mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			1009 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1009 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
| /* crypto/bn/bn_asm.c */
 | |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This package is an SSL implementation written
 | |
|  * by Eric Young (eay@cryptsoft.com).
 | |
|  * The implementation was written so as to conform with Netscapes SSL.
 | |
|  * 
 | |
|  * This library is free for commercial and non-commercial use as long as
 | |
|  * the following conditions are aheared to.  The following conditions
 | |
|  * apply to all code found in this distribution, be it the RC4, RSA,
 | |
|  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 | |
|  * included with this distribution is covered by the same copyright terms
 | |
|  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 | |
|  * 
 | |
|  * Copyright remains Eric Young's, and as such any Copyright notices in
 | |
|  * the code are not to be removed.
 | |
|  * If this package is used in a product, Eric Young should be given attribution
 | |
|  * as the author of the parts of the library used.
 | |
|  * This can be in the form of a textual message at program startup or
 | |
|  * in documentation (online or textual) provided with the package.
 | |
|  * 
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. All advertising materials mentioning features or use of this software
 | |
|  *    must display the following acknowledgement:
 | |
|  *    "This product includes cryptographic software written by
 | |
|  *     Eric Young (eay@cryptsoft.com)"
 | |
|  *    The word 'cryptographic' can be left out if the rouines from the library
 | |
|  *    being used are not cryptographic related :-).
 | |
|  * 4. If you include any Windows specific code (or a derivative thereof) from 
 | |
|  *    the apps directory (application code) you must include an acknowledgement:
 | |
|  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 | |
|  * 
 | |
|  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  * 
 | |
|  * The licence and distribution terms for any publically available version or
 | |
|  * derivative of this code cannot be changed.  i.e. this code cannot simply be
 | |
|  * copied and put under another distribution licence
 | |
|  * [including the GNU Public Licence.]
 | |
|  */
 | |
| 
 | |
| #ifndef BN_DEBUG
 | |
| # undef NDEBUG /* avoid conflicting definitions */
 | |
| # define NDEBUG
 | |
| #endif
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <assert.h>
 | |
| #include "cryptlib.h"
 | |
| #include "bn_lcl.h"
 | |
| 
 | |
| #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
 | |
| 
 | |
| BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
 | |
| 	{
 | |
| 	BN_ULONG c1=0;
 | |
| 
 | |
| 	assert(num >= 0);
 | |
| 	if (num <= 0) return(c1);
 | |
| 
 | |
| #ifndef OPENSSL_SMALL_FOOTPRINT
 | |
| 	while (num&~3)
 | |
| 		{
 | |
| 		mul_add(rp[0],ap[0],w,c1);
 | |
| 		mul_add(rp[1],ap[1],w,c1);
 | |
| 		mul_add(rp[2],ap[2],w,c1);
 | |
| 		mul_add(rp[3],ap[3],w,c1);
 | |
| 		ap+=4; rp+=4; num-=4;
 | |
| 		}
 | |
| #endif
 | |
| 	while (num)
 | |
| 		{
 | |
| 		mul_add(rp[0],ap[0],w,c1);
 | |
| 		ap++; rp++; num--;
 | |
| 		}
 | |
| 	
 | |
| 	return(c1);
 | |
| 	} 
 | |
| 
 | |
| BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
 | |
| 	{
 | |
| 	BN_ULONG c1=0;
 | |
| 
 | |
