 
 | |
|         /* Create the context for the key generation */
 | |
|         kctx = EVP_PKEY_CTX_new(params, NULL);
 | |
|         EVP_PKEY_free(params);
 | |
|     }
 | |
|     if (kctx == NULL
 | |
|         || EVP_PKEY_keygen_init(kctx) <= 0
 | |
|         || EVP_PKEY_keygen(kctx, &key) <= 0) {
 | |
|         BIO_printf(bio_err, "EC key generation failure.\n");
 | |
|         ERR_print_errors(bio_err);
 | |
|         key = NULL;
 | |
|     }
 | |
|     EVP_PKEY_CTX_free(kctx);
 | |
|     return key;
 | |
| }
 | |
| 
 | |
| #define stop_it(do_it, test_num)\
 | |
|     memset(do_it + test_num, 0, OSSL_NELEM(do_it) - test_num);
 | |
| 
 | |
| int speed_main(int argc, char **argv)
 | |
| {
 | |
|     ENGINE *e = NULL;
 | |
|     loopargs_t *loopargs = NULL;
 | |
|     const char *prog;
 | |
|     const char *engine_id = NULL;
 | |
|     EVP_CIPHER *evp_cipher = NULL;
 | |
|     EVP_MAC *mac = NULL;
 | |
|     double d = 0.0;
 | |
|     OPTION_CHOICE o;
 | |
|     int async_init = 0, multiblock = 0, pr_header = 0;
 | |
|     uint8_t doit[ALGOR_NUM] = { 0 };
 | |
|     int ret = 1, misalign = 0, lengths_single = 0, aead = 0;
 | |
|     long count = 0;
 | |
|     unsigned int size_num = SIZE_NUM;
 | |
|     unsigned int i, k, loopargs_len = 0, async_jobs = 0;
 | |
|     int keylen;
 | |
|     int buflen;
 | |
|     BIGNUM *bn = NULL;
 | |
|     EVP_PKEY_CTX *genctx = NULL;
 | |
| #ifndef NO_FORK
 | |
|     int multi = 0;
 | |
| #endif
 | |
|     long op_count = 1;
 | |
|     openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS,
 | |
|                                     ECDSA_SECONDS, ECDH_SECONDS,
 | |
|                                     EdDSA_SECONDS, SM2_SECONDS,
 | |
|                                     FFDH_SECONDS };
 | |
| 
 | |
|     static const unsigned char key32[32] = {
 | |
|         0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
 | |
|         0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
 | |
|         0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
 | |
|         0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
 | |
|     };
 | |
|     static const unsigned char deskey[] = {
 | |
|         0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, /* key1 */
 | |
|         0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, /* key2 */
 | |
|         0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34  /* key3 */
 | |
|     };
 | |
|     static const struct {
 | |
|         const unsigned char *data;
 | |
|         unsigned int length;
 | |
|         unsigned int bits;
 | |
|     } rsa_keys[] = {
 | |
|         {   test512,   sizeof(test512),   512 },
 | |
|         {  test1024,  sizeof(test1024),  1024 },
 | |
|         {  test2048,  sizeof(test2048),  2048 },
 | |
|         {  test3072,  sizeof(test3072),  3072 },
 | |
|         {  test4096,  sizeof(test4096),  4096 },
 | |
|         {  test7680,  sizeof(test7680),  7680 },
 | |
|         { test15360, sizeof(test15360), 15360 }
 | |
|     };
 | |
|     uint8_t rsa_doit[RSA_NUM] = { 0 };
 | |
|     int primes = RSA_DEFAULT_PRIME_NUM;
 | |
| #ifndef OPENSSL_NO_DH
 | |
|     typedef struct ffdh_params_st {
 | |
|         const char *name;
 | |
|         unsigned int nid;
 | |
|         unsigned int bits;
 | |
|     } FFDH_PARAMS;
 | |
| 
 | |
|     static const FFDH_PARAMS ffdh_params[FFDH_NUM] = {
 | |
|         {"ffdh2048", NID_ffdhe2048, 2048},
 | |
|         {"ffdh3072", NID_ffdhe3072, 3072},
 | |
|         {"ffdh4096", NID_ffdhe4096, 4096},
 | |
|         {"ffdh6144", NID_ffdhe6144, 6144},
 | |
|         {"ffdh8192", NID_ffdhe8192, 8192}
 | |
|     };
 | |
|     uint8_t ffdh_doit[FFDH_NUM] = { 0 };
 | |
| 
 | |
| #endif /* OPENSSL_NO_DH */
 | |
|     static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
 | |
|     uint8_t dsa_doit[DSA_NUM] = { 0 };
 | |
|     /*
 | |
|      * We only test over the following curves as they are representative, To
 | |
|      * add tests over more curves, simply add the curve NID and curve name to
 | |
|      * the following arrays and increase the |ecdh_choices| and |ecdsa_choices|
 | |
|      * lists accordingly.
 | |
|      */
 | |
|     static const EC_CURVE ec_curves[EC_NUM] = {
 | |
|         /* Prime Curves */
 | |
|         {"secp160r1", NID_secp160r1, 160},
 | |
|         {"nistp192", NID_X9_62_prime192v1, 192},
 | |
|         {"nistp224", NID_secp224r1, 224},
 | |
|         {"nistp256", NID_X9_62_prime256v1, 256},
 | |
|         {"nistp384", NID_secp384r1, 384},
 | |
|         {"nistp521", NID_secp521r1, 521},
 | |
| #ifndef OPENSSL_NO_EC2M
 | |
|         /* Binary Curves */
 | |
|         {"nistk163", NID_sect163k1, 163},
 | |
|         {"nistk233", NID_sect233k1, 233},
 | |
|         {"nistk283", NID_sect283k1, 283},
 | |
|         {"nistk409", NID_sect409k1, 409},
 | |
|         {"nistk571", NID_sect571k1, 571},
 | |
|         {"nistb163", NID_sect163r2, 163},
 | |
|         {"nistb233", NID_sect233r1, 233},
 | |
|         {"nistb283", NID_sect283r1, 283},
 | |
|         {"nistb409", NID_sect409r1, 409},
 | |
|         {"nistb571", NID_sect571r1, 571},
 | |
| #endif
 | |
|         {"brainpoolP256r1", NID_brainpoolP256r1, 256},
 | |
|         {"brainpoolP256t1", NID_brainpoolP256t1, 256},
 | |
|         {"brainpoolP384r1", NID_brainpoolP384r1, 384},
 | |
|         {"brainpoolP384t1", NID_brainpoolP384t1, 384},
 | |
|         {"brainpoolP512r1", NID_brainpoolP512r1, 512},
 | |
|         {"brainpoolP512t1", NID_brainpoolP512t1, 512},
 | |
|         /* Other and ECDH only ones */
 | |
|         {"X25519", NID_X25519, 253},
 | |
|         {"X448", NID_X448, 448}
 | |
|     };
 | |
|     static const EC_CURVE ed_curves[EdDSA_NUM] = {
 | |
|         /* EdDSA */
 | |
|         {"Ed25519", NID_ED25519, 253, 64},
 | |
|         {"Ed448", NID_ED448, 456, 114}
 | |
|     };
 | |
| #ifndef OPENSSL_NO_SM2
 | |
|     static const EC_CURVE sm2_curves[SM2_NUM] = {
 | |
|         /* SM2 */
 | |
|         {"CurveSM2", NID_sm2, 256}
 | |
|     };
 | |
|     uint8_t sm2_doit[SM2_NUM] = { 0 };
 | |
| #endif
 | |
|     uint8_t ecdsa_doit[ECDSA_NUM] = { 0 };
 | |
|     uint8_t ecdh_doit[EC_NUM] = { 0 };
 | |
|     uint8_t eddsa_doit[EdDSA_NUM] = { 0 };
 | |
| 
 | |
|     /* checks declarated curves against choices list. */
 | |
|     OPENSSL_assert(ed_curves[EdDSA_NUM - 1].nid == NID_ED448);
 | |
|     OPENSSL_assert(strcmp(eddsa_choices[EdDSA_NUM - 1].name, "ed448") == 0);
 | |
| 
 | |
|     OPENSSL_assert(ec_curves[EC_NUM - 1].nid == NID_X448);
 | |
|     OPENSSL_assert(strcmp(ecdh_choices[EC_NUM - 1].name, "ecdhx448") == 0);
 | |
| 
 | |
|     OPENSSL_assert(ec_curves[ECDSA_NUM - 1].nid == NID_brainpoolP512t1);
 | |
|     OPENSSL_assert(strcmp(ecdsa_choices[ECDSA_NUM - 1].name, "ecdsabrp512t1") == 0);
 | |
| 
 | |
| #ifndef OPENSSL_NO_SM2
 | |
|     OPENSSL_assert(sm2_curves[SM2_NUM - 1].nid == NID_sm2);
 | |
|     OPENSSL_assert(strcmp(sm2_choices[SM2_NUM - 1].name, "curveSM2") == 0);
 | |
| #endif
 | |
| 
 | |
|     prog = opt_init(argc, argv, speed_options);
 | |
|     while ((o = opt_next()) != OPT_EOF) {
 | |
|         switch (o) {
 | |
|         case OPT_EOF:
 | |
|         case OPT_ERR:
 | |
|  opterr:
 | |
|             BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
 | |
|             goto end;
 | |
|         case OPT_HELP:
 | |
|             opt_help(speed_options);
 | |
|             ret = 0;
 | |
|             goto end;
 | |
|         case OPT_ELAPSED:
 | |
|             usertime = 0;
 | |
|             break;
 | |
|         case OPT_EVP:
 | |
|             if (doit[D_EVP]) {
 | |
|                 BIO_printf(bio_err, "%s: -evp option cannot be used more than once\n", prog);
 | |
|                 goto opterr;
 | |
|             }
 | |
|             ERR_set_mark();
 | |
|             if (!opt_cipher_silent(opt_arg(), &evp_cipher)) {
 | |
|                 if (have_md(opt_arg()))
 | |
|                     evp_md_name = opt_arg();
 | |
|             }
 | |
|             if (evp_cipher == NULL && evp_md_name == NULL) {
 | |
|                 ERR_clear_last_mark();
 | |
|                 BIO_printf(bio_err,
 | |
|                            "%s: %s is an unknown cipher or digest\n",
 | |
|                            prog, opt_arg());
 | |
|                 goto end;
 | |
|             }
 | |
|             ERR_pop_to_mark();
 | |
|             doit[D_EVP] = 1;
 | |
|             break;
 | |
|         case OPT_HMAC:
 | |
|             if (!have_md(opt_arg())) {
 | |
|                 BIO_printf(bio_err, "%s: %s is an unknown digest\n",
 | |
|                            prog, opt_arg());
 | |
|                 goto end;
 | |
|             }
 | |
|             evp_mac_mdname = opt_arg();
 | |
|             doit[D_HMAC] = 1;
 | |
|             break;
 | |
|         case OPT_CMAC:
 | |
|             if (!have_cipher(opt_arg())) {
 | |
|                 BIO_printf(bio_err, "%s: %s is an unknown cipher\n",
 | |
|                            prog, opt_arg());
 | |
|                 goto end;
 | |
|             }
 | |
|             evp_mac_ciphername = opt_arg();
 | |
|             doit[D_EVP_CMAC] = 1;
 | |
|             break;
 | |
|         case OPT_DECRYPT:
 | |
|             decrypt = 1;
 | |
|             break;
 | |
|         case OPT_ENGINE:
 | |
|             /*
 | |
|              * In a forked execution, an engine might need to be
 | |
|              * initialised by each child process, not by the parent.
 | |
|              * So store the name here and run setup_engine() later on.
