mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			608 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			608 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include "ssl_locl.h"
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/kdf.h>
 | |
| 
 | |
| #define TLS13_MAX_LABEL_LEN     246
 | |
| 
 | |
| /* Always filled with zeros */
 | |
| static const unsigned char default_zeros[EVP_MAX_MD_SIZE];
 | |
| 
 | |
| /*
 | |
|  * Given a |secret|; a |label| of length |labellen|; and a |hash| of the
 | |
|  * handshake messages, derive a new secret |outlen| bytes long and store it in
 | |
|  * the location pointed to be |out|. The |hash| value may be NULL. Returns 1 on
 | |
|  * success  0 on failure.
 | |
|  */
 | |
| int tls13_hkdf_expand(SSL *s, const EVP_MD *md, const unsigned char *secret,
 | |
|                              const unsigned char *label, size_t labellen,
 | |
|                              const unsigned char *hash,
 | |
|                              unsigned char *out, size_t outlen)
 | |
| {
 | |
|     const unsigned char label_prefix[] = "TLS 1.3, ";
 | |
|     EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
 | |
|     int ret;
 | |
|     size_t hkdflabellen;
 | |
|     size_t hashlen;
 | |
|     /*
 | |
|      * 2 bytes for length of whole HkdfLabel + 1 byte for length of combined
 | |
|      * prefix and label + bytes for the label itself + bytes for the hash
 | |
|      */
 | |
|     unsigned char hkdflabel[sizeof(uint16_t) + sizeof(uint8_t) +
 | |
|                             + sizeof(label_prefix) + TLS13_MAX_LABEL_LEN
 | |
|                             + EVP_MAX_MD_SIZE];
 | |
|     WPACKET pkt;
 | |
| 
 | |
|     if (pctx == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     hashlen = EVP_MD_size(md);
 | |
| 
 | |
|     if (!WPACKET_init_static_len(&pkt, hkdflabel, sizeof(hkdflabel), 0)
 | |
|             || !WPACKET_put_bytes_u16(&pkt, outlen)
 | |
|             || !WPACKET_start_sub_packet_u8(&pkt)
 | |
|             || !WPACKET_memcpy(&pkt, label_prefix, sizeof(label_prefix) - 1)
 | |
|             || !WPACKET_memcpy(&pkt, label, labellen)
 | |
|             || !WPACKET_close(&pkt)
 | |
|             || !WPACKET_sub_memcpy_u8(&pkt, hash, (hash == NULL) ? 0 : hashlen)
 | |
|             || !WPACKET_get_total_written(&pkt, &hkdflabellen)
 | |
|             || !WPACKET_finish(&pkt)) {
 | |
|         EVP_PKEY_CTX_free(pctx);
 | |
|         WPACKET_cleanup(&pkt);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     ret = EVP_PKEY_derive_init(pctx) <= 0
 | |
|             || EVP_PKEY_CTX_hkdf_mode(pctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY)
 | |
|                <= 0
 | |
|             || EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0
 | |
|             || EVP_PKEY_CTX_set1_hkdf_key(pctx, secret, hashlen) <= 0
 | |
|             || EVP_PKEY_CTX_add1_hkdf_info(pctx, hkdflabel, hkdflabellen) <= 0
 | |
|             || EVP_PKEY_derive(pctx, out, &outlen) <= 0;
 | |
| 
 | |
|     EVP_PKEY_CTX_free(pctx);
 | |
| 
 | |
|     return ret == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a |secret| generate a |key| of length |keylen| bytes. Returns 1 on
 | |
|  * success  0 on failure.
 | |
|  */
 | |
| int tls13_derive_key(SSL *s, const EVP_MD *md, const unsigned char *secret,
 | |
|                      unsigned char *key, size_t keylen)
 | |
| {
 | |
|     static const unsigned char keylabel[] = "key";
 | |
| 
 | |
|     return tls13_hkdf_expand(s, md, secret, keylabel, sizeof(keylabel) - 1,
 | |
|                              NULL, key, keylen);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a |secret| generate an |iv| of length |ivlen| bytes. Returns 1 on
 | |
|  * success  0 on failure.