| 	assert(num >= 0);
 | |
| 	if (num <= 0) return(c1);
 | |
| 
 | |
| #ifndef OPENSSL_SMALL_FOOTPRINT
 | |
| 	while (num&~3)
 | |
| 		{
 | |
| 		mul(rp[0],ap[0],w,c1);
 | |
| 		mul(rp[1],ap[1],w,c1);
 | |
| 		mul(rp[2],ap[2],w,c1);
 | |
| 		mul(rp[3],ap[3],w,c1);
 | |
| 		ap+=4; rp+=4; num-=4;
 | |
| 		}
 | |
| #endif
 | |
| 	while (num)
 | |
| 		{
 | |
| 		mul(rp[0],ap[0],w,c1);
 | |
| 		ap++; rp++; num--;
 | |
| 		}
 | |
| 	return(c1);
 | |
| 	} 
 | |
| 
 | |
| void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
 | |
|         {
 | |
| 	assert(n >= 0);
 | |
| 	if (n <= 0) return;
 | |
| 
 | |
| #ifndef OPENSSL_SMALL_FOOTPRINT
 | |
| 	while (n&~3)
 | |
| 		{
 | |
| 		sqr(r[0],r[1],a[0]);
 | |
| 		sqr(r[2],r[3],a[1]);
 | |
| 		sqr(r[4],r[5],a[2]);
 | |
| 		sqr(r[6],r[7],a[3]);
 | |
| 		a+=4; r+=8; n-=4;
 | |
| 		}
 | |
| #endif
 | |
| 	while (n)
 | |
| 		{
 | |
| 		sqr(r[0],r[1],a[0]);
 | |
| 		a++; r+=2; n--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
 | |
| 
 | |
| BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
 | |
| 	{
 | |
| 	BN_ULONG c=0;
 | |
| 	BN_ULONG bl,bh;
 | |
| 
 | |
| 	assert(num >= 0);
 | |
| 	if (num <= 0) return((BN_ULONG)0);
 | |
| 
 | |
| 	bl=LBITS(w);
 | |
| 	bh=HBITS(w);
 | |
| 
 | |
| #ifndef OPENSSL_SMALL_FOOTPRINT
 | |
| 	while (num&~3)
 | |
| 		{
 | |
| 		mul_add(rp[0],ap[0],bl,bh,c);
 | |
| 		mul_add(rp[1],ap[1],bl,bh,c);
 | |
| 		mul_add(rp[2],ap[2],bl,bh,c);
 | |
| 		mul_add(rp[3],ap[3],bl,bh,c);
 | |
| 		ap+=4; rp+=4; num-=4;
 | |
| 		}
 | |
| #endif
 | |
| 	while (num)
 | |
| 		{
 | |
| 		mul_add(rp[0],ap[0],bl,bh,c);
 | |
| 		ap++; rp++; num--;
 | |
| 		}
 | |
| 	return(c);
 | |
| 	} 
 | |
| 
 | |
| BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
 | |
| 	{
 | |
| 	BN_ULONG carry=0;
 | |
| 	BN_ULONG bl,bh;
 | |
| 
 | |
| 	assert(num >= 0);
 | |
| 	if (num <= 0) return((BN_ULONG)0);
 | |
| 
 | |
| 	bl=LBITS(w);
 | |
| 	bh=HBITS(w);
 | |
| 
 | |
| #ifndef OPENSSL_SMALL_FOOTPRINT
 | |
| 	while (num&~3)
 | |
| 		{
 | |
| 		mul(rp[0],ap[0],bl,bh,carry);
 | |
| 		mul(rp[1],ap[1],bl,bh,carry);
 | |
| 		mul(rp[2],ap[2],bl,bh,carry);
 | |
| 		mul(rp[3],ap[3],bl,bh,carry);
 | |
| 		ap+=4; rp+=4; num-=4;
 | |
| 		}
 | |
| #endif
 | |
| 	while (num)
 | |
| 		{
 | |
| 		mul(rp[0],ap[0],bl,bh,carry);
 | |
| 		ap++; rp++; num--;
 | |
| 		}
 | |
| 	return(carry);
 | |
| 	} 
 | |
| 
 | |
| void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
 | |
|         {
 | |
| 	assert(n >= 0);
 | |
| 	if (n <= 0) return;
 | |
| 
 | |
| #ifndef OPENSSL_SMALL_FOOTPRINT
 | |
| 	while (n&~3)
 | |
| 		{
 | |
| 		sqr64(r[0],r[1],a[0]);
 | |
| 		sqr64(r[2],r[3],a[1]);
 | |
| 		sqr64(r[4],r[5],a[2]);
 | |
| 		sqr64(r[6],r[7],a[3]);
 | |
| 		a+=4; r+=8; n-=4;
 | |
| 		}
 | |
| #endif
 | |
| 	while (n)
 | |
| 		{
 | |
| 		sqr64(r[0],r[1],a[0]);
 | |
| 		a++; r+=2; n--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
 | |
| 
 | |
| #if defined(BN_LLONG) && defined(BN_DIV2W)
 | |
| 
 | |
| BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
 | |
| 	{
 | |
| 	return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
 | |
| 	}
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Divide h,l by d and return the result. */
 | |
| /* I need to test this some more :-( */
 | |
| BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
 | |
| 	{
 | |
| 	BN_ULONG dh,dl,q,ret=0,th,tl,t;
 | |
| 	int i,count=2;