 | |
|              */
 | |
|             engine_id = opt_arg();
 | |
|             break;
 | |
|         case OPT_MULTI:
 | |
| #ifndef NO_FORK
 | |
|             multi = atoi(opt_arg());
 | |
|             if ((size_t)multi >= SIZE_MAX / sizeof(int)) {
 | |
|                 BIO_printf(bio_err, "%s: multi argument too large\n", prog);
 | |
|                 return 0;
 | |
|             }
 | |
| #endif
 | |
|             break;
 | |
|         case OPT_ASYNCJOBS:
 | |
| #ifndef OPENSSL_NO_ASYNC
 | |
|             async_jobs = atoi(opt_arg());
 | |
|             if (!ASYNC_is_capable()) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "%s: async_jobs specified but async not supported\n",
 | |
|                            prog);
 | |
|                 goto opterr;
 | |
|             }
 | |
|             if (async_jobs > 99999) {
 | |
|                 BIO_printf(bio_err, "%s: too many async_jobs\n", prog);
 | |
|                 goto opterr;
 | |
|             }
 | |
| #endif
 | |
|             break;
 | |
|         case OPT_MISALIGN:
 | |
|             misalign = opt_int_arg();
 | |
|             if (misalign > MISALIGN) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "%s: Maximum offset is %d\n", prog, MISALIGN);
 | |
|                 goto opterr;
 | |
|             }
 | |
|             break;
 | |
|         case OPT_MR:
 | |
|             mr = 1;
 | |
|             break;
 | |
|         case OPT_MB:
 | |
|             multiblock = 1;
 | |
| #ifdef OPENSSL_NO_MULTIBLOCK
 | |
|             BIO_printf(bio_err,
 | |
|                        "%s: -mb specified but multi-block support is disabled\n",
 | |
|                        prog);
 | |
|             goto end;
 | |
| #endif
 | |
|             break;
 | |
|         case OPT_R_CASES:
 | |
|             if (!opt_rand(o))
 | |
|                 goto end;
 | |
|             break;
 | |
|         case OPT_PROV_CASES:
 | |
|             if (!opt_provider(o))
 | |
|                 goto end;
 | |
|             break;
 | |
|         case OPT_PRIMES:
 | |
|             primes = opt_int_arg();
 | |
|             break;
 | |
|         case OPT_SECONDS:
 | |
|             seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa
 | |
|                         = seconds.ecdh = seconds.eddsa
 | |
|                         = seconds.sm2 = seconds.ffdh = atoi(opt_arg());
 | |
|             break;
 | |
|         case OPT_BYTES:
 | |
|             lengths_single = atoi(opt_arg());
 | |
|             lengths = &lengths_single;
 | |
|             size_num = 1;
 | |
|             break;
 | |
|         case OPT_AEAD:
 | |
|             aead = 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Remaining arguments are algorithms. */
 | |
|     argc = opt_num_rest();
 | |
|     argv = opt_rest();
 | |
| 
 | |
|     if (!app_RAND_load())
 | |
|         goto end;
 | |
| 
 | |
|     for (; *argv; argv++) {
 | |
|         const char *algo = *argv;
 | |
| 
 | |
|         if (opt_found(algo, doit_choices, &i)) {
 | |
|             doit[i] = 1;
 | |
|             continue;
 | |
|         }
 | |
|         if (strcmp(algo, "des") == 0) {
 | |
|             doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
 | |
|             continue;
 | |
|         }
 | |
|         if (strcmp(algo, "sha") == 0) {
 | |
|             doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
 | |
|             continue;
 | |
|         }
 | |
| #ifndef OPENSSL_NO_DEPRECATED_3_0
 | |
|         if (strcmp(algo, "openssl") == 0) /* just for compatibility */
 | |
|             continue;
 | |
| #endif
 | |
|         if (HAS_PREFIX(algo, "rsa")) {
 | |
|             if (algo[sizeof("rsa") - 1] == '\0') {
 | |
|                 memset(rsa_doit, 1, sizeof(rsa_doit));
 | |
|                 continue;
 | |
|             }
 | |
|             if (opt_found(algo, rsa_choices, &i)) {
 | |
|                 rsa_doit[i] = 1;
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
| #ifndef OPENSSL_NO_DH
 | |
|         if (HAS_PREFIX(algo, "ffdh")) {
 | |
|             if (algo[sizeof("ffdh") - 1] == '\0') {
 | |
|                 memset(ffdh_doit, 1, sizeof(ffdh_doit));
 | |
|                 continue;
 | |
|             }
 | |
|             if (opt_found(algo, ffdh_choices, &i)) {
 | |
|                 ffdh_doit[i] = 2;
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         if (HAS_PREFIX(algo, "dsa")) {
 | |
|             if (algo[sizeof("dsa") - 1] == '\0') {
 | |
|                 memset(dsa_doit, 1, sizeof(dsa_doit));
 | |
|                 continue;
 | |
|             }
 | |
|             if (opt_found(algo, dsa_choices, &i)) {
 | |
|                 dsa_doit[i] = 2;
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
|         if (strcmp(algo, "aes") == 0) {
 | |
|             doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1;
 | |
|             continue;
 | |
|         }
 | |
|         if (strcmp(algo, "camellia") == 0) {
 | |
|             doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1;
 | |
|             continue;
 | |
|         }
 | |
|         if (HAS_PREFIX(algo, "ecdsa")) {
 | |
|             if (algo[sizeof("ecdsa") - 1] == '\0') {
 | |
|                 memset(ecdsa_doit, 1, sizeof(ecdsa_doit));
 | |
|                 continue;
 | |
|             }
 | |
|             if (opt_found(algo, ecdsa_choices, &i)) {
 | |
|                 ecdsa_doit[i] = 2;
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
|         if (HAS_PREFIX(algo, "ecdh")) {
 | |
|             if (algo[sizeof("ecdh") - 1] == '\0') {
 | |
|                 memset(ecdh_doit, 1, sizeof(ecdh_doit));
 | |
|                 continue;
 | |
|             }
 | |
|             if (opt_found(algo, ecdh_choices, &i)) {
 | |
|                 ecdh_doit[i] = 2;
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
|         if (strcmp(algo, "eddsa") == 0) {
 | |
|             memset(eddsa_doit, 1, sizeof(eddsa_doit));
 | |
|             continue;
 | |
|         }
 | |
|         if (opt_found(algo, eddsa_choices, &i)) {
 | |
|             eddsa_doit[i] = 2;
 | |
|             continue;
 | |
|         }
 | |
| #ifndef OPENSSL_NO_SM2
 | |
|         if (strcmp(algo, "sm2") == 0) {
 | |
|             memset(sm2_doit, 1, sizeof(sm2_doit));
 | |
|             continue;
 | |
|         }
 | |
|         if (opt_found(algo, sm2_choices, &i)) {
 | |
|             sm2_doit[i] = 2;
 | |
|             continue;
 | |
|         }
 | |
| #endif
 | |
|         BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, algo);
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     /* Sanity checks */
 | |
|     if (aead) {
 | |
|         if (evp_cipher == NULL) {
 | |
|             BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n");
 | |
|             goto end;
 | |
|         } else if (!(EVP_CIPHER_get_flags(evp_cipher) &
 | |
|                      EVP_CIPH_FLAG_AEAD_CIPHER)) {
 | |
|             BIO_printf(bio_err, "%s is not an AEAD cipher\n",
 | |
|                        EVP_CIPHER_get0_name(evp_cipher));
 | |
|             goto end;
 | |
|         }
 | |
|     }
 | |
|     if (multiblock) {
 | |
|         if (evp_cipher == NULL) {
 | |
|             BIO_printf(bio_err, "-mb can be used only with a multi-block"
 | |
|                                 " capable cipher\n");
 | |
|             goto end;
 | |
|         } else if (!(EVP_CIPHER_get_flags(evp_cipher) &
 | |
|                      EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
 | |
|             BIO_printf(bio_err, "%s is not a multi-block capable\n",
 | |
|                        EVP_CIPHER_get0_name(evp_cipher));
 | |
|             goto end;
 | |
|         } else if (async_jobs > 0) {
 | |
|             BIO_printf(bio_err, "Async mode is not supported with -mb");
 | |
|             goto end;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Initialize the job pool if async mode is enabled */
 | |
|     if (async_jobs > 0) {
 | |
|         async_init = ASYNC_init_thread(async_jobs, async_jobs);
 | |
|         if (!async_init) {
 | |
|             BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
 | |
|             goto end;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
 | |
|     loopargs =
 | |
|         app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
 | |
|     memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
 | |
| 
 | |
|     for (i = 0; i < loopargs_len; i++) {
 | |
|         if (async_jobs > 0) {
 | |
|             loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
 | |
|             if (loopargs[i].wait_ctx == NULL) {
 | |
|                 BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
 | |
|                 goto end;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         buflen = lengths[size_num - 1];
 | |
|         if (buflen < 36)    /* size of random vector in RSA benchmark */
 | |
|             buflen = 36;
 | |
|         buflen += MAX_MISALIGNMENT + 1;
 | |
|         loopargs[i].buf_malloc = app_malloc(buflen, "input buffer");
 | |
|         loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer");
 | |
|         memset(loopargs[i].buf_malloc, 0, buflen);
 | |
|         memset(loopargs[i].buf2_malloc, 0, buflen);
 | |
| 
 | |
|         /* Align the start of buffers on a 64 byte boundary */
 | |
|         loopargs[i].buf = loopargs[i].buf_malloc + misalign;
 | |
|         loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
 | |
|         loopargs[i].buflen = buflen - misalign;
 | |
|         loopargs[i].sigsize = buflen - misalign;
 | |
|         loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
 | |
|         loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
 | |
| #ifndef OPENSSL_NO_DH
 | |
|         loopargs[i].secret_ff_a = app_malloc(MAX_FFDH_SIZE, "FFDH secret a");
 | |
|         loopargs[i].secret_ff_b = app_malloc(MAX_FFDH_SIZE, "FFDH secret b");
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #ifndef NO_FORK
 | |
|     if (multi && do_multi(multi, size_num))
 | |
|         goto show_res;
 | |
| #endif
 | |
| 
 | |
|     /* Initialize the engine after the fork */
 | |
|     e = setup_engine(engine_id, 0);
 | |
| 
 | |
|     /* No parameters; turn on everything. */
 | |
|     if (argc == 0 && !doit[D_EVP] && !doit[D_HMAC] && !doit[D_EVP_CMAC]) {
 | |
|         memset(doit, 1, sizeof(doit));
 | |
|         doit[D_EVP] = doit[D_EVP_CMAC] = 0;
 | |
|         ERR_set_mark();
 | |
|         for (i = D_MD2; i <= D_WHIRLPOOL; i++) {
 | |
|             if (!have_md(names[i]))
 | |
|                 doit[i] = 0;
 | |
|         }
 | |
|         for (i = D_CBC_DES; i <= D_CBC_256_CML; i++) {
 | |
|             if (!have_cipher(names[i]))
 | |
|                 doit[i] = 0;
 | |
|         }
 | |
|         if ((mac = EVP_MAC_fetch(app_get0_libctx(), "GMAC",
 | |
|                                  app_get0_propq())) != NULL) {
 | |
|             EVP_MAC_free(mac);
 | |
|             mac = NULL;
 | |
|         } else {
 | |
|             doit[D_GHASH] = 0;
 | |
|         }
 | |
|         if ((mac = EVP_MAC_fetch(app_get0_libctx(), "HMAC",
 | |
|                                  app_get0_propq())) != NULL) {
 | |
|             EVP_MAC_free(mac);
 | |
|             mac = NULL;
 | |
|         } else {
 | |
|             doit[D_HMAC] = 0;
 | |
|         }
 | |
|         ERR_pop_to_mark();
 | |
|         memset(rsa_doit, 1, sizeof(rsa_doit));
 | |
| #ifndef OPENSSL_NO_DH
 | |
|         memset(ffdh_doit, 1, sizeof(ffdh_doit));
 | |
| #endif
 | |
|         memset(dsa_doit, 1, sizeof(dsa_doit));
 | |
|         memset(ecdsa_doit, 1, sizeof(ecdsa_doit));
 | |
|         memset(ecdh_doit, 1, sizeof(ecdh_doit));
 | |
|         memset(eddsa_doit, 1, sizeof(eddsa_doit));
 | |
| #ifndef OPENSSL_NO_SM2
 | |
|         memset(sm2_doit, 1, sizeof(sm2_doit));
 | |
| #endif
 | |
|     }
 | |
|     for (i = 0; i < ALGOR_NUM; i++)
 | |
|         if (doit[i])
 | |
|             pr_header++;
 | |
| 
 | |
|     if (usertime == 0 && !mr)
 | |
|         BIO_printf(bio_err,
 | |
|                    "You have chosen to measure elapsed time "
 | |
|                    "instead of user CPU time.\n");
 | |
| 
 | |
| #if SIGALRM > 0
 | |
|     signal(SIGALRM, alarmed);
 | |
| #endif
 | |
| 
 | |
|     if (doit[D_MD2]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_MD2, testnum, count, d);
 | |
|             if (count < 0)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_MDC2]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_MDC2, testnum, count, d);
 | |
|             if (count < 0)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_MD4]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_MD4, testnum, count, d);
 | |
|             if (count < 0)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_MD5]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, MD5_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_MD5, testnum, count, d);
 | |