 | |
|  */
 | |
| int tls13_derive_iv(SSL *s, const EVP_MD *md, const unsigned char *secret,
 | |
|                     unsigned char *iv, size_t ivlen)
 | |
| {
 | |
|     static const unsigned char ivlabel[] = "iv";
 | |
| 
 | |
|     return tls13_hkdf_expand(s, md, secret, ivlabel, sizeof(ivlabel) - 1,
 | |
|                              NULL, iv, ivlen);
 | |
| }
 | |
| 
 | |
| int tls13_derive_finishedkey(SSL *s, const EVP_MD *md,
 | |
|                              const unsigned char *secret,
 | |
|                              unsigned char *fin, size_t finlen)
 | |
| {
 | |
|     static const unsigned char finishedlabel[] = "finished";
 | |
| 
 | |
|     return tls13_hkdf_expand(s, md, secret, finishedlabel,
 | |
|                              sizeof(finishedlabel) - 1, NULL, fin, finlen);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given the previous secret |prevsecret| and a new input secret |insecret| of
 | |
|  * length |insecretlen|, generate a new secret and store it in the location
 | |
|  * pointed to by |outsecret|. Returns 1 on success  0 on failure.
 | |
|  */
 | |
| int tls13_generate_secret(SSL *s, const EVP_MD *md,
 | |
|                           const unsigned char *prevsecret,
 | |
|                           const unsigned char *insecret,
 | |
|                           size_t insecretlen,
 | |
|                           unsigned char *outsecret)
 | |
| {
 | |
|     size_t mdlen, prevsecretlen;
 | |
|     int ret;
 | |
|     EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
 | |
|     static const char derived_secret_label[] = "derived secret";
 | |
|     unsigned char preextractsec[EVP_MAX_MD_SIZE];
 | |
| 
 | |
|     if (pctx == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     mdlen = EVP_MD_size(md);
 | |
| 
 | |
|     if (insecret == NULL) {
 | |
|         insecret = default_zeros;
 | |
|         insecretlen = mdlen;
 | |
|     }
 | |
|     if (prevsecret == NULL) {
 | |
|         prevsecret = default_zeros;
 | |
|         prevsecretlen = 0;
 | |
|     } else {
 | |
|         EVP_MD_CTX *mctx = EVP_MD_CTX_new();
 | |
|         unsigned char hash[EVP_MAX_MD_SIZE];
 | |
| 
 | |
|         /* The pre-extract derive step uses a hash of no messages */
 | |
|         if (mctx == NULL
 | |
|                 || EVP_DigestInit_ex(mctx, md, NULL) <= 0
 | |
|                 || EVP_DigestFinal_ex(mctx, hash, NULL) <= 0) {
 | |
|             EVP_MD_CTX_free(mctx);
 | |
|             return 0;
 | |
|         }
 | |
|         EVP_MD_CTX_free(mctx);
 | |
| 
 | |
|         /* Generate the pre-extract secret */
 | |
|         if (!tls13_hkdf_expand(s, md, prevsecret,
 | |
|                                (unsigned char *)derived_secret_label,
 | |
|                                sizeof(derived_secret_label) - 1, hash,
 | |
|                                preextractsec, mdlen))
 | |
|             return 0;
 | |
| 
 | |
|         prevsecret = preextractsec;
 | |
|         prevsecretlen = mdlen;
 | |
|     }
 | |
| 
 | |
|     ret = EVP_PKEY_derive_init(pctx) <= 0
 | |
|             || EVP_PKEY_CTX_hkdf_mode(pctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY)
 | |
|                <= 0
 | |
|             || EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0
 | |
|             || EVP_PKEY_CTX_set1_hkdf_key(pctx, insecret, insecretlen) <= 0
 | |
|             || EVP_PKEY_CTX_set1_hkdf_salt(pctx, prevsecret, prevsecretlen)
 | |
|                <= 0
 | |
|             || EVP_PKEY_derive(pctx, outsecret, &mdlen)
 | |
|                <= 0;
 | |
| 
 | |
|     EVP_PKEY_CTX_free(pctx);
 | |
|     if (prevsecret == preextractsec)
 | |
|         OPENSSL_cleanse(preextractsec, mdlen);
 | |
|     return ret == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given an input secret |insecret| of length |insecretlen| generate the
 | |
|  * handshake secret. This requires the early secret to already have been
 | |
|  * generated. Returns 1 on success  0 on failure.
 | |
|  */
 | |
| int tls13_generate_handshake_secret(SSL *s, const unsigned char *insecret,
 | |
|                                 size_t insecretlen)
 | |
| {
 | |
|     return tls13_generate_secret(s, ssl_handshake_md(s), s->early_secret,
 | |
|                                  insecret, insecretlen,
 | |
|                                  (unsigned char *)&s->handshake_secret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given the handshake secret |prev| of length |prevlen| generate the master
 | |
|  * secret and store its length in |*secret_size|. Returns 1 on success  0 on
 | |
|  * failure.
 | |
|  */
 | |
| int tls13_generate_master_secret(SSL *s, unsigned char *out,
 | |
|                                  unsigned char *prev, size_t prevlen,
 | |
|                                  size_t *secret_size)
 | |
| {
 | |
|     const EVP_MD *md = ssl_handshake_md(s);
 | |
| 
 | |
|     *secret_size = EVP_MD_size(md);
 | |
|     return tls13_generate_secret(s, md, prev, NULL, 0, out);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generates the mac for the Finished message. Returns the length of the MAC or
 | |
|  * 0 on error.