 | |
| 
 | |
| 	if (d == 0) return(BN_MASK2);
 | |
| 
 | |
| 	i=BN_num_bits_word(d);
 | |
| 	assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
 | |
| 
 | |
| 	i=BN_BITS2-i;
 | |
| 	if (h >= d) h-=d;
 | |
| 
 | |
| 	if (i)
 | |
| 		{
 | |
| 		d<<=i;
 | |
| 		h=(h<<i)|(l>>(BN_BITS2-i));
 | |
| 		l<<=i;
 | |
| 		}
 | |
| 	dh=(d&BN_MASK2h)>>BN_BITS4;
 | |
| 	dl=(d&BN_MASK2l);
 | |
| 	for (;;)
 | |
| 		{
 | |
| 		if ((h>>BN_BITS4) == dh)
 | |
| 			q=BN_MASK2l;
 | |
| 		else
 | |
| 			q=h/dh;
 | |
| 
 | |
| 		th=q*dh;
 | |
| 		tl=dl*q;
 | |
| 		for (;;)
 | |
| 			{
 | |
| 			t=h-th;
 | |
| 			if ((t&BN_MASK2h) ||
 | |
| 				((tl) <= (
 | |
| 					(t<<BN_BITS4)|
 | |
| 					((l&BN_MASK2h)>>BN_BITS4))))
 | |
| 				break;
 | |
| 			q--;
 | |
| 			th-=dh;
 | |
| 			tl-=dl;
 | |
| 			}
 | |
| 		t=(tl>>BN_BITS4);
 | |
| 		tl=(tl<<BN_BITS4)&BN_MASK2h;
 | |
| 		th+=t;
 | |
| 
 | |
| 		if (l < tl) th++;
 | |
| 		l-=tl;
 | |
| 		if (h < th)
 | |
| 			{
 | |
| 			h+=d;
 | |
| 			q--;
 | |
| 			}
 | |
| 		h-=th;
 | |
| 
 | |
| 		if (--count == 0) break;
 | |
| 
 | |
| 		ret=q<<BN_BITS4;
 | |
| 		h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
 | |
| 		l=(l&BN_MASK2l)<<BN_BITS4;
 | |
| 		}
 | |
| 	ret|=q;
 | |
| 	return(ret);
 | |
| 	}
 | |
| #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
 | |
| 
 | |
| #ifdef BN_LLONG
 | |
| BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
 | |
|         {
 | |
| 	BN_ULLONG ll=0;
 | |
| 
 | |
| 	assert(n >= 0);
 | |
| 	if (n <= 0) return((BN_ULONG)0);
 | |
| 
 | |
| #ifndef OPENSSL_SMALL_FOOTPRINT
 | |
| 	while (n&~3)
 | |
| 		{
 | |
| 		ll+=(BN_ULLONG)a[0]+b[0];
 | |
| 		r[0]=(BN_ULONG)ll&BN_MASK2;
 | |
| 		ll>>=BN_BITS2;
 | |
| 		ll+=(BN_ULLONG)a[1]+b[1];
 | |
| 		r[1]=(BN_ULONG)ll&BN_MASK2;
 | |
| 		ll>>=BN_BITS2;
 | |
| 		ll+=(BN_ULLONG)a[2]+b[2];
 | |
| 		r[2]=(BN_ULONG)ll&BN_MASK2;
 | |
| 		ll>>=BN_BITS2;
 | |
| 		ll+=(BN_ULLONG)a[3]+b[3];
 | |
| 		r[3]=(BN_ULONG)ll&BN_MASK2;
 | |
| 		ll>>=BN_BITS2;
 | |
| 		a+=4; b+=4; r+=4; n-=4;
 | |
| 		}
 | |
| #endif
 | |
| 	while (n)
 | |
| 		{
 | |
| 		ll+=(BN_ULLONG)a[0]+b[0];
 | |
| 		r[0]=(BN_ULONG)ll&BN_MASK2;
 | |
| 		ll>>=BN_BITS2;
 | |
| 		a++; b++; r++; n--;
 | |
| 		}
 | |
| 	return((BN_ULONG)ll);
 | |
| 	}
 | |
| #else /* !BN_LLONG */
 | |
| BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
 | |
|         {
 | |
| 	BN_ULONG c,l,t;
 | |
| 
 | |
| 	assert(n >= 0);
 | |
| 	if (n <= 0) return((BN_ULONG)0);
 | |
| 
 | |
| 	c=0;
 | |
| #ifndef OPENSSL_SMALL_FOOTPRINT
 | |
| 	while (n&~3)
 | |
| 		{
 | |
| 		t=a[0];
 | |
| 		t=(t+c)&BN_MASK2;
 | |
| 		c=(t < c);
 | |
| 		l=(t+b[0])&BN_MASK2;
 | |
| 		c+=(l < t);
 | |
| 		r[0]=l;
 | |
| 		t=a[1];
 | |
| 		t=(t+c)&BN_MASK2;
 | |
| 		c=(t < c);
 | |
| 		l=(t+b[1])&BN_MASK2;
 | |
| 		c+=(l < t);
 | |
| 		r[1]=l;
 | |
| 		t=a[2];
 | |
| 		t=(t+c)&BN_MASK2;
 | |
| 		c=(t < c);
 | |
| 		l=(t+b[2])&BN_MASK2;
 | |
| 		c+=(l < t);
 | |
| 		r[2]=l;
 | |
| 		t=a[3];
 | |
| 		t=(t+c)&BN_MASK2;
 | |
| 		c=(t < c);
 | |
| 		l=(t+b[3])&BN_MASK2;
 | |
| 		c+=(l < t);
 | |
| 		r[3]=l;
 | |
| 		a+=4; b+=4; r+=4; n-=4;
 | |
| 		}
 | |
| #endif
 | |
| 	while(n)
 | |
| 		{
 | |
| 		t=a[0];
 | |
| 		t=(t+c)&BN_MASK2;
 | |
| 		c=(t < c);
 | |
| 		l=(t+b[0])&BN_MASK2;
 | |
| 		c+=(l < t);
 | |
| 		r[0]=l;
 | |
| 		a++; b++; r++; n--;
 | |
| 		}
 | |
| 	return((BN_ULONG)c);
 | |
| 	}
 | |