|             if (count < 0)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_SHA1]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, SHA1_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_SHA1, testnum, count, d);
 | |
|             if (count < 0)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_SHA256]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_SHA256], c[D_SHA256][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, SHA256_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_SHA256, testnum, count, d);
 | |
|             if (count < 0)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_SHA512]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_SHA512], c[D_SHA512][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, SHA512_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_SHA512, testnum, count, d);
 | |
|             if (count < 0)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_WHIRLPOOL]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_WHIRLPOOL, testnum, count, d);
 | |
|             if (count < 0)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_RMD160]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_RMD160], c[D_RMD160][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_RMD160, testnum, count, d);
 | |
|             if (count < 0)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_HMAC]) {
 | |
|         static const char hmac_key[] = "This is a key...";
 | |
|         int len = strlen(hmac_key);
 | |
|         OSSL_PARAM params[3];
 | |
| 
 | |
|         mac = EVP_MAC_fetch(app_get0_libctx(), "HMAC", app_get0_propq());
 | |
|         if (mac == NULL || evp_mac_mdname == NULL)
 | |
|             goto end;
 | |
| 
 | |
|         evp_hmac_name = app_malloc(sizeof("hmac()") + strlen(evp_mac_mdname),
 | |
|                                    "HMAC name");
 | |
|         sprintf(evp_hmac_name, "hmac(%s)", evp_mac_mdname);
 | |
|         names[D_HMAC] = evp_hmac_name;
 | |
| 
 | |
|         params[0] =
 | |
|             OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
 | |
|                                              evp_mac_mdname, 0);
 | |
|         params[1] =
 | |
|             OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
 | |
|                                               (char *)hmac_key, len);
 | |
|         params[2] = OSSL_PARAM_construct_end();
 | |
| 
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             loopargs[i].mctx = EVP_MAC_CTX_new(mac);
 | |
|             if (loopargs[i].mctx == NULL)
 | |
|                 goto end;
 | |
| 
 | |
|             if (!EVP_MAC_CTX_set_params(loopargs[i].mctx, params))
 | |
|                 goto end;
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, HMAC_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_HMAC, testnum, count, d);
 | |
|             if (count < 0)
 | |
|                 break;
 | |
|         }
 | |
|         for (i = 0; i < loopargs_len; i++)
 | |
|             EVP_MAC_CTX_free(loopargs[i].mctx);
 | |
|         EVP_MAC_free(mac);
 | |
|         mac = NULL;
 | |
|     }
 | |
| 
 | |
|     if (doit[D_CBC_DES]) {
 | |
|         int st = 1;
 | |
| 
 | |
|         for (i = 0; st && i < loopargs_len; i++) {
 | |
|             loopargs[i].ctx = init_evp_cipher_ctx("des-cbc", deskey,
 | |
|                                                   sizeof(deskey) / 3);
 | |
|             st = loopargs[i].ctx != NULL;
 | |
|         }
 | |
|         algindex = D_CBC_DES;
 | |
|         for (testnum = 0; st && testnum < size_num; testnum++) {
 | |
|             print_message(names[D_CBC_DES], c[D_CBC_DES][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_DES, testnum, count, d);
 | |
|         }
 | |
|         for (i = 0; i < loopargs_len; i++)
 | |
|             EVP_CIPHER_CTX_free(loopargs[i].ctx);
 | |
|     }
 | |
| 
 | |
|     if (doit[D_EDE3_DES]) {
 | |
|         int st = 1;
 | |
| 
 | |
|         for (i = 0; st && i < loopargs_len; i++) {
 | |
|             loopargs[i].ctx = init_evp_cipher_ctx("des-ede3-cbc", deskey,
 | |
|                                                   sizeof(deskey));
 | |
|             st = loopargs[i].ctx != NULL;
 | |
|         }
 | |
|         algindex = D_EDE3_DES;
 | |
|         for (testnum = 0; st && testnum < size_num; testnum++) {
 | |
|             print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count =
 | |
|                 run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_EDE3_DES, testnum, count, d);
 | |
|         }
 | |
|         for (i = 0; i < loopargs_len; i++)
 | |
|             EVP_CIPHER_CTX_free(loopargs[i].ctx);
 | |
|     }
 | |
| 
 | |
|     for (k = 0; k < 3; k++) {
 | |
|         algindex = D_CBC_128_AES + k;
 | |
|         if (doit[algindex]) {
 | |
|             int st = 1;
 | |
| 
 | |
|             keylen = 16 + k * 8;
 | |
|             for (i = 0; st && i < loopargs_len; i++) {
 | |
|                 loopargs[i].ctx = init_evp_cipher_ctx(names[algindex],
 | |
|                                                       key32, keylen);
 | |
|                 st = loopargs[i].ctx != NULL;
 | |
|             }
 | |
| 
 | |
|             for (testnum = 0; st && testnum < size_num; testnum++) {
 | |
|                 print_message(names[algindex], c[algindex][testnum],
 | |
|                               lengths[testnum], seconds.sym);
 | |
|                 Time_F(START);
 | |
|                 count =
 | |
|                     run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
|                 print_result(algindex, testnum, count, d);
 | |
|             }
 | |
|             for (i = 0; i < loopargs_len; i++)
 | |
|                 EVP_CIPHER_CTX_free(loopargs[i].ctx);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (k = 0; k < 3; k++) {
 | |
|         algindex = D_CBC_128_CML + k;
 | |
|         if (doit[algindex]) {
 | |
|             int st = 1;
 | |
| 
 | |
|             keylen = 16 + k * 8;
 | |
|             for (i = 0; st && i < loopargs_len; i++) {
 | |
|                 loopargs[i].ctx = init_evp_cipher_ctx(names[algindex],
 | |
|                                                       key32, keylen);
 | |
|                 st = loopargs[i].ctx != NULL;
 | |
|             }
 | |
| 
 | |
|             for (testnum = 0; st && testnum < size_num; testnum++) {
 | |
|                 print_message(names[algindex], c[algindex][testnum],
 | |
|                               lengths[testnum], seconds.sym);
 | |
|                 Time_F(START);
 | |
|                 count =
 | |
|                     run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
|                 print_result(algindex, testnum, count, d);
 | |
|             }
 | |
|             for (i = 0; i < loopargs_len; i++)
 | |
|                 EVP_CIPHER_CTX_free(loopargs[i].ctx);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (algindex = D_RC4; algindex <= D_CBC_CAST; algindex++) {
 | |
|         if (doit[algindex]) {
 | |
|             int st = 1;
 | |
| 
 | |
|             keylen = 16;
 | |
|             for (i = 0; st && i < loopargs_len; i++) {
 | |
|                 loopargs[i].ctx = init_evp_cipher_ctx(names[algindex],
 | |
|                                                       key32, keylen);
 | |
|                 st = loopargs[i].ctx != NULL;
 | |
|             }
 | |
| 
 | |
|             for (testnum = 0; st && testnum < size_num; testnum++) {
 | |
|                 print_message(names[algindex], c[algindex][testnum],
 | |
|                               lengths[testnum], seconds.sym);
 | |
|                 Time_F(START);
 | |
|                 count =
 | |
|                     run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
|                 print_result(algindex, testnum, count, d);
 | |
|             }
 | |
|             for (i = 0; i < loopargs_len; i++)
 | |
|                 EVP_CIPHER_CTX_free(loopargs[i].ctx);
 | |
|         }
 | |
|     }
 | |
|     if (doit[D_GHASH]) {
 | |
|         static const char gmac_iv[] = "0123456789ab";
 | |
|         OSSL_PARAM params[3];
 | |
| 
 | |
|         mac = EVP_MAC_fetch(app_get0_libctx(), "GMAC", app_get0_propq());
 | |
|         if (mac == NULL)
 | |
|             goto end;
 | |
| 
 | |
|         params[0] = OSSL_PARAM_construct_utf8_string(OSSL_ALG_PARAM_CIPHER,
 | |
|                                                      "aes-128-gcm", 0);
 | |
|         params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV,
 | |
|                                                       (char *)gmac_iv,
 | |
|                                                       sizeof(gmac_iv) - 1);
 | |
|         params[2] = OSSL_PARAM_construct_end();
 | |
| 
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             loopargs[i].mctx = EVP_MAC_CTX_new(mac);
 | |
|             if (loopargs[i].mctx == NULL)
 | |
|                 goto end;
 | |
| 
 | |
|             if (!EVP_MAC_init(loopargs[i].mctx, key32, 16, params))
 | |
|                 goto end;
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, GHASH_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_GHASH, testnum, count, d);
 | |
|             if (count < 0)
 | |
|                 break;
 | |
|         }
 | |
|         for (i = 0; i < loopargs_len; i++)
 | |
|             EVP_MAC_CTX_free(loopargs[i].mctx);
 | |
|         EVP_MAC_free(mac);
 | |
|         mac = NULL;
 | |
|     }
 | |
| 
 | |
|     if (doit[D_RAND]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_RAND, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_EVP]) {
 | |
|         if (evp_cipher != NULL) {
 | |
|             int (*loopfunc) (void *) = EVP_Update_loop;
 | |
| 
 | |
|             if (multiblock && (EVP_CIPHER_get_flags(evp_cipher) &
 | |
|                                EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
 | |
|                 multiblock_speed(evp_cipher, lengths_single, &seconds);
 | |
|                 ret = 0;
 | |
|                 goto end;
 | |
|             }
 | |
| 
 | |
|             names[D_EVP] = EVP_CIPHER_get0_name(evp_cipher);
 | |
| 
 | |
|             if (EVP_CIPHER_get_mode(evp_cipher) == EVP_CIPH_CCM_MODE) {
 | |
|                 loopfunc = EVP_Update_loop_ccm;
 | |
|             } else if (aead && (EVP_CIPHER_get_flags(evp_cipher) &
 | |
|                                 EVP_CIPH_FLAG_AEAD_CIPHER)) {
 | |
|                 loopfunc = EVP_Update_loop_aead;
 | |
|                 if (lengths == lengths_list) {
 | |
|                     lengths = aead_lengths_list;
 | |
|                     size_num = OSSL_NELEM(aead_lengths_list);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             for (testnum = 0; testnum < size_num; testnum++) {
 | |
|                 print_message(names[D_EVP], c[D_EVP][testnum], lengths[testnum],
 | |
|                               seconds.sym);
 | |
| 
 | |
|                 for (k = 0; k < loopargs_len; k++) {
 | |
|                     loopargs[k].ctx = EVP_CIPHER_CTX_new();
 | |
|                     if (loopargs[k].ctx == NULL) {
 | |
|                         BIO_printf(bio_err, "\nEVP_CIPHER_CTX_new failure\n");
 | |
|                         exit(1);
 | |
|                     }
 | |
|                     if (!EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL,
 | |
|                                            NULL, iv, decrypt ? 0 : 1)) {
 | |
|                         BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n");
 | |
|                         ERR_print_errors(bio_err);
 | |
|                         exit(1);
 | |
|                     }
 | |
| 
 | |
|                     EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
 | |
| 
 | |
|                     keylen = EVP_CIPHER_CTX_get_key_length(loopargs[k].ctx);
 | |
|                     loopargs[k].key = app_malloc(keylen, "evp_cipher key");
 | |
|                     EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key);
 | |
|                     if (!EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL,
 | |
|                                            loopargs[k].key, NULL, -1)) {
 | |
|                         BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n");
 | |
|                         ERR_print_errors(bio_err);
 | |
|                         exit(1);
 | |
|                     }
 | |
|                     OPENSSL_clear_free(loopargs[k].key, keylen);
 | |
| 
 | |
|                     /* SIV mode only allows for a single Update operation */
 | |
|                     if (EVP_CIPHER_get_mode(evp_cipher) == EVP_CIPH_SIV_MODE)
 | |
|                         (void)EVP_CIPHER_CTX_ctrl(loopargs[k].ctx,
 | |
|                                                   EVP_CTRL_SET_SPEED, 1, NULL);
 | |
|                 }
 | |
| 
 | |
|                 Time_F(START);
 | |
|                 count = run_benchmark(async_jobs, loopfunc, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
|                 for (k = 0; k < loopargs_len; k++)
 | |
|                     EVP_CIPHER_CTX_free(loopargs[k].ctx);