 | |
|  */
 | |
| size_t tls13_final_finish_mac(SSL *s, const char *str, size_t slen,
 | |
|                              unsigned char *out)
 | |
| {
 | |
|     const EVP_MD *md = ssl_handshake_md(s);
 | |
|     unsigned char hash[EVP_MAX_MD_SIZE];
 | |
|     size_t hashlen, ret = 0;
 | |
|     EVP_PKEY *key = NULL;
 | |
|     EVP_MD_CTX *ctx = EVP_MD_CTX_new();
 | |
| 
 | |
|     if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen))
 | |
|         goto err;
 | |
| 
 | |
|     if (str == s->method->ssl3_enc->server_finished_label)
 | |
|         key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL,
 | |
|                                    s->server_finished_secret, hashlen);
 | |
|     else
 | |
|         key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL,
 | |
|                                    s->client_finished_secret, hashlen);
 | |
| 
 | |
|     if (key == NULL
 | |
|             || ctx == NULL
 | |
|             || EVP_DigestSignInit(ctx, NULL, md, NULL, key) <= 0
 | |
|             || EVP_DigestSignUpdate(ctx, hash, hashlen) <= 0
 | |
|             || EVP_DigestSignFinal(ctx, out, &hashlen) <= 0)
 | |
|         goto err;
 | |
| 
 | |
|     ret = hashlen;
 | |
|  err:
 | |
|     EVP_PKEY_free(key);
 | |
|     EVP_MD_CTX_free(ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There isn't really a key block in TLSv1.3, but we still need this function
 | |
|  * for initialising the cipher and hash. Returns 1 on success or 0 on failure.
 | |
|  */
 | |
| int tls13_setup_key_block(SSL *s)
 | |
| {
 | |
|     const EVP_CIPHER *c;
 | |
|     const EVP_MD *hash;
 | |
|     int mac_type = NID_undef;
 | |
| 
 | |
|     s->session->cipher = s->s3->tmp.new_cipher;
 | |
|     if (!ssl_cipher_get_evp
 | |
|         (s->session, &c, &hash, &mac_type, NULL, NULL, 0)) {
 | |
|         SSLerr(SSL_F_TLS13_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     s->s3->tmp.new_sym_enc = c;
 | |
|     s->s3->tmp.new_hash = hash;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int derive_secret_key_and_iv(SSL *s, int send, const EVP_MD *md,
 | |
|                                     const EVP_CIPHER *ciph,
 | |
|                                     const unsigned char *insecret,
 | |
|                                     const unsigned char *hash,
 | |
|                                     const unsigned char *label,
 | |
|                                     size_t labellen, unsigned char *secret,
 | |
|                                     unsigned char *iv, EVP_CIPHER_CTX *ciph_ctx)
 | |
| {
 | |
|     unsigned char key[EVP_MAX_KEY_LENGTH];
 | |
|     size_t ivlen, keylen, taglen;
 | |
|     size_t hashlen = EVP_MD_size(md);
 | |
| 
 | |
|     if (!tls13_hkdf_expand(s, md, insecret, label, labellen, hash, secret,
 | |
|                            hashlen)) {
 | |
|         SSLerr(SSL_F_DERIVE_SECRET_KEY_AND_IV, ERR_R_INTERNAL_ERROR);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* TODO(size_t): convert me */
 | |
|     keylen = EVP_CIPHER_key_length(ciph);
 | |
|     if (EVP_CIPHER_mode(ciph) == EVP_CIPH_CCM_MODE) {
 | |
|         uint32_t algenc;
 | |
| 
 | |
|         ivlen = EVP_CCM_TLS_IV_LEN;
 | |
|         if (s->s3->tmp.new_cipher == NULL) {
 | |
|             /* We've not selected a cipher yet - we must be doing early data */
 | |
|             algenc = s->session->cipher->algorithm_enc;
 | |
|         } else {
 | |
|             algenc = s->s3->tmp.new_cipher->algorithm_enc;
 | |
|         }
 | |
|         if (algenc & (SSL_AES128CCM8 | SSL_AES256CCM8))
 | |
|             taglen = EVP_CCM8_TLS_TAG_LEN;
 | |
|          else
 | |
|             taglen = EVP_CCM_TLS_TAG_LEN;
 | |
|     } else {
 | |
|         ivlen = EVP_CIPHER_iv_length(ciph);
 | |
|         taglen = 0;
 | |
|     }
 | |
| 
 | |
|     if (!tls13_derive_key(s, md, secret, key, keylen)
 | |
|             || !tls13_derive_iv(s, md, secret, iv, ivlen)) {
 | |