| #endif /* !BN_LLONG */
 | |
| 
 | |
| BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
 | |
|         {
 | |
| 	BN_ULONG t1,t2;
 | |
| 	int c=0;
 | |
| 
 | |
| 	assert(n >= 0);
 | |
| 	if (n <= 0) return((BN_ULONG)0);
 | |
| 
 | |
| #ifndef OPENSSL_SMALL_FOOTPRINT
 | |
| 	while (n&~3)
 | |
| 		{
 | |
| 		t1=a[0]; t2=b[0];
 | |
| 		r[0]=(t1-t2-c)&BN_MASK2;
 | |
| 		if (t1 != t2) c=(t1 < t2);
 | |
| 		t1=a[1]; t2=b[1];
 | |
| 		r[1]=(t1-t2-c)&BN_MASK2;
 | |
| 		if (t1 != t2) c=(t1 < t2);
 | |
| 		t1=a[2]; t2=b[2];
 | |
| 		r[2]=(t1-t2-c)&BN_MASK2;
 | |
| 		if (t1 != t2) c=(t1 < t2);
 | |
| 		t1=a[3]; t2=b[3];
 | |
| 		r[3]=(t1-t2-c)&BN_MASK2;
 | |
| 		if (t1 != t2) c=(t1 < t2);
 | |
| 		a+=4; b+=4; r+=4; n-=4;
 | |
| 		}
 | |
| #endif
 | |
| 	while (n)
 | |
| 		{
 | |
| 		t1=a[0]; t2=b[0];
 | |
| 		r[0]=(t1-t2-c)&BN_MASK2;
 | |
| 		if (t1 != t2) c=(t1 < t2);
 | |
| 		a++; b++; r++; n--;
 | |
| 		}
 | |
| 	return(c);
 | |
| 	}
 | |
| 
 | |
| #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
| 
 | |
| #undef bn_mul_comba8
 | |
| #undef bn_mul_comba4
 | |
| #undef bn_sqr_comba8
 | |
| #undef bn_sqr_comba4
 | |
| 
 | |
| /* mul_add_c(a,b,c0,c1,c2)  -- c+=a*b for three word number c=(c2,c1,c0) */
 | |
| /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
 | |
| /* sqr_add_c(a,i,c0,c1,c2)  -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
 | |
| /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
 | |
| 
 | |
| #ifdef BN_LLONG
 | |
| #define mul_add_c(a,b,c0,c1,c2) \
 | |
| 	t=(BN_ULLONG)a*b; \
 | |
| 	t1=(BN_ULONG)Lw(t); \
 | |
| 	t2=(BN_ULONG)Hw(t); \
 | |
| 	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
 | |
| 	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
 | |
| 
 | |
| #define mul_add_c2(a,b,c0,c1,c2) \
 | |
| 	t=(BN_ULLONG)a*b; \
 | |
| 	tt=(t+t)&BN_MASK; \
 | |
| 	if (tt < t) c2++; \
 | |
| 	t1=(BN_ULONG)Lw(tt); \
 | |
| 	t2=(BN_ULONG)Hw(tt); \
 | |
| 	c0=(c0+t1)&BN_MASK2;  \
 | |
| 	if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
 | |
| 	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
 | |
| 
 | |
| #define sqr_add_c(a,i,c0,c1,c2) \
 | |
| 	t=(BN_ULLONG)a[i]*a[i]; \
 | |
| 	t1=(BN_ULONG)Lw(t); \
 | |
| 	t2=(BN_ULONG)Hw(t); \
 | |
| 	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
 | |
| 	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
 | |
| 
 | |
| #define sqr_add_c2(a,i,j,c0,c1,c2) \
 | |
| 	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
 | |
| 
 | |
| #elif defined(BN_UMULT_LOHI)
 | |
| 
 | |
| #define mul_add_c(a,b,c0,c1,c2)	{	\
 | |
| 	BN_ULONG ta=(a),tb=(b);		\
 | |
| 	BN_UMULT_LOHI(t1,t2,ta,tb);	\
 | |
| 	c0 += t1; t2 += (c0<t1)?1:0;	\
 | |
| 	c1 += t2; c2 += (c1<t2)?1:0;	\
 | |
| 	}
 | |
| 
 | |
| #define mul_add_c2(a,b,c0,c1,c2) {	\
 | |
| 	BN_ULONG ta=(a),tb=(b),t0;	\
 | |
| 	BN_UMULT_LOHI(t0,t1,ta,tb);	\
 | |
| 	t2 = t1+t1; c2 += (t2<t1)?1:0;	\
 | |
| 	t1 = t0+t0; t2 += (t1<t0)?1:0;	\
 | |
| 	c0 += t1; t2 += (c0<t1)?1:0;	\
 | |
| 	c1 += t2; c2 += (c1<t2)?1:0;	\
 | |
| 	}
 | |
| 
 | |
| #define sqr_add_c(a,i,c0,c1,c2)	{	\
 | |
| 	BN_ULONG ta=(a)[i];		\
 | |
| 	BN_UMULT_LOHI(t1,t2,ta,ta);	\
 | |
| 	c0 += t1; t2 += (c0<t1)?1:0;	\
 | |
| 	c1 += t2; c2 += (c1<t2)?1:0;	\
 | |
| 	}
 | |
| 
 | |
| #define sqr_add_c2(a,i,j,c0,c1,c2)	\
 | |
| 	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
 | |
| 
 | |
| #elif defined(BN_UMULT_HIGH)
 | |
| 
 | |