 | |
|                 print_result(D_EVP, testnum, count, d);
 | |
|             }
 | |
|         } else if (evp_md_name != NULL) {
 | |
|             names[D_EVP] = evp_md_name;
 | |
| 
 | |
|             for (testnum = 0; testnum < size_num; testnum++) {
 | |
|                 print_message(names[D_EVP], c[D_EVP][testnum], lengths[testnum],
 | |
|                               seconds.sym);
 | |
|                 Time_F(START);
 | |
|                 count = run_benchmark(async_jobs, EVP_Digest_md_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
|                 print_result(D_EVP, testnum, count, d);
 | |
|                 if (count < 0)
 | |
|                     break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_EVP_CMAC]) {
 | |
|         OSSL_PARAM params[3];
 | |
|         EVP_CIPHER *cipher = NULL;
 | |
| 
 | |
|         mac = EVP_MAC_fetch(app_get0_libctx(), "CMAC", app_get0_propq());
 | |
|         if (mac == NULL || evp_mac_ciphername == NULL)
 | |
|             goto end;
 | |
|         if (!opt_cipher(evp_mac_ciphername, &cipher))
 | |
|             goto end;
 | |
| 
 | |
|         keylen = EVP_CIPHER_get_key_length(cipher);
 | |
|         EVP_CIPHER_free(cipher);
 | |
|         if (keylen <= 0 || keylen > (int)sizeof(key32)) {
 | |
|             BIO_printf(bio_err, "\nRequested CMAC cipher with unsupported key length.\n");
 | |
|             goto end;
 | |
|         }
 | |
|         evp_cmac_name = app_malloc(sizeof("cmac()")
 | |
|                                    + strlen(evp_mac_ciphername), "CMAC name");
 | |
|         sprintf(evp_cmac_name, "cmac(%s)", evp_mac_ciphername);
 | |
|         names[D_EVP_CMAC] = evp_cmac_name;
 | |
| 
 | |
|         params[0] = OSSL_PARAM_construct_utf8_string(OSSL_ALG_PARAM_CIPHER,
 | |
|                                                      evp_mac_ciphername, 0);
 | |
|         params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
 | |
|                                                       (char *)key32, keylen);
 | |
|         params[2] = OSSL_PARAM_construct_end();
 | |
| 
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             loopargs[i].mctx = EVP_MAC_CTX_new(mac);
 | |
|             if (loopargs[i].mctx == NULL)
 | |
|                 goto end;
 | |
| 
 | |
|             if (!EVP_MAC_CTX_set_params(loopargs[i].mctx, params))
 | |
|                 goto end;
 | |
|         }
 | |
| 
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_EVP_CMAC], c[D_EVP_CMAC][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, CMAC_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_EVP_CMAC, testnum, count, d);
 | |
|             if (count < 0)
 | |
|                 break;
 | |
|         }
 | |
|         for (i = 0; i < loopargs_len; i++)
 | |
|             EVP_MAC_CTX_free(loopargs[i].mctx);
 | |
|         EVP_MAC_free(mac);
 | |
|         mac = NULL;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < loopargs_len; i++)
 | |
|         if (RAND_bytes(loopargs[i].buf, 36) <= 0)
 | |
|             goto end;
 | |
| 
 | |
|     for (testnum = 0; testnum < RSA_NUM; testnum++) {
 | |
|         EVP_PKEY *rsa_key = NULL;
 | |
|         int st = 0;
 | |
| 
 | |
|         if (!rsa_doit[testnum])
 | |
|             continue;
 | |
| 
 | |
|         if (primes > RSA_DEFAULT_PRIME_NUM) {
 | |
|             /* we haven't set keys yet,  generate multi-prime RSA keys */
 | |
|             bn = BN_new();
 | |
|             st = bn != NULL
 | |
|                 && BN_set_word(bn, RSA_F4)
 | |
|                 && init_gen_str(&genctx, "RSA", NULL, 0, NULL, NULL)
 | |
|                 && EVP_PKEY_CTX_set_rsa_keygen_bits(genctx, rsa_keys[testnum].bits) > 0
 | |
|                 && EVP_PKEY_CTX_set1_rsa_keygen_pubexp(genctx, bn) > 0
 | |
|                 && EVP_PKEY_CTX_set_rsa_keygen_primes(genctx, primes) > 0
 | |
|                 && EVP_PKEY_keygen(genctx, &rsa_key);
 | |
|             BN_free(bn);
 | |
|             bn = NULL;
 | |
|             EVP_PKEY_CTX_free(genctx);
 | |
|             genctx = NULL;
 | |
|         } else {
 | |
|             const unsigned char *p = rsa_keys[testnum].data;
 | |
| 
 | |
|             st = (rsa_key = d2i_PrivateKey(EVP_PKEY_RSA, NULL, &p,
 | |
|                                            rsa_keys[testnum].length)) != NULL;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; st && i < loopargs_len; i++) {
 | |
|             loopargs[i].rsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key, NULL);
 | |
|             loopargs[i].sigsize = loopargs[i].buflen;
 | |
|             if (loopargs[i].rsa_sign_ctx[testnum] == NULL
 | |
|                 || EVP_PKEY_sign_init(loopargs[i].rsa_sign_ctx[testnum]) <= 0
 | |
|                 || EVP_PKEY_sign(loopargs[i].rsa_sign_ctx[testnum],
 | |
|                                  loopargs[i].buf2,
 | |
|                                  &loopargs[i].sigsize,
 | |
|                                  loopargs[i].buf, 36) <= 0)
 | |
|                 st = 0;
 | |
|         }
 | |
|         if (!st) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "RSA sign setup failure.  No RSA sign will be done.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             op_count = 1;
 | |
|         } else {
 | |
|             pkey_print_message("private", "rsa",
 | |
|                                rsa_c[testnum][0], rsa_keys[testnum].bits,
 | |
|                                seconds.rsa);
 | |
|             /* RSA_blinding_on(rsa_key[testnum],NULL); */
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R1:%ld:%d:%.2f\n"
 | |
|                        : "%ld %u bits private RSA's in %.2fs\n",
 | |
|                        count, rsa_keys[testnum].bits, d);
 | |
|             rsa_results[testnum][0] = (double)count / d;
 | |
|             op_count = count;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; st && i < loopargs_len; i++) {
 | |
|             loopargs[i].rsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key,
 | |
|                                                                    NULL);
 | |
|             if (loopargs[i].rsa_verify_ctx[testnum] == NULL
 | |
|                 || EVP_PKEY_verify_init(loopargs[i].rsa_verify_ctx[testnum]) <= 0
 | |
|                 || EVP_PKEY_verify(loopargs[i].rsa_verify_ctx[testnum],
 | |
|                                    loopargs[i].buf2,
 | |
|                                    loopargs[i].sigsize,
 | |
|                                    loopargs[i].buf, 36) <= 0)
 | |
|                 st = 0;
 | |
|         }
 | |
|         if (!st) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "RSA verify setup failure.  No RSA verify will be done.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             rsa_doit[testnum] = 0;
 | |
|         } else {
 | |
|             pkey_print_message("public", "rsa",
 | |
|                                rsa_c[testnum][1], rsa_keys[testnum].bits,
 | |
|                                seconds.rsa);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R2:%ld:%d:%.2f\n"
 | |
|                        : "%ld %u bits public RSA's in %.2fs\n",
 | |
|                        count, rsa_keys[testnum].bits, d);
 | |
|             rsa_results[testnum][1] = (double)count / d;
 | |
|         }
 | |
| 
 | |
|         if (op_count <= 1) {
 | |
|             /* if longer than 10s, don't do any more */
 | |
|             stop_it(rsa_doit, testnum);
 | |
|         }
 | |
|         EVP_PKEY_free(rsa_key);
 | |
|     }
 | |
| 
 | |
|     for (testnum = 0; testnum < DSA_NUM; testnum++) {
 | |
|         EVP_PKEY *dsa_key = NULL;
 | |
|         int st;
 | |
| 
 | |
|         if (!dsa_doit[testnum])
 | |
|             continue;
 | |
| 
 | |
|         st = (dsa_key = get_dsa(dsa_bits[testnum])) != NULL;
 | |
| 
 | |
|         for (i = 0; st && i < loopargs_len; i++) {
 | |
|             loopargs[i].dsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(dsa_key,
 | |
|                                                                  NULL);
 | |
|             loopargs[i].sigsize = loopargs[i].buflen;
 | |
|             if (loopargs[i].dsa_sign_ctx[testnum] == NULL
 | |
|                 || EVP_PKEY_sign_init(loopargs[i].dsa_sign_ctx[testnum]) <= 0
 | |
| 
 | |
|                 || EVP_PKEY_sign(loopargs[i].dsa_sign_ctx[testnum],
 | |
|                                  loopargs[i].buf2,
 | |
|                                  &loopargs[i].sigsize,
 | |
|                                  loopargs[i].buf, 20) <= 0)
 | |
|                 st = 0;
 | |
|         }
 | |
|         if (!st) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "DSA sign setup failure.  No DSA sign will be done.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             op_count = 1;
 | |
|         } else {
 | |
|             pkey_print_message("sign", "dsa",
 | |
|                                dsa_c[testnum][0], dsa_bits[testnum],
 | |
|                                seconds.dsa);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R3:%ld:%u:%.2f\n"
 | |
|                        : "%ld %u bits DSA signs in %.2fs\n",
 | |
|                        count, dsa_bits[testnum], d);
 | |
|             dsa_results[testnum][0] = (double)count / d;
 | |
|             op_count = count;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; st && i < loopargs_len; i++) {
 | |
|             loopargs[i].dsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(dsa_key,
 | |
|                                                                    NULL);
 | |
|             if (loopargs[i].dsa_verify_ctx[testnum] == NULL
 | |
|                 || EVP_PKEY_verify_init(loopargs[i].dsa_verify_ctx[testnum]) <= 0
 | |
|                 || EVP_PKEY_verify(loopargs[i].dsa_verify_ctx[testnum],
 | |
|                                    loopargs[i].buf2,
 | |
|                                    loopargs[i].sigsize,
 | |
|                                    loopargs[i].buf, 36) <= 0)
 | |
|                 st = 0;
 | |
|         }
 | |
|         if (!st) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "DSA verify setup failure.  No DSA verify will be done.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             dsa_doit[testnum] = 0;
 | |
|         } else {
 | |
|             pkey_print_message("verify", "dsa",
 | |
|                                dsa_c[testnum][1], dsa_bits[testnum],
 | |
|                                seconds.dsa);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R4:%ld:%u:%.2f\n"
 | |
|                        : "%ld %u bits DSA verify in %.2fs\n",
 | |
|                        count, dsa_bits[testnum], d);
 | |
|             dsa_results[testnum][1] = (double)count / d;
 | |
|         }
 | |
| 
 | |
|         if (op_count <= 1) {
 | |
|             /* if longer than 10s, don't do any more */
 | |
|             stop_it(dsa_doit, testnum);
 | |
|         }
 | |
|         EVP_PKEY_free(dsa_key);
 | |
|     }
 | |
| 
 | |
|     for (testnum = 0; testnum < ECDSA_NUM; testnum++) {
 | |
|         EVP_PKEY *ecdsa_key = NULL;
 | |
|         int st;
 | |
| 
 | |
|         if (!ecdsa_doit[testnum])
 | |
|             continue;
 | |
| 
 | |
|         st = (ecdsa_key = get_ecdsa(&ec_curves[testnum])) != NULL;
 | |
| 
 | |
|         for (i = 0; st && i < loopargs_len; i++) {
 | |
|             loopargs[i].ecdsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(ecdsa_key,
 | |
|                                                                    NULL);
 | |
|             loopargs[i].sigsize = loopargs[i].buflen;
 | |
|             if (loopargs[i].ecdsa_sign_ctx[testnum] == NULL
 | |
|                 || EVP_PKEY_sign_init(loopargs[i].ecdsa_sign_ctx[testnum]) <= 0
 | |
| 
 | |
|                 || EVP_PKEY_sign(loopargs[i].ecdsa_sign_ctx[testnum],
 | |
|                                  loopargs[i].buf2,
 | |
|                                  &loopargs[i].sigsize,
 | |
|                                  loopargs[i].buf, 20) <= 0)
 | |
|                 st = 0;
 | |
|         }
 | |
|         if (!st) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "ECDSA sign setup failure.  No ECDSA sign will be done.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             op_count = 1;
 | |
|         } else {
 | |
|             pkey_print_message("sign", "ecdsa",
 | |
|                                ecdsa_c[testnum][0], ec_curves[testnum].bits,
 | |
|                                seconds.ecdsa);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R5:%ld:%u:%.2f\n"
 | |
|                        : "%ld %u bits ECDSA signs in %.2fs\n",
 | |
|                        count, ec_curves[testnum].bits, d);
 | |
|             ecdsa_results[testnum][0] = (double)count / d;
 | |
|             op_count = count;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; st && i < loopargs_len; i++) {
 | |
|             loopargs[i].ecdsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(ecdsa_key,
 | |
|                                                                      NULL);