| #define mul_add_c(a,b,c0,c1,c2)	{	\
 | |
| 	BN_ULONG ta=(a),tb=(b);		\
 | |
| 	t1 = ta * tb;			\
 | |
| 	t2 = BN_UMULT_HIGH(ta,tb);	\
 | |
| 	c0 += t1; t2 += (c0<t1)?1:0;	\
 | |
| 	c1 += t2; c2 += (c1<t2)?1:0;	\
 | |
| 	}
 | |
| 
 | |
| #define mul_add_c2(a,b,c0,c1,c2) {	\
 | |
| 	BN_ULONG ta=(a),tb=(b),t0;	\
 | |
| 	t1 = BN_UMULT_HIGH(ta,tb);	\
 | |
| 	t0 = ta * tb;			\
 | |
| 	t2 = t1+t1; c2 += (t2<t1)?1:0;	\
 | |
| 	t1 = t0+t0; t2 += (t1<t0)?1:0;	\
 | |
| 	c0 += t1; t2 += (c0<t1)?1:0;	\
 | |
| 	c1 += t2; c2 += (c1<t2)?1:0;	\
 | |
| 	}
 | |
| 
 | |
| #define sqr_add_c(a,i,c0,c1,c2)	{	\
 | |
| 	BN_ULONG ta=(a)[i];		\
 | |
| 	t1 = ta * ta;			\
 | |
| 	t2 = BN_UMULT_HIGH(ta,ta);	\
 | |
| 	c0 += t1; t2 += (c0<t1)?1:0;	\
 | |
| 	c1 += t2; c2 += (c1<t2)?1:0;	\
 | |
| 	}
 | |
| 
 | |
| #define sqr_add_c2(a,i,j,c0,c1,c2)	\
 | |
| 	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
 | |
| 
 | |
| #else /* !BN_LLONG */
 | |
| #define mul_add_c(a,b,c0,c1,c2) \
 | |
| 	t1=LBITS(a); t2=HBITS(a); \
 | |
| 	bl=LBITS(b); bh=HBITS(b); \
 | |
| 	mul64(t1,t2,bl,bh); \
 | |
| 	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
 | |
| 	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
 | |
| 
 | |
| #define mul_add_c2(a,b,c0,c1,c2) \
 | |
| 	t1=LBITS(a); t2=HBITS(a); \
 | |
| 	bl=LBITS(b); bh=HBITS(b); \
 | |
| 	mul64(t1,t2,bl,bh); \
 | |
| 	if (t2 & BN_TBIT) c2++; \
 | |
| 	t2=(t2+t2)&BN_MASK2; \
 | |
| 	if (t1 & BN_TBIT) t2++; \
 | |
| 	t1=(t1+t1)&BN_MASK2; \
 | |
| 	c0=(c0+t1)&BN_MASK2;  \
 | |
| 	if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
 | |
| 	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
 | |
| 
 | |
| #define sqr_add_c(a,i,c0,c1,c2) \
 | |
| 	sqr64(t1,t2,(a)[i]); \
 | |
| 	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
 | |
| 	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
 | |
| 
 | |
| #define sqr_add_c2(a,i,j,c0,c1,c2) \
 | |
| 	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
 | |
| #endif /* !BN_LLONG */
 | |
| 
 | |
| void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
 | |
| 	{
 | |
| #ifdef BN_LLONG
 | |
| 	BN_ULLONG t;
 | |
| #else
 | |
| 	BN_ULONG bl,bh;
 | |
| #endif
 | |
| 	BN_ULONG t1,t2;
 | |
| 	BN_ULONG c1,c2,c3;
 | |
| 
 | |
| 	c1=0;
 | |
| 	c2=0;
 | |
| 	c3=0;
 | |
| 	mul_add_c(a[0],b[0],c1,c2,c3);
 | |
| 	r[0]=c1;
 | |
| 	c1=0;
 | |
| 	mul_add_c(a[0],b[1],c2,c3,c1);
 | |
| 	mul_add_c(a[1],b[0],c2,c3,c1);
 | |
| 	r[1]=c2;
 | |
| 	c2=0;
 | |
| 	mul_add_c(a[2],b[0],c3,c1,c2);
 | |
| 	mul_add_c(a[1],b[1],c3,c1,c2);
 | |
| 	mul_add_c(a[0],b[2],c3,c1,c2);
 | |
| 	r[2]=c3;
 | |
| 	c3=0;
 | |
| 	mul_add_c(a[0],b[3],c1,c2,c3);
 | |
| 	mul_add_c(a[1],b[2],c1,c2,c3);
 | |
| 	mul_add_c(a[2],b[1],c1,c2,c3);
 | |
| 	mul_add_c(a[3],b[0],c1,c2,c3);
 | |
| 	r[3]=c1;
 | |
| 	c1=0;
 | |
| 	mul_add_c(a[4],b[0],c2,c3,c1);
 | |
| 	mul_add_c(a[3],b[1],c2,c3,c1);
 | |
| 	mul_add_c(a[2],b[2],c2,c3,c1);
 | |
| 	mul_add_c(a[1],b[3],c2,c3,c1);
 | |
| 	mul_add_c(a[0],b[4],c2,c3,c1);
 | |
| 	r[4]=c2;
 | |
| 	c2=0;
 | |
| 	mul_add_c(a[0],b[5],c3,c1,c2);
 | |
| 	mul_add_c(a[1],b[4],c3,c1,c2);
 | |
| 	mul_add_c(a[2],b[3],c3,c1,c2);
 | |
| 	mul_add_c(a[3],b[2],c3,c1,c2);
 | |
| 	mul_add_c(a[4],b[1],c3,c1,c2);
 | |
| 	mul_add_c(a[5],b[0],c3,c1,c2);
 | |
| 	r[5]=c3;
 | |
| 	c3=0;
 | |
| 	mul_add_c(a[6],b[0],c1,c2,c3);
 | |
| 	mul_add_c(a[5],b[1],c1,c2,c3);
 | |
| 	mul_add_c(a[4],b[2],c1,c2,c3);
 | |
| 	mul_add_c(a[3],b[3],c1,c2,c3);
 | |
| 	mul_add_c(a[2],b[4],c1,c2,c3);
 | |
| 	mul_add_c(a[1],b[5],c1,c2,c3);
 | |
| 	mul_add_c(a[0],b[6],c1,c2,c3);
 | |
| 	r[6]=c1;
 | |
| 	c1=0;
 | |
| 	mul_add_c(a[0],b[7],c2,c3,c1);
 | |
| 	mul_add_c(a[1],b[6],c2,c3,c1);
 | |
| 	mul_add_c(a[2],b[5],c2,c3,c1);
 | |
| 	mul_add_c(a[3],b[4],c2,c3,c1);
 | |
| 	mul_add_c(a[4],b[3],c2,c3,c1);
 | |
| 	mul_add_c(a[5],b[2],c2,c3,c1);
 | |
| 	mul_add_c(a[6],b[1],c2,c3,c1);
 | |
| 	mul_add_c(a[7],b[0],c2,c3,c1);
 | |
| 	r[7]=c2;
 | |
| 	c2=0;
 | |
| 	mul_add_c(a[7],b[1],c3,c1,c2);
 | |
| 	mul_add_c(a[6],b[2],c3,c1,c2);
 | |
| 	mul_add_c(a[5],b[3],c3,c1,c2);
 | |
| 	mul_add_c(a[4],b[4],c3,c1,c2);
 | |
| 	mul_add_c(a[3],b[5],c3,c1,c2);
 | |
| 	mul_add_c(a[2],b[6],c3,c1,c2);
 | |
| 	mul_add_c(a[1],b[7],c3,c1,c2);
 | |
| 	r[8]=c3;
 | |
| 	c3=0;
 | |
| 	mul_add_c(a[2],b[7],c1,c2,c3);
 | |
| 	mul_add_c(a[3],b[6],c1,c2,c3);
 | |
| 	mul_add_c(a[4],b[5],c1,c2,c3);
 | |
| 	mul_add_c(a[5],b[4],c1,c2,c3);
 | |
| 	mul_add_c(a[6],b[3],c1,c2,c3);
 | |
| 	mul_add_c(a[7],b[2],c1,c2,c3);
 | |
| 	r[9]=c1;
 | |
| 	c1=0;
 | |
| 	mul_add_c(a[7],b[3],c2,c3,c1);
 | |
| 	mul_add_c(a[6],b[4],c2,c3,c1);
 | |
| 	mul_add_c(a[5],b[5],c2,c3,c1);
 | |
| 	mul_add_c(a[4],b[6],c2,c3,c1);
 | |
| 	mul_add_c(a[3],b[7],c2,c3,c1);
 | |
| 	r[10]=c2;
 | |
| 	c2=0;
 | |
| 	mul_add_c(a[4],b[7],c3,c1,c2);
 | |
| 	mul_add_c(a[5],b[6],c3,c1,c2);
 | |
| 	mul_add_c(a[6],b[5],c3,c1,c2);
 | |
| 	mul_add_c(a[7],b[4],c3,c1,c2);
 | |
| 	r[11]=c3;
 | |
| 	c3=0;
 | |
| 	mul_add_c(a[7],b[5],c1,c2,c3);
 | |
| 	mul_add_c(a[6],b[6],c1,c2,c3);
 | |
| 	mul_add_c(a[5],b[7],c1,c2,c3);
 | |
| 	r[12]=c1;
 | |
| 	c1=0;
 | |
| 	mul_add_c(a[6],b[7],c2,c3,c1);
 | |
| 	mul_add_c(a[7],b[6],c2,c3,c1);
 | |
| 	r[13]=c2;
 | |
| 	c2=0;
 | |
| 	mul_add_c(a[7],b[7],c3,c1,c2);
 | |
| 	r[14]=c3;
 | |
| 	r[15]=c1;
 | |
| 	}
 | |
| 
 | |
| void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
 | |
| 	{
 | |
| #ifdef BN_LLONG
 | |
| 	BN_ULLONG t;
 | |
| #else
 | |
| 	BN_ULONG bl,bh;
 | |
| #endif
 | |
| 	BN_ULONG t1,t2;
 | |
| 	BN_ULONG c1,c2,c3;
 | |
| 
 | |
| 	c1=0;
 | |
| 	c2=0;
 | |
| 	c3=0;
 | |
| 	mul_add_c(a[0],b[0],c1,c2,c3);
 | |
| 	r[0]=c1;
 | |
| 	c1=0;
 | |
| 	mul_add_c(a[0],b[1],c2,c3,c1);
 | |
| 	mul_add_c(a[1],b[0],c2,c3,c1);
 | |
| 	r[1]=c2;
 | |
| 	c2=0;
 | |
| 	mul_add_c(a[2],b[0],c3,c1,c2);
 | |
| 	mul_add_c(a[1],b[1],c3,c1,c2);
 | |
| 	mul_add_c(a[0],b[2],c3,c1,c2);
 | |
| 	r[2]=c3;
 | |
| 	c3=0;
 | |
| 	mul_add_c(a[0],b[3],c1,c2,c3);
 | |
| 	mul_add_c(a[1],b[2],c1,c2,c3);
 | |
| 	mul_add_c(a[2],b[1],c1,c2,c3);
 | |
| 	mul_add_c(a[3],b[0],c1,c2,c3);
 | |
| 	r[3]=c1;
 | |
| 	c1=0;
 | |
| 	mul_add_c(a[3],b[1],c2,c3,c1);
 | |
| 	mul_add_c(a[2],b[2],c2,c3,c1);
 | |
| 	mul_add_c(a[1],b[3],c2,c3,c1);
 | |
| 	r[4]=c2;
 | |
| 	c2=0;
 | |
| 	mul_add_c(a[2],b[3],c3,c1,c2);
 | |
| 	mul_add_c(a[3],b[2],c3,c1,c2);
 | |
| 	r[5]=c3;
 | |
| 	c3=0;
 | |
| 	mul_add_c(a[3],b[3],c1,c2,c3);
 | |
| 	r[6]=c1;
 | |
| 	r[7]=c2;
 | |
| 	}
 | |
| 
 | |
| void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
 | |
| 	{
 | |
| #ifdef BN_LLONG
 | |
| 	BN_ULLONG t,tt;
 | |
| #else
 | |
| 	BN_ULONG bl,bh;
 | |
| #endif
 | |
| 	BN_ULONG t1,t2;
 | |
| 	BN_ULONG c1,c2,c3;
 | |
| 
 | |
| 	c1=0;
 | |
| 	c2=0;
 | |
| 	c3=0;
 | |
| 	sqr_add_c(a,0,c1,c2,c3);
 | |
| 	r[0]=c1;
 | |
| 	c1=0;
 | |
| 	sqr_add_c2(a,1,0,c2,c3,c1);
 | |
| 	r[1]=c2;
 | |