 | |
|             if (loopargs[i].ecdsa_verify_ctx[testnum] == NULL
 | |
|                 || EVP_PKEY_verify_init(loopargs[i].ecdsa_verify_ctx[testnum]) <= 0
 | |
|                 || EVP_PKEY_verify(loopargs[i].ecdsa_verify_ctx[testnum],
 | |
|                                    loopargs[i].buf2,
 | |
|                                    loopargs[i].sigsize,
 | |
|                                    loopargs[i].buf, 20) <= 0)
 | |
|                 st = 0;
 | |
|         }
 | |
|         if (!st) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "ECDSA verify setup failure.  No ECDSA verify will be done.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             ecdsa_doit[testnum] = 0;
 | |
|         } else {
 | |
|             pkey_print_message("verify", "ecdsa",
 | |
|                                ecdsa_c[testnum][1], ec_curves[testnum].bits,
 | |
|                                seconds.ecdsa);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R6:%ld:%u:%.2f\n"
 | |
|                        : "%ld %u bits ECDSA verify in %.2fs\n",
 | |
|                        count, ec_curves[testnum].bits, d);
 | |
|             ecdsa_results[testnum][1] = (double)count / d;
 | |
|         }
 | |
| 
 | |
|         if (op_count <= 1) {
 | |
|             /* if longer than 10s, don't do any more */
 | |
|             stop_it(ecdsa_doit, testnum);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (testnum = 0; testnum < EC_NUM; testnum++) {
 | |
|         int ecdh_checks = 1;
 | |
| 
 | |
|         if (!ecdh_doit[testnum])
 | |
|             continue;
 | |
| 
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             EVP_PKEY_CTX *test_ctx = NULL;
 | |
|             EVP_PKEY_CTX *ctx = NULL;
 | |
|             EVP_PKEY *key_A = NULL;
 | |
|             EVP_PKEY *key_B = NULL;
 | |
|             size_t outlen;
 | |
|             size_t test_outlen;
 | |
| 
 | |
|             if ((key_A = get_ecdsa(&ec_curves[testnum])) == NULL /* generate secret key A */
 | |
|                 || (key_B = get_ecdsa(&ec_curves[testnum])) == NULL /* generate secret key B */
 | |
|                 || (ctx = EVP_PKEY_CTX_new(key_A, NULL)) == NULL /* derivation ctx from skeyA */
 | |
|                 || EVP_PKEY_derive_init(ctx) <= 0 /* init derivation ctx */
 | |
|                 || EVP_PKEY_derive_set_peer(ctx, key_B) <= 0 /* set peer pubkey in ctx */
 | |
|                 || EVP_PKEY_derive(ctx, NULL, &outlen) <= 0 /* determine max length */
 | |
|                 || outlen == 0 /* ensure outlen is a valid size */
 | |
|                 || outlen > MAX_ECDH_SIZE /* avoid buffer overflow */) {
 | |
|                 ecdh_checks = 0;
 | |
|                 BIO_printf(bio_err, "ECDH key generation failure.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * Here we perform a test run, comparing the output of a*B and b*A;
 | |
|              * we try this here and assume that further EVP_PKEY_derive calls
 | |
|              * never fail, so we can skip checks in the actually benchmarked
 | |
|              * code, for maximum performance.
 | |
|              */
 | |
|             if ((test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) == NULL /* test ctx from skeyB */
 | |
|                 || !EVP_PKEY_derive_init(test_ctx) /* init derivation test_ctx */
 | |
|                 || !EVP_PKEY_derive_set_peer(test_ctx, key_A) /* set peer pubkey in test_ctx */
 | |
|                 || !EVP_PKEY_derive(test_ctx, NULL, &test_outlen) /* determine max length */
 | |
|                 || !EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) /* compute a*B */
 | |
|                 || !EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) /* compute b*A */
 | |
|                 || test_outlen != outlen /* compare output length */) {
 | |
|                 ecdh_checks = 0;
 | |
|                 BIO_printf(bio_err, "ECDH computation failure.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */
 | |
|             if (CRYPTO_memcmp(loopargs[i].secret_a,
 | |
|                               loopargs[i].secret_b, outlen)) {
 | |
|                 ecdh_checks = 0;
 | |
|                 BIO_printf(bio_err, "ECDH computations don't match.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             loopargs[i].ecdh_ctx[testnum] = ctx;
 | |
|             loopargs[i].outlen[testnum] = outlen;
 | |
| 
 | |
|             EVP_PKEY_free(key_A);
 | |
|             EVP_PKEY_free(key_B);
 | |
|             EVP_PKEY_CTX_free(test_ctx);
 | |
|             test_ctx = NULL;
 | |
|         }
 | |
|         if (ecdh_checks != 0) {
 | |
|             pkey_print_message("", "ecdh",
 | |
|                                ecdh_c[testnum][0],
 | |
|                                ec_curves[testnum].bits, seconds.ecdh);
 | |
|             Time_F(START);
 | |
|             count =
 | |
|                 run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R7:%ld:%d:%.2f\n" :
 | |
|                        "%ld %u-bits ECDH ops in %.2fs\n", count,
 | |
|                        ec_curves[testnum].bits, d);
 | |
|             ecdh_results[testnum][0] = (double)count / d;
 | |
|             op_count = count;
 | |
|         }
 | |
| 
 | |
|         if (op_count <= 1) {
 | |
|             /* if longer than 10s, don't do any more */
 | |
|             stop_it(ecdh_doit, testnum);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (testnum = 0; testnum < EdDSA_NUM; testnum++) {
 | |
|         int st = 1;
 | |
|         EVP_PKEY *ed_pkey = NULL;
 | |
|         EVP_PKEY_CTX *ed_pctx = NULL;
 | |
| 
 | |
|         if (!eddsa_doit[testnum])
 | |
|             continue;           /* Ignore Curve */
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new();
 | |
|             if (loopargs[i].eddsa_ctx[testnum] == NULL) {
 | |
|                 st = 0;
 | |
|                 break;
 | |
|             }
 | |
|             loopargs[i].eddsa_ctx2[testnum] = EVP_MD_CTX_new();
 | |
|             if (loopargs[i].eddsa_ctx2[testnum] == NULL) {
 | |
|                 st = 0;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if ((ed_pctx = EVP_PKEY_CTX_new_id(ed_curves[testnum].nid,
 | |
|                                                NULL)) == NULL
 | |
|                 || EVP_PKEY_keygen_init(ed_pctx) <= 0
 | |
|                 || EVP_PKEY_keygen(ed_pctx, &ed_pkey) <= 0) {
 | |
|                 st = 0;
 | |
|                 EVP_PKEY_CTX_free(ed_pctx);
 | |
|                 break;
 | |
|             }
 | |
|             EVP_PKEY_CTX_free(ed_pctx);
 | |
| 
 | |
|             if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL,
 | |
|                                     NULL, ed_pkey)) {
 | |
|                 st = 0;
 | |
|                 EVP_PKEY_free(ed_pkey);
 | |
|                 break;
 | |
|             }
 | |
|             if (!EVP_DigestVerifyInit(loopargs[i].eddsa_ctx2[testnum], NULL,
 | |
|                                       NULL, NULL, ed_pkey)) {
 | |
|                 st = 0;
 | |
|                 EVP_PKEY_free(ed_pkey);
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             EVP_PKEY_free(ed_pkey);
 | |
|             ed_pkey = NULL;
 | |
|         }
 | |
|         if (st == 0) {
 | |
|             BIO_printf(bio_err, "EdDSA failure.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             op_count = 1;
 | |
|         } else {
 | |
|             for (i = 0; i < loopargs_len; i++) {
 | |
|                 /* Perform EdDSA signature test */
 | |
|                 loopargs[i].sigsize = ed_curves[testnum].sigsize;
 | |
|                 st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum],
 | |
|                                     loopargs[i].buf2, &loopargs[i].sigsize,
 | |
|                                     loopargs[i].buf, 20);
 | |
|                 if (st == 0)
 | |
|                     break;
 | |
|             }
 | |
|             if (st == 0) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "EdDSA sign failure.  No EdDSA sign will be done.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|             } else {
 | |
|                 pkey_print_message("sign", ed_curves[testnum].name,
 | |
|                                    eddsa_c[testnum][0],
 | |
|                                    ed_curves[testnum].bits, seconds.eddsa);
 | |
|                 Time_F(START);
 | |
|                 count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
| 
 | |
|                 BIO_printf(bio_err,
 | |
|                            mr ? "+R8:%ld:%u:%s:%.2f\n" :
 | |
|                            "%ld %u bits %s signs in %.2fs \n",
 | |
|                            count, ed_curves[testnum].bits,
 | |
|                            ed_curves[testnum].name, d);
 | |
|                 eddsa_results[testnum][0] = (double)count / d;
 | |
|                 op_count = count;
 | |
|             }
 | |
|             /* Perform EdDSA verification test */
 | |
|             for (i = 0; i < loopargs_len; i++) {
 | |
|                 st = EVP_DigestVerify(loopargs[i].eddsa_ctx2[testnum],
 | |
|                                       loopargs[i].buf2, loopargs[i].sigsize,
 | |
|                                       loopargs[i].buf, 20);
 | |
|                 if (st != 1)
 | |
|                     break;
 | |
|             }
 | |
|             if (st != 1) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "EdDSA verify failure.  No EdDSA verify will be done.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 eddsa_doit[testnum] = 0;
 | |
|             } else {
 | |
|                 pkey_print_message("verify", ed_curves[testnum].name,
 | |
|                                    eddsa_c[testnum][1],
 | |
|                                    ed_curves[testnum].bits, seconds.eddsa);
 | |
|                 Time_F(START);
 | |
|                 count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
|                 BIO_printf(bio_err,
 | |
|                            mr ? "+R9:%ld:%u:%s:%.2f\n"
 | |
|                            : "%ld %u bits %s verify in %.2fs\n",
 | |
|                            count, ed_curves[testnum].bits,
 | |
|                            ed_curves[testnum].name, d);
 | |
|                 eddsa_results[testnum][1] = (double)count / d;
 | |
|             }
 | |
| 
 | |
|             if (op_count <= 1) {
 | |
|                 /* if longer than 10s, don't do any more */
 | |
|                 stop_it(eddsa_doit, testnum);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifndef OPENSSL_NO_SM2
 | |
|     for (testnum = 0; testnum < SM2_NUM; testnum++) {
 | |
|         int st = 1;
 | |
|         EVP_PKEY *sm2_pkey = NULL;
 | |
| 
 | |
|         if (!sm2_doit[testnum])
 | |
|             continue;           /* Ignore Curve */
 | |
|         /* Init signing and verification */
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             EVP_PKEY_CTX *sm2_pctx = NULL;
 | |
|             EVP_PKEY_CTX *sm2_vfy_pctx = NULL;
 | |
|             EVP_PKEY_CTX *pctx = NULL;
 | |
|             st = 0;
 | |
| 
 | |
|             loopargs[i].sm2_ctx[testnum] = EVP_MD_CTX_new();
 | |
|             loopargs[i].sm2_vfy_ctx[testnum] = EVP_MD_CTX_new();
 | |
|             if (loopargs[i].sm2_ctx[testnum] == NULL
 | |
|                     || loopargs[i].sm2_vfy_ctx[testnum] == NULL)
 | |
|                 break;
 | |
| 
 | |
|             sm2_pkey = NULL;
 | |
| 
 | |
|             st = !((pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_SM2, NULL)) == NULL
 | |
|                 || EVP_PKEY_keygen_init(pctx) <= 0
 | |
|                 || EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
 | |
|                     sm2_curves[testnum].nid) <= 0
 | |
|                 || EVP_PKEY_keygen(pctx, &sm2_pkey) <= 0);
 | |
|             EVP_PKEY_CTX_free(pctx);
 | |
|             if (st == 0)
 | |
|                 break;
 | |
| 
 | |
|             st = 0; /* set back to zero */
 | |
|             /* attach it sooner to rely on main final cleanup */
 | |
|             loopargs[i].sm2_pkey[testnum] = sm2_pkey;
 | |
|             loopargs[i].sigsize = EVP_PKEY_get_size(sm2_pkey);
 | |
| 
 | |
|             sm2_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL);
 | |
|             sm2_vfy_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL);
 | |
|             if (sm2_pctx == NULL || sm2_vfy_pctx == NULL) {
 | |
|                 EVP_PKEY_CTX_free(sm2_vfy_pctx);
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             /* attach them directly to respective ctx */
 | |
|             EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_ctx[testnum], sm2_pctx);
 | |
|             EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_vfy_ctx[testnum], sm2_vfy_pctx);
 | |
| 
 | |
|             /*
 | |
|              * No need to allow user to set an explicit ID here, just use
 | |
|              * the one defined in the 'draft-yang-tls-tl13-sm-suites' I-D.
 | |
|              */
 | |
|             if (EVP_PKEY_CTX_set1_id(sm2_pctx, SM2_ID, SM2_ID_LEN) != 1
 | |
|                 || EVP_PKEY_CTX_set1_id(sm2_vfy_pctx, SM2_ID, SM2_ID_LEN) != 1)
 | |
|                 break;
 | |
| 
 | |
|             if (!EVP_DigestSignInit(loopargs[i].sm2_ctx[testnum], NULL,
 | |
|                                     EVP_sm3(), NULL, sm2_pkey))
 | |
|                 break;
 | |
|             if (!EVP_DigestVerifyInit(loopargs[i].sm2_vfy_ctx[testnum], NULL,
 | |
|                                       EVP_sm3(), NULL, sm2_pkey))
 | |
|                 break;
 | |
|             st = 1;         /* mark loop as succeeded */
 | |
|         }
 | |
|         if (st == 0) {
 | |
|             BIO_printf(bio_err, "SM2 init failure.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             op_count = 1;
 | |
|         } else {
 | |
|             for (i = 0; i < loopargs_len; i++) {
 | |
|                 /* Perform SM2 signature test */
 | |
|                 st = EVP_DigestSign(loopargs[i].sm2_ctx[testnum],
 | |
|                                     loopargs[i].buf2, &loopargs[i].sigsize,
 | |
|                                     loopargs[i].buf, 20);
 | |
|                 if (st == 0)
 | |
|                     break;
 | |
|             }
 | |
|             if (st == 0) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "SM2 sign failure.  No SM2 sign will be done.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|             } else {
 | |
|                 pkey_print_message("sign", sm2_curves[testnum].name,
 | |
|                                    sm2_c[testnum][0],
 | |
|                                    sm2_curves[testnum].bits, seconds.sm2);
 | |
|                 Time_F(START);
 | |
|                 count = run_benchmark(async_jobs, SM2_sign_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
| 
 | |
|                 BIO_printf(bio_err,
 | |
|                            mr ? "+R10:%ld:%u:%s:%.2f\n" :
 | |
|                            "%ld %u bits %s signs in %.2fs \n",
 | |
|                            count, sm2_curves[testnum].bits,
 | |
|                            sm2_curves[testnum].name, d);
 | |
|                 sm2_results[testnum][0] = (double)count / d;
 | |
|                 op_count = count;
 | |
|             }
 | |
| 
 | |
|             /* Perform SM2 verification test */
 | |
|             for (i = 0; i < loopargs_len; i++) {
 | |
|                 st = EVP_DigestVerify(loopargs[i].sm2_vfy_ctx[testnum],
 | |
|                                       loopargs[i].buf2, loopargs[i].sigsize,
 | |
|                                       loopargs[i].buf, 20);
 | |
|                 if (st != 1)
 | |
|                     break;
 | |
|             }
 | |
|             if (st != 1) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "SM2 verify failure.  No SM2 verify will be done.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 sm2_doit[testnum] = 0;
 | |
|             } else {
 | |
|                 pkey_print_message("verify", sm2_curves[testnum].name,
 | |
|                                    sm2_c[testnum][1],
 | |
|                                    sm2_curves[testnum].bits, seconds.sm2);
 | |
|                 Time_F(START);
 | |
|                 count = run_benchmark(async_jobs, SM2_verify_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
|                 BIO_printf(bio_err,
 | |
|                            mr ? "+R11:%ld:%u:%s:%.2f\n"
 | |
|                            : "%ld %u bits %s verify in %.2fs\n",
 | |
|                            count, sm2_curves[testnum].bits,
 | |
|                            sm2_curves[testnum].name, d);
 | |
|                 sm2_results[testnum][1] = (double)count / d;
 | |
|             }
 | |
| 
 | |
|             if (op_count <= 1) {
 | |
|                 /* if longer than 10s, don't do any more */
 | |
|                 for (testnum++; testnum < SM2_NUM; testnum++)
 | |
|                     sm2_doit[testnum] = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif                         /* OPENSSL_NO_SM2 */
 | |
| 
 | |
| #ifndef OPENSSL_NO_DH
 | |
|     for (testnum = 0; testnum < FFDH_NUM; testnum++) {
 | |
|         int ffdh_checks = 1;
 | |
| 
 | |
|         if (!ffdh_doit[testnum])
 | |
|             continue;
 | |
| 
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             EVP_PKEY *pkey_A = NULL;
 | |
|             EVP_PKEY *pkey_B = NULL;
 | |
|             EVP_PKEY_CTX *ffdh_ctx = NULL;
 | |
|             EVP_PKEY_CTX *test_ctx = NULL;
 | |
|             size_t secret_size;
 | |
|             size_t test_out;
 | |
| 
 | |
|             /* Ensure that the error queue is empty */
 | |
|             if (ERR_peek_error()) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "WARNING: the error queue contains previous unhandled errors.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|             }
 | |
| 
 | |
|             pkey_A = EVP_PKEY_new();
 | |
|             if (!pkey_A) {
 | |
|                 BIO_printf(bio_err, "Error while initialising EVP_PKEY (out of memory?).\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
|             pkey_B = EVP_PKEY_new();
 | |
|             if (!pkey_B) {
 | |
|                 BIO_printf(bio_err, "Error while initialising EVP_PKEY (out of memory?).\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             ffdh_ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DH, NULL);
 | |
|             if (!ffdh_ctx) {
 | |
|                 BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if (EVP_PKEY_keygen_init(ffdh_ctx) <= 0) {
 | |
|                 BIO_printf(bio_err, "Error while initialising EVP_PKEY_CTX.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
|             if (EVP_PKEY_CTX_set_dh_nid(ffdh_ctx, ffdh_params[testnum].nid) <= 0) {
 | |
|                 BIO_printf(bio_err, "Error setting DH key size for keygen.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if (EVP_PKEY_keygen(ffdh_ctx, &pkey_A) <= 0 ||
 | |
|                 EVP_PKEY_keygen(ffdh_ctx, &pkey_B) <= 0) {
 | |
|                 BIO_printf(bio_err, "FFDH key generation failure.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             EVP_PKEY_CTX_free(ffdh_ctx);
 | |
| 
 | |
|             /*
 | |
|              * check if the derivation works correctly both ways so that
 | |
|              * we know if future derive calls will fail, and we can skip
 | |
|              * error checking in benchmarked code
 | |
|              */
 | |
|             ffdh_ctx = EVP_PKEY_CTX_new(pkey_A, NULL);
 | |
|             if (ffdh_ctx == NULL) {
 | |
|                 BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
|             if (EVP_PKEY_derive_init(ffdh_ctx) <= 0) {
 | |
|                 BIO_printf(bio_err, "FFDH derivation context init failure.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
|             if (EVP_PKEY_derive_set_peer(ffdh_ctx, pkey_B) <= 0) {
 | |
|                 BIO_printf(bio_err, "Assigning peer key for derivation failed.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
|             if (EVP_PKEY_derive(ffdh_ctx, NULL, &secret_size) <= 0) {
 | |
|                 BIO_printf(bio_err, "Checking size of shared secret failed.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
|             if (secret_size > MAX_FFDH_SIZE) {
 | |
|                 BIO_printf(bio_err, "Assertion failure: shared secret too large.\n");
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
|             if (EVP_PKEY_derive(ffdh_ctx,
 | |
|                                 loopargs[i].secret_ff_a,
 | |
|                                 &secret_size) <= 0) {
 | |
|                 BIO_printf(bio_err, "Shared secret derive failure.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
|             /* Now check from side B */
 | |
|             test_ctx = EVP_PKEY_CTX_new(pkey_B, NULL);
 | |
|             if (!test_ctx) {
 | |
|                 BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
|             if (!EVP_PKEY_derive_init(test_ctx) ||
 | |
|                 !EVP_PKEY_derive_set_peer(test_ctx, pkey_A) ||
 | |
|                 !EVP_PKEY_derive(test_ctx, NULL, &test_out) ||
 | |
|                 !EVP_PKEY_derive(test_ctx, loopargs[i].secret_ff_b, &test_out) ||
 | |
|                 test_out != secret_size) {
 | |
|                 BIO_printf(bio_err, "FFDH computation failure.\n");
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             /* compare the computed secrets */
 | |
|             if (CRYPTO_memcmp(loopargs[i].secret_ff_a,
 | |
|                               loopargs[i].secret_ff_b, secret_size)) {
 | |
|                 BIO_printf(bio_err, "FFDH computations don't match.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 op_count = 1;
 | |
|                 ffdh_checks = 0;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             loopargs[i].ffdh_ctx[testnum] = ffdh_ctx;
 | |
| 
 | |
|             EVP_PKEY_free(pkey_A);
 | |
|             pkey_A = NULL;
 | |
|             EVP_PKEY_free(pkey_B);
 | |
|             pkey_B = NULL;
 | |
|             EVP_PKEY_CTX_free(test_ctx);
 | |
|             test_ctx = NULL;
 | |
|         }
 | |
|         if (ffdh_checks != 0) {
 | |
|             pkey_print_message("", "ffdh", ffdh_c[testnum][0],
 | |
|                                ffdh_params[testnum].bits, seconds.ffdh);
 | |
|             Time_F(START);
 | |
|             count =
 | |
|                 run_benchmark(async_jobs, FFDH_derive_key_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R12:%ld:%d:%.2f\n" :
 | |
|                        "%ld %u-bits FFDH ops in %.2fs\n", count,
 | |
|                        ffdh_params[testnum].bits, d);
 | |
|             ffdh_results[testnum][0] = (double)count / d;
 | |
|             op_count = count;
 | |
|         }
 | |
|         if (op_count <= 1) {
 | |
|             /* if longer than 10s, don't do any more */
 | |
|             stop_it(ffdh_doit, testnum);
 | |
|         }
 | |
|     }
 | |
| #endif  /* OPENSSL_NO_DH */
 | |
| #ifndef NO_FORK
 | |
|  show_res:
 | |
| #endif
 | |
|     if (!mr) {
 | |
|         printf("version: %s\n", OpenSSL_version(OPENSSL_FULL_VERSION_STRING));
 | |
|         printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
 | |
|         printf("options: %s\n", BN_options());
 | |
|         printf("%s\n", OpenSSL_version(OPENSSL_CFLAGS));
 | |
|         printf("%s\n", OpenSSL_version(OPENSSL_CPU_INFO));
 | |
|     }
 | |
| 
 | |
|     if (pr_header) {
 | |
|         if (mr) {
 | |
|             printf("+H");
 | |
|         } else {
 | |
|             printf("The 'numbers' are in 1000s of bytes per second processed.\n");
 | |
|             printf("type        ");