| 	c2=0;
 | |
| 	sqr_add_c(a,1,c3,c1,c2);
 | |
| 	sqr_add_c2(a,2,0,c3,c1,c2);
 | |
| 	r[2]=c3;
 | |
| 	c3=0;
 | |
| 	sqr_add_c2(a,3,0,c1,c2,c3);
 | |
| 	sqr_add_c2(a,2,1,c1,c2,c3);
 | |
| 	r[3]=c1;
 | |
| 	c1=0;
 | |
| 	sqr_add_c(a,2,c2,c3,c1);
 | |
| 	sqr_add_c2(a,3,1,c2,c3,c1);
 | |
| 	sqr_add_c2(a,4,0,c2,c3,c1);
 | |
| 	r[4]=c2;
 | |
| 	c2=0;
 | |
| 	sqr_add_c2(a,5,0,c3,c1,c2);
 | |
| 	sqr_add_c2(a,4,1,c3,c1,c2);
 | |
| 	sqr_add_c2(a,3,2,c3,c1,c2);
 | |
| 	r[5]=c3;
 | |
| 	c3=0;
 | |
| 	sqr_add_c(a,3,c1,c2,c3);
 | |
| 	sqr_add_c2(a,4,2,c1,c2,c3);
 | |
| 	sqr_add_c2(a,5,1,c1,c2,c3);
 | |
| 	sqr_add_c2(a,6,0,c1,c2,c3);
 | |
| 	r[6]=c1;
 | |
| 	c1=0;
 | |
| 	sqr_add_c2(a,7,0,c2,c3,c1);
 | |
| 	sqr_add_c2(a,6,1,c2,c3,c1);
 | |
| 	sqr_add_c2(a,5,2,c2,c3,c1);
 | |
| 	sqr_add_c2(a,4,3,c2,c3,c1);
 | |
| 	r[7]=c2;
 | |
| 	c2=0;
 | |
| 	sqr_add_c(a,4,c3,c1,c2);
 | |
| 	sqr_add_c2(a,5,3,c3,c1,c2);
 | |
| 	sqr_add_c2(a,6,2,c3,c1,c2);
 | |
| 	sqr_add_c2(a,7,1,c3,c1,c2);
 | |
| 	r[8]=c3;
 | |
| 	c3=0;
 | |
| 	sqr_add_c2(a,7,2,c1,c2,c3);
 | |
| 	sqr_add_c2(a,6,3,c1,c2,c3);
 | |
| 	sqr_add_c2(a,5,4,c1,c2,c3);
 | |
| 	r[9]=c1;
 | |
| 	c1=0;
 | |
| 	sqr_add_c(a,5,c2,c3,c1);
 | |
| 	sqr_add_c2(a,6,4,c2,c3,c1);
 | |
| 	sqr_add_c2(a,7,3,c2,c3,c1);
 | |
| 	r[10]=c2;
 | |
| 	c2=0;
 | |
| 	sqr_add_c2(a,7,4,c3,c1,c2);
 | |
| 	sqr_add_c2(a,6,5,c3,c1,c2);
 | |
| 	r[11]=c3;
 | |
| 	c3=0;
 | |
| 	sqr_add_c(a,6,c1,c2,c3);
 | |
| 	sqr_add_c2(a,7,5,c1,c2,c3);
 | |
| 	r[12]=c1;
 | |
| 	c1=0;
 | |
| 	sqr_add_c2(a,7,6,c2,c3,c1);
 | |
| 	r[13]=c2;
 | |
| 	c2=0;
 | |
| 	sqr_add_c(a,7,c3,c1,c2);
 | |
| 	r[14]=c3;
 | |
| 	r[15]=c1;
 | |
| 	}
 | |
| 
 | |
| void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
 | |
| 	{
 | |
| #ifdef BN_LLONG
 | |
| 	BN_ULLONG t,tt;
 | |
| #else
 | |
| 	BN_ULONG bl,bh;
 | |
| #endif
 | |
| 	BN_ULONG t1,t2;
 | |
| 	BN_ULONG c1,c2,c3;
 | |
| 
 | |
| 	c1=0;
 | |
| 	c2=0;
 | |
| 	c3=0;
 | |
| 	sqr_add_c(a,0,c1,c2,c3);
 | |
| 	r[0]=c1;
 | |
| 	c1=0;
 | |
| 	sqr_add_c2(a,1,0,c2,c3,c1);
 | |
| 	r[1]=c2;
 | |
| 	c2=0;
 | |
| 	sqr_add_c(a,1,c3,c1,c2);
 | |
| 	sqr_add_c2(a,2,0,c3,c1,c2);
 | |
| 	r[2]=c3;
 | |
| 	c3=0;
 | |
| 	sqr_add_c2(a,3,0,c1,c2,c3);
 | |
| 	sqr_add_c2(a,2,1,c1,c2,c3);
 | |
| 	r[3]=c1;
 | |
| 	c1=0;
 | |
| 	sqr_add_c(a,2,c2,c3,c1);
 | |
| 	sqr_add_c2(a,3,1,c2,c3,c1);
 | |
| 	r[4]=c2;
 | |
| 	c2=0;
 | |
| 	sqr_add_c2(a,3,2,c3,c1,c2);
 | |
| 	r[5]=c3;
 | |
| 	c3=0;
 | |
| 	sqr_add_c(a,3,c1,c2,c3);
 | |
| 	r[6]=c1;
 | |
| 	r[7]=c2;
 | |
| 	}
 | |
| 
 | |
| #ifdef OPENSSL_NO_ASM
 | |
| #ifdef OPENSSL_BN_ASM_MONT
 | |
| #include <alloca.h>
 | |
| /*
 | |
|  * This is essentially reference implementation, which may or may not
 | |
|  * result in performance improvement. E.g. on IA-32 this routine was
 | |
|  * observed to give 40% faster rsa1024 private key operations and 10%
 | |
|  * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
 | |
|  * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
 | |
|  * reference implementation, one to be used as starting point for
 | |
|  * platform-specific assembler. Mentioned numbers apply to compiler
 | |
|  * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
 | |
|  * can vary not only from platform to platform, but even for compiler
 | |
|  * versions. Assembler vs. assembler improvement coefficients can
 | |
|  * [and are known to] differ and are to be documented elsewhere.