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num; testnum++)
 | |
|             printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
 | |
|         printf("\n");
 | |
|     }
 | |
| 
 | |
|     for (k = 0; k < ALGOR_NUM; k++) {
 | |
|         if (!doit[k])
 | |
|             continue;
 | |
|         if (mr)
 | |
|             printf("+F:%u:%s", k, names[k]);
 | |
|         else
 | |
|             printf("%-13s", names[k]);
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             if (results[k][testnum] > 10000 && !mr)
 | |
|                 printf(" %11.2fk", results[k][testnum] / 1e3);
 | |
|             else
 | |
|                 printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
|     testnum = 1;
 | |
|     for (k = 0; k < RSA_NUM; k++) {
 | |
|         if (!rsa_doit[k])
 | |
|             continue;
 | |
|         if (testnum && !mr) {
 | |
|             printf("%18ssign    verify    sign/s verify/s\n", " ");
 | |
|             testnum = 0;
 | |
|         }
 | |
|         if (mr)
 | |
|             printf("+F2:%u:%u:%f:%f\n",
 | |
|                    k, rsa_keys[k].bits, rsa_results[k][0], rsa_results[k][1]);
 | |
|         else
 | |
|             printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
 | |
|                    rsa_keys[k].bits, 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1],
 | |
|                    rsa_results[k][0], rsa_results[k][1]);
 | |
|     }
 | |
|     testnum = 1;
 | |
|     for (k = 0; k < DSA_NUM; k++) {
 | |
|         if (!dsa_doit[k])
 | |
|             continue;
 | |
|         if (testnum && !mr) {
 | |
|             printf("%18ssign    verify    sign/s verify/s\n", " ");
 | |
|             testnum = 0;
 | |
|         }
 | |
|         if (mr)
 | |
|             printf("+F3:%u:%u:%f:%f\n",
 | |
|                    k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
 | |
|         else
 | |
|             printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
 | |
|                    dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1],
 | |
|                    dsa_results[k][0], dsa_results[k][1]);
 | |
|     }
 | |
|     testnum = 1;
 | |
|     for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) {
 | |
|         if (!ecdsa_doit[k])
 | |
|             continue;
 | |
|         if (testnum && !mr) {
 | |
|             printf("%30ssign    verify    sign/s verify/s\n", " ");
 | |
|             testnum = 0;
 | |
|         }
 | |
| 
 | |
|         if (mr)
 | |
|             printf("+F4:%u:%u:%f:%f\n",
 | |
|                    k, ec_curves[k].bits,
 | |
|                    ecdsa_results[k][0], ecdsa_results[k][1]);
 | |
|         else
 | |
|             printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
 | |
|                    ec_curves[k].bits, ec_curves[k].name,
 | |
|                    1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1],
 | |
|                    ecdsa_results[k][0], ecdsa_results[k][1]);
 | |
|     }
 | |
| 
 | |
|     testnum = 1;
 | |
|     for (k = 0; k < EC_NUM; k++) {
 | |
|         if (!ecdh_doit[k])
 | |
|             continue;
 | |
|         if (testnum && !mr) {
 | |
|             printf("%30sop      op/s\n", " ");
 | |
|             testnum = 0;
 | |
|         }
 | |
|         if (mr)
 | |
|             printf("+F5:%u:%u:%f:%f\n",
 | |
|                    k, ec_curves[k].bits,
 | |
|                    ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
 | |
| 
 | |
|         else
 | |
|             printf("%4u bits ecdh (%s) %8.4fs %8.1f\n",
 | |
|                    ec_curves[k].bits, ec_curves[k].name,
 | |
|                    1.0 / ecdh_results[k][0], ecdh_results[k][0]);
 | |
|     }
 | |
| 
 | |
|     testnum = 1;
 | |
|     for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) {
 | |
|         if (!eddsa_doit[k])
 | |
|             continue;
 | |
|         if (testnum && !mr) {
 | |
|             printf("%30ssign    verify    sign/s verify/s\n", " ");
 | |
|             testnum = 0;
 | |
|         }
 | |
| 
 | |
|         if (mr)
 | |
|             printf("+F6:%u:%u:%s:%f:%f\n",
 | |
|                    k, ed_curves[k].bits, ed_curves[k].name,
 | |
|                    eddsa_results[k][0], eddsa_results[k][1]);
 | |
|         else
 | |
|             printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
 | |
|                    ed_curves[k].bits, ed_curves[k].name,
 | |
|                    1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1],
 | |
|                    eddsa_results[k][0], eddsa_results[k][1]);
 | |
|     }
 | |
| 
 | |
| #ifndef OPENSSL_NO_SM2
 | |
|     testnum = 1;
 | |
|     for (k = 0; k < OSSL_NELEM(sm2_doit); k++) {
 | |
|         if (!sm2_doit[k])
 | |
|             continue;
 | |
|         if (testnum && !mr) {
 | |
|             printf("%30ssign    verify    sign/s verify/s\n", " ");
 | |
|             testnum = 0;
 | |
|         }
 | |
| 
 | |
|         if (mr)
 | |
|             printf("+F7:%u:%u:%s:%f:%f\n",
 | |
|                    k, sm2_curves[k].bits, sm2_curves[k].name,
 | |
|                    sm2_results[k][0], sm2_results[k][1]);
 | |
|         else
 | |
|             printf("%4u bits SM2 (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
 | |
|                    sm2_curves[k].bits, sm2_curves[k].name,
 | |
|                    1.0 / sm2_results[k][0], 1.0 / sm2_results[k][1],
 | |
|                    sm2_results[k][0], sm2_results[k][1]);
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DH
 | |
|     testnum = 1;
 | |
|     for (k = 0; k < FFDH_NUM; k++) {
 | |
|         if (!ffdh_doit[k])
 | |
|             continue;
 | |
|         if (testnum && !mr) {
 | |
|             printf("%23sop     op/s\n", " ");
 | |
|             testnum = 0;
 | |
|         }
 | |
|         if (mr)
 | |
|             printf("+F8:%u:%u:%f:%f\n",
 | |
|                    k, ffdh_params[k].bits,
 | |
|                    ffdh_results[k][0], 1.0 / ffdh_results[k][0]);
 | |
| 
 | |
|         else
 | |
|             printf("%4u bits ffdh %8.4fs %8.1f\n",
 | |
|                    ffdh_params[k].bits,
 | |
|                    1.0 / ffdh_results[k][0], ffdh_results[k][0]);
 | |
|     }
 | |
| #endif /* OPENSSL_NO_DH */
 | |
| 
 | |
|     ret = 0;
 | |
| 
 | |
|  end:
 | |
|     ERR_print_errors(bio_err);
 | |
|     for (i = 0; i < loopargs_len; i++) {
 | |
|         OPENSSL_free(loopargs[i].buf_malloc);
 | |
|         OPENSSL_free(loopargs[i].buf2_malloc);
 | |
| 
 | |
|         BN_free(bn);
 | |
|         EVP_PKEY_CTX_free(genctx);
 | |
|         for (k = 0; k < RSA_NUM; k++) {
 | |
|             EVP_PKEY_CTX_free(loopargs[i].rsa_sign_ctx[k]);
 | |
|             EVP_PKEY_CTX_free(loopargs[i].rsa_verify_ctx[k]);
 | |
|         }
 | |
| #ifndef OPENSSL_NO_DH
 | |
|         OPENSSL_free(loopargs[i].secret_ff_a);
 | |
|         OPENSSL_free(loopargs[i].secret_ff_b);
 | |
|         for (k = 0; k < FFDH_NUM; k++)
 | |
|             EVP_PKEY_CTX_free(loopargs[i].ffdh_ctx[k]);
 | |
| #endif
 | |
|         for (k = 0; k < DSA_NUM; k++) {
 | |
|             EVP_PKEY_CTX_free(loopargs[i].dsa_sign_ctx[k]);
 | |
|             EVP_PKEY_CTX_free(loopargs[i].dsa_verify_ctx[k]);
 | |
|         }
 | |
|         for (k = 0; k < ECDSA_NUM; k++) {
 | |
|             EVP_PKEY_CTX_free(loopargs[i].ecdsa_sign_ctx[k]);
 | |
|             EVP_PKEY_CTX_free(loopargs[i].ecdsa_verify_ctx[k]);
 | |
|         }
 | |
|         for (k = 0; k < EC_NUM; k++)
 | |
|             EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]);
 | |
|         for (k = 0; k < EdDSA_NUM; k++) {
 | |
|             EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]);
 | |
|             EVP_MD_CTX_free(loopargs[i].eddsa_ctx2[k]);
 | |
|         }
 | |
| #ifndef OPENSSL_NO_SM2
 | |
|         for (k = 0; k < SM2_NUM; k++) {
 | |
|             EVP_PKEY_CTX *pctx = NULL;
 | |
| 
 | |
|             /* free signing ctx */
 | |
|             if (loopargs[i].sm2_ctx[k] != NULL
 | |
|                 && (pctx = EVP_MD_CTX_get_pkey_ctx(loopargs[i].sm2_ctx[k])) != NULL)
 | |
|                 EVP_PKEY_CTX_free(pctx);
 | |
|             EVP_MD_CTX_free(loopargs[i].sm2_ctx[k]);
 | |
|             /* free verification ctx */
 | |
|             if (loopargs[i].sm2_vfy_ctx[k] != NULL
 | |
|                 && (pctx = EVP_MD_CTX_get_pkey_ctx(loopargs[i].sm2_vfy_ctx[k])) != NULL)
 | |
|                 EVP_PKEY_CTX_free(pctx);
 | |
|             EVP_MD_CTX_free(loopargs[i].sm2_vfy_ctx[k]);
 | |
|             /* free pkey */
 | |
|             EVP_PKEY_free(loopargs[i].sm2_pkey[k]);
 | |
|         }
 | |
| #endif
 | |
|         OPENSSL_free(loopargs[i].secret_a);
 | |
|         OPENSSL_free(loopargs[i].secret_b);
 | |
|     }
 | |
|     OPENSSL_free(evp_hmac_name);
 | |
|     OPENSSL_free(evp_cmac_name);
 | |
| 
 | |
|     if (async_jobs > 0) {
 | |
|         for (i = 0; i < loopargs_len; i++)
 | |
|             ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);
 | |
|     }
 | |
| 
 | |
|     if (async_init) {
 | |
|         ASYNC_cleanup_thread();
 | |
|     }
 | |
|     OPENSSL_free(loopargs);
 | |
|     release_engine(e);
 | |
|     EVP_CIPHER_free(evp_cipher);
 | |
|     EVP_MAC_free(mac);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void print_message(const char *s, long num, int length, int tm)
 | |
| {
 | |
|     BIO_printf(bio_err,
 | |
|                mr ? "+DT:%s:%d:%d\n"
 | |
|                : "Doing %s for %ds on %d size blocks: ", s, tm, length);
 | |
|     (void)BIO_flush(bio_err);
 | |
|     run = 1;
 | |
|     alarm(tm);
 | |
| }
 | |
| 
 | |
| static void pkey_print_message(const char *str, const char *str2, long num,
 | |
|                                unsigned int bits, int tm)
 | |
| {
 | |
|     BIO_printf(bio_err,
 | |
|                mr ? "+DTP:%d:%s:%s:%d\n"
 | |
|                : "Doing %u bits %s %s's for %ds: ", bits, str, str2, tm);
 | |
|     (void)BIO_flush(bio_err);
 | |
|     run = 1;
 | |
|     alarm(tm);
 | |
| }
 | |
| 
 | |
| static void print_result(int alg, int run_no, int count, double time_used)
 | |
| {
 | |
|     if (count == -1) {
 | |
|         BIO_printf(bio_err, "%s error!\n", names[alg]);
 | |
|         ERR_print_errors(bio_err);
 | |
|         return;
 | |
|     }
 | |
|     BIO_printf(bio_err,
 | |
|                mr ? "+R:%d:%s:%f\n"
 | |
|                : "%d %s's in %.2fs\n", count, names[alg], time_used);
 | |
|     results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
 | |
| }
 | |
| 
 | |
| #ifndef NO_FORK
 | |
| static char *sstrsep(char **string, const char *delim)
 | |
| {
 | |
|     char isdelim[256];
 | |
|     char *token = *string;
 | |
| 
 | |
|     if (**string == 0)
 | |
|         return NULL;
 | |
| 
 | |
|     memset(isdelim, 0, sizeof(isdelim));
 | |
|     isdelim[0] = 1;
 | |
| 
 | |
|     while (*delim) {
 | |
|         isdelim[(unsigned char)(*delim)] = 1;
 | |
|         delim++;
 | |
|     }
 | |
| 
 | |
|     while (!isdelim[(unsigned char)(**string)])
 | |
|         (*string)++;
 | |
| 
 | |
|     if (**string) {
 | |
|         **string = 0;
 | |
|         (*string)++;
 | |
|     }
 | |
| 
 | |
|     return token;
 | |
| }
 | |
| 
 | |
| static int do_multi(int multi, int size_num)
 | |
| {
 | |
|     int n;
 | |
|     int fd[2];
 | |
|     int *fds;
 | |
|     static char sep[] = ":";
 | |
| 
 | |
|     fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi");
 | |
|     for (n = 0; n < multi; ++n) {
 | |
|         if (pipe(fd) == -1) {
 | |
|             BIO_printf(bio_err, "pipe failure\n");
 | |
|             exit(1);
 | |
|         }
 | |
|         fflush(stdout);
 | |
|         (void)BIO_flush(bio_err);
 | |
|         if (fork()) {
 | |
|             close(fd[1]);
 | |
|             fds[n] = fd[0];
 | |
|         } else {
 | |
|             close(fd[0]);
 | |
|             close(1);
 | |
|             if (dup(fd[1]) == -1) {
 | |
|                 BIO_printf(bio_err, "dup failed\n");
 | |
|                 exit(1);
 | |
|             }
 | |
|             close(fd[1]);
 | |
|             mr = 1;
 | |
|             usertime = 0;
 | |
|             OPENSSL_free(fds);
 | |
|             return 0;
 | |
|         }
 | |
|         printf("Forked child %d\n", n);
 | |
|     }
 | |
| 
 | |
|     /* for now, assume the pipe is long enough to take all the output */
 | |
|     for (n = 0; n < multi; ++n) {
 | |
|         FILE *f;
 | |
|         char buf[1024];
 | |
|         char *p;
 | |
| 
 | |
|         f = fdopen(fds[n], "r");
 | |
|         while (fgets(buf, sizeof(buf), f)) {
 | |
|             p = strchr(buf, '\n');
 | |
|             if (p)
 | |
|                 *p = '\0';
 | |
|             if (buf[0] != '+') {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "Don't understand line '%s' from child %d\n", buf,
 | |
|                            n);
 | |
|                 continue;
 | |
|             }
 | |
|             printf("Got: %s from %d\n", buf, n);
 | |
|             p = buf;
 | |
|             if (CHECK_AND_SKIP_PREFIX(p, "+F:")) {
 | |
|                 int alg;
 | |
|                 int j;
 | |
| 
 | |
|                 alg = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
|                 for (j = 0; j < size_num; ++j)
 | |
|                     results[alg][j] += atof(sstrsep(&p, sep));
 | |
|             } else if (CHECK_AND_SKIP_PREFIX(p, "+F2:")) {
 | |
|                 int k;
 | |
|                 double d;
 | |
| 
 | |
|                 k = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 rsa_results[k][0] += d;
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 rsa_results[k][1] += d;
 | |
|             } else if (CHECK_AND_SKIP_PREFIX(p, "+F3:")) {
 | |
|                 int k;
 | |
|                 double d;
 | |
| 
 | |
|                 k = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 dsa_results[k][0] += d;
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 dsa_results[k][1] += d;
 | |
|             } else if (CHECK_AND_SKIP_PREFIX(p, "+F4:")) {
 | |
|                 int k;
 | |
|                 double d;
 | |
| 
 | |
|                 k = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 ecdsa_results[k][0] += d;
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 ecdsa_results[k][1] += d;
 | |
|             } else if (CHECK_AND_SKIP_PREFIX(p, "+F5:")) {
 | |
|                 int k;
 | |
|                 double d;
 | |
| 
 | |
|                 k = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 ecdh_results[k][0] += d;
 | |
|             } else if (CHECK_AND_SKIP_PREFIX(p, "+F6:")) {
 | |
|                 int k;
 | |
|                 double d;
 | |
| 
 | |
|                 k = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
|                 sstrsep(&p, sep);
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 eddsa_results[k][0] += d;
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 eddsa_results[k][1] += d;
 | |
| # ifndef OPENSSL_NO_SM2
 | |
|             } else if (CHECK_AND_SKIP_PREFIX(p, "+F7:")) {
 | |
|                 int k;
 | |
|                 double d;
 | |
| 
 | |
|                 k = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
|                 sstrsep(&p, sep);
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 sm2_results[k][0] += d;
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 sm2_results[k][1] += d;
 | |
| # endif /* OPENSSL_NO_SM2 */
 | |
| # ifndef OPENSSL_NO_DH
 | |
|             } else if (CHECK_AND_SKIP_PREFIX(p, "+F8:")) {
 | |
|                 int k;
 | |
|                 double d;
 | |
| 
 | |
|                 k = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 ffdh_results[k][0] += d;
 | |
| # endif /* OPENSSL_NO_DH */
 | |
|             } else if (HAS_PREFIX(buf, "+H:")) {
 | |
|                 ;
 | |
|             } else {
 | |
|                 BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf,
 | |
|                            n);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         fclose(f);
 | |
|     }
 | |
|     OPENSSL_free(fds);
 | |
|     return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
 | |
|                              const openssl_speed_sec_t *seconds)
 | |
| {
 | |
|     static const int mblengths_list[] =
 | |
|         { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
 | |
|     const int *mblengths = mblengths_list;
 | |
|     int j, count, keylen, num = OSSL_NELEM(mblengths_list);
 | |
|     const char *alg_name;
 | |
|     unsigned char *inp = NULL, *out = NULL, *key, no_key[32], no_iv[16];
 | |
|     EVP_CIPHER_CTX *ctx = NULL;
 | |
|     double d = 0.0;
 | |
| 
 | |
|     if (lengths_single) {
 | |
|         mblengths = &lengths_single;
 | |
|         num = 1;
 | |
|     }
 | |
| 
 | |
|     inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
 | |
|     out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
 | |
|     if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
 | |
|         app_bail_out("failed to allocate cipher context\n");
 | |
|     if (!EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv))
 | |
|         app_bail_out("failed to initialise cipher context\n");
 | |
| 
 | |
|     if ((keylen = EVP_CIPHER_CTX_get_key_length(ctx)) < 0) {
 | |
|         BIO_printf(bio_err, "Impossible negative key length: %d\n", keylen);
 | |
|         goto err;
 | |
|     }
 | |
|     key = app_malloc(keylen, "evp_cipher key");
 | |
|     if (!EVP_CIPHER_CTX_rand_key(ctx, key))
 | |
|         app_bail_out("failed to generate random cipher key\n");
 | |
|     if (!EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL))
 | |
|         app_bail_out("failed to set cipher key\n");
 | |
|     OPENSSL_clear_free(key, keylen);
 | |
| 
 | |
|     if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY,
 | |
|                              sizeof(no_key), no_key))
 | |
|         app_bail_out("failed to set AEAD key\n");
 | |
|     if ((alg_name = EVP_CIPHER_get0_name(evp_cipher)) == NULL)
 | |
|         app_bail_out("failed to get cipher name\n");
 | |
| 
 | |
|     for (j = 0; j < num; j++) {
 | |
|         print_message(alg_name, 0, mblengths[j], seconds->sym);
 | |
|         Time_F(START);
 | |
|         for (count = 0; run && count < 0x7fffffff; count++) {
 | |
|             unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
 | |
|             EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
 | |
|             size_t len = mblengths[j];
 | |
|             int packlen;
 | |
| 
 | |
|             memset(aad, 0, 8);  /* avoid uninitialized values */
 | |
|             aad[8] = 23;        /* SSL3_RT_APPLICATION_DATA */
 | |
|             aad[9] = 3;         /* version */
 | |
|             aad[10] = 2;
 | |
|             aad[11] = 0;        /* length */
 | |
|             aad[12] = 0;
 | |
|             mb_param.out = NULL;
 | |
|             mb_param.inp = aad;
 | |
|             mb_param.len = len;
 | |
|             mb_param.interleave = 8;
 | |
| 
 | |
|             packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
 | |
|                                           sizeof(mb_param), &mb_param);
 | |
| 
 | |
|             if (packlen > 0) {
 | |
|                 mb_param.out = out;
 | |
|                 mb_param.inp = inp;
 | |
|                 mb_param.len = len;
 | |
|                 (void)EVP_CIPHER_CTX_ctrl(ctx,
 | |
|                                           EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
 | |
|                                           sizeof(mb_param), &mb_param);
 | |
|             } else {
 | |
|                 int pad;
 | |
| 
 | |
|                 RAND_bytes(out, 16);
 | |
|                 len += 16;
 | |
|                 aad[11] = (unsigned char)(len >> 8);
 | |
|                 aad[12] = (unsigned char)(len);
 | |
|                 pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
 | |
|                                           EVP_AEAD_TLS1_AAD_LEN, aad);
 | |
|                 EVP_Cipher(ctx, out, inp, len + pad);
 | |
|             }
 | |
|         }
 | |
|         d = Time_F(STOP);
 | |
|         BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
 | |
|                    : "%d %s's in %.2fs\n", count, "evp", d);
 | |
|         results[D_EVP][j] = ((double)count) / d * mblengths[j];
 | |
|     }
 | |
| 
 | |
|     if (mr) {
 | |
|         fprintf(stdout, "+H");
 | |
|         for (j = 0; j < num; j++)
 | |
|             fprintf(stdout, ":%d", mblengths[j]);
 | |
|         fprintf(stdout, "\n");
 | |
|         fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
 | |
|         for (j = 0; j < num; j++)
 | |
|             fprintf(stdout, ":%.2f", results[D_EVP][j]);
 | |
|         fprintf(stdout, "\n");
 | |
|     } else {
 | |
|         fprintf(stdout,
 | |
|                 "The 'numbers' are in 1000s of bytes per second processed.\n");
 | |
|         fprintf(stdout, "type                    ");
 | |
|         for (j = 0; j < num; j++)
 | |
|             fprintf(stdout, "%7d bytes", mblengths[j]);
 | |
|         fprintf(stdout, "\n");
 | |
|         fprintf(stdout, "%-24s", alg_name);
 | |
| 
 | |
|         for (j = 0; j < num; j++) {
 | |
|             if (results[D_EVP][j] > 10000)
 | |
|                 fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
 | |
|             else
 | |
|                 fprintf(stdout, " %11.2f ", results[D_EVP][j]);
 | |
|         }
 | |
|         fprintf(stdout, "\n");
 | |
|     }
 | |
| 
 | |
|  err:
 | |
|     OPENSSL_free(inp);
 | |
|     OPENSSL_free(out);
 | |
|     EVP_CIPHER_CTX_free(ctx);
 | |
| }
 |