 | |
|  */
 | |
| int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
 | |
| 	{
 | |
| 	BN_ULONG c0,c1,ml,*tp,n0;
 | |
| #ifdef mul64
 | |
| 	BN_ULONG mh;
 | |
| #endif
 | |
| 	volatile BN_ULONG *vp;
 | |
| 	int i=0,j;
 | |
| 
 | |
| #if 0	/* template for platform-specific implementation */
 | |
| 	if (ap==bp)	return bn_sqr_mont(rp,ap,np,n0p,num);
 | |
| #endif
 | |
| 	vp = tp = alloca((num+2)*sizeof(BN_ULONG));
 | |
| 
 | |
| 	n0 = *n0p;
 | |
| 
 | |
| 	tp[num]   = bn_mul_words(tp,ap,num,bp[0]);
 | |
| 	tp[num+1] = 0;
 | |
| 	goto enter;
 | |
| 
 | |
| 	for(i=0;i<num;i++)
 | |
| 		{
 | |
| 		c0 = bn_mul_add_words(tp,ap,num,bp[i]);
 | |
| 		c1 = (tp[num] + c0)&BN_MASK2;
 | |
| 		tp[num]   = c1;
 | |
| 		tp[num+1] = (c1<c0?1:0);
 | |
| 	enter:
 | |
| 		c1  = tp[0];
 | |
| 		ml = (c1*n0)&BN_MASK2;
 | |
| 		c0 = 0;
 | |
| #ifdef mul64
 | |
| 		mh = HBITS(ml);
 | |
| 		ml = LBITS(ml);
 | |
| 		mul_add(c1,np[0],ml,mh,c0);
 | |
| #else
 | |
| 		mul_add(c1,ml,np[0],c0);
 | |
| #endif
 | |
| 		for(j=1;j<num;j++)
 | |
| 			{
 | |
| 			c1 = tp[j];
 | |
| #ifdef mul64
 | |
| 			mul_add(c1,np[j],ml,mh,c0);
 | |
| #else
 | |
| 			mul_add(c1,ml,np[j],c0);
 | |
| #endif
 | |
| 			tp[j-1] = c1&BN_MASK2;
 | |
| 			}
 | |
| 		c1        = (tp[num] + c0)&BN_MASK2;
 | |
| 		tp[num-1] = c1;
 | |
| 		tp[num]   = tp[num+1] + (c1<c0?1:0);
 | |
| 		}
 | |
| 
 | |
| 	if (tp[num]!=0 || tp[num-1]>=np[num-1])
 | |
| 		{
 | |
| 		c0 = bn_sub_words(rp,tp,np,num);
 | |
| 		if (tp[num]!=0 || c0==0)
 | |
| 			{
 | |
| 			for(i=0;i<num+2;i++)	vp[i] = 0;
 | |
| 			return 1;
 | |
| 			}
 | |
| 		}
 | |
| 	for(i=0;i<num;i++)	rp[i] = tp[i],	vp[i] = 0;
 | |
| 	vp[num]   = 0;
 | |
| 	vp[num+1] = 0;
 | |
| 	return 1;
 | |
| 	}
 | |
| #else
 | |
| /*
 | |
|  * Return value of 0 indicates that multiplication/convolution was not
 | |
|  * performed to signal the caller to fall down to alternative/original
 | |
|  * code-path.
 | |
|  */
 | |
| int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
 | |
| {	return 0;	}
 | |
| #endif /* OPENSSL_BN_ASM_MONT */
 | |
| #endif
 | |
| 
 | |
| #else /* !BN_MUL_COMBA */
 | |
| 
 | |
| /* hmm... is it faster just to do a multiply? */
 | |
| #undef bn_sqr_comba4
 | |
| void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
 | |
| 	{
 | |
| 	BN_ULONG t[8];
 | |
| 	bn_sqr_normal(r,a,4,t);
 | |
| 	}
 | |
| 
 | |
| #undef bn_sqr_comba8
 | |
| void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
 | |
| 	{
 | |
| 	BN_ULONG t[16];
 | |
| 	bn_sqr_normal(r,a,8,t);
 | |
| 	}
 | |
| 
 | |
| void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
 | |
| 	{
 | |
| 	r[4]=bn_mul_words(    &(r[0]),a,4,b[0]);
 | |
| 	r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
 | |
| 	r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
 | |
| 	r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
 | |
| 	}
 | |
| 
 | |
| void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
 | |
| 	{
 | |
| 	r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
 | |
| 	r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
 | |
| 	r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
 | |
| 	r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
 | |
| 	r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
 | |
| 	r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
 | |
| 	r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
 | |
| 	r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
 | |
| 	}
 | |
| 
 | |
| #ifdef OPENSSL_NO_ASM
 | |
| #ifdef OPENSSL_BN_ASM_MONT
 | |
| #include <alloca.h>
 | |
| int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
 | |
| 	{
 | |
| 	BN_ULONG c0,c1,*tp,n0=*n0p;
 | |
| 	volatile BN_ULONG *vp;
 | |
| 	int i=0,j;
 | |
| 
 | |
| 	vp = tp = alloca((num+2)*sizeof(BN_ULONG));
 | |
| 
 | |
| 	for(i=0;i<=num;i++)	tp[i]=0;
 | |
| 
 | |
| 	for(i=0;i<num;i++)
 | |
| 		{
 | |
| 		c0         = bn_mul_add_words(tp,ap,num,bp[i]);
 | |
| 		c1         = (tp[num] + c0)&BN_MASK2;
 | |
| 		tp[num]    = c1;
 | |
| 		tp[num+1]  = (c1<c0?1:0);
 | |
| 
 | |
| 		c0         = bn_mul_add_words(tp,np,num,tp[0]*n0);
 | |
| 		c1         = (tp[num] + c0)&BN_MASK2;
 | |
| 		tp[num]    = c1;
 | |
| 		tp[num+1] += (c1<c0?1:0);
 | |
| 		for(j=0;j<=num;j++)	tp[j]=tp[j+1];
 | |
| 		}
 | |
| 
 | |
| 	if (tp[num]!=0 || tp[num-1]>=np[num-1])
 | |
| 		{
 | |
| 		c0 = bn_sub_words(rp,tp,np,num);
 | |
| 		if (tp[num]!=0 || c0==0)
 | |
| 			{
 | |
| 			for(i=0;i<num+2;i++)	vp[i] = 0;
 | |
| 			return 1;
 | |
| 			}
 | |
| 		}
 | |
| 	for(i=0;i<num;i++)	rp[i] = tp[i],	vp[i] = 0;
 | |
| 	vp[num]   = 0;
 | |
| 	vp[num+1] = 0;
 | |
| 	return 1;
 | |
| 	}
 | |
| #else
 | |
| int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
 | |
| {	return 0;	}
 | |
| #endif /* OPENSSL_BN_ASM_MONT */
 | |
| #endif
 | |
| 
 | |
| #endif /* !BN_MUL_COMBA */
 |