|         SSLerr(SSL_F_DERIVE_SECRET_KEY_AND_IV, ERR_R_INTERNAL_ERROR);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (EVP_CipherInit_ex(ciph_ctx, ciph, NULL, NULL, NULL, send) <= 0
 | |
|         || !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL)
 | |
|         || (taglen != 0 && !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_AEAD_SET_TAG,
 | |
|                                                 taglen, NULL))
 | |
|         || EVP_CipherInit_ex(ciph_ctx, NULL, NULL, key, NULL, -1) <= 0) {
 | |
|         SSLerr(SSL_F_DERIVE_SECRET_KEY_AND_IV, ERR_R_EVP_LIB);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
| #ifdef OPENSSL_SSL_TRACE_CRYPTO
 | |
|     if (s->msg_callback) {
 | |
|         int wh = send ? TLS1_RT_CRYPTO_WRITE : 0;
 | |
| 
 | |
|         if (ciph->key_len)
 | |
|             s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_KEY,
 | |
|                             key, ciph->key_len, s, s->msg_callback_arg);
 | |
| 
 | |
|         wh |= TLS1_RT_CRYPTO_IV;
 | |
|         s->msg_callback(2, s->version, wh, iv, ivlen, s,
 | |
|                         s->msg_callback_arg);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return 1;
 | |
|  err:
 | |
|     OPENSSL_cleanse(key, sizeof(key));
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int tls13_change_cipher_state(SSL *s, int which)
 | |
| {
 | |
|     static const unsigned char client_early_traffic[] =
 | |
|         "client early traffic secret";
 | |
|     static const unsigned char client_handshake_traffic[] =
 | |
|         "client handshake traffic secret";
 | |
|     static const unsigned char client_application_traffic[] =
 | |
|         "client application traffic secret";
 | |
|     static const unsigned char server_handshake_traffic[] =
 | |
|         "server handshake traffic secret";
 | |
|     static const unsigned char server_application_traffic[] =
 | |
|         "server application traffic secret";
 | |
|     static const unsigned char resumption_master_secret[] =
 | |
|         "resumption master secret";
 | |
|     unsigned char *iv;
 | |
|     unsigned char secret[EVP_MAX_MD_SIZE];
 | |
|     unsigned char hashval[EVP_MAX_MD_SIZE];
 | |
|     unsigned char *hash = hashval;
 | |
|     unsigned char *insecret;
 | |
|     unsigned char *finsecret = NULL;
 | |
|     const char *log_label = NULL;
 | |
|     EVP_CIPHER_CTX *ciph_ctx;
 | |
|     size_t finsecretlen = 0;
 | |
|     const unsigned char *label;
 | |
|     size_t labellen, hashlen = 0;
 | |
|     int ret = 0;
 | |
|     const EVP_MD *md = NULL;
 | |
|     const EVP_CIPHER *cipher = NULL;
 | |
| 
 | |
|     if (which & SSL3_CC_READ) {
 | |
|         if (s->enc_read_ctx != NULL) {
 | |
|             EVP_CIPHER_CTX_reset(s->enc_read_ctx);
 | |
|         } else {
 | |
|             s->enc_read_ctx = EVP_CIPHER_CTX_new();
 | |
|             if (s->enc_read_ctx == NULL) {
 | |
|                 SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
 | |
|                 goto err;
 | |
|             }
 | |
|         }
 | |
|         ciph_ctx = s->enc_read_ctx;
 | |
|         iv = s->read_iv;
 | |
| 
 | |
|         RECORD_LAYER_reset_read_sequence(&s->rlayer);
 | |
|     } else {
 | |
|         if (s->enc_write_ctx != NULL) {
 | |
|             EVP_CIPHER_CTX_reset(s->enc_write_ctx);
 | |
|         } else {
 | |
|             s->enc_write_ctx = EVP_CIPHER_CTX_new();
 | |
|             if (s->enc_write_ctx == NULL) {
 | |
|                 SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
 | |
|                 goto err;
 | |
|             }
 | |
|         }
 | |
|         ciph_ctx = s->enc_write_ctx;
 | |
|         iv = s->write_iv;
 | |
| 
 | |
|         RECORD_LAYER_reset_write_sequence(&s->rlayer);
 | |
|     }
 | |
| 
 | |
|     if (((which & SSL3_CC_CLIENT) && (which & SSL3_CC_WRITE))
 | |
|             || ((which & SSL3_CC_SERVER) && (which & SSL3_CC_READ))) {
 | |
|         if (which & SSL3_CC_EARLY) {
 | |
|             EVP_MD_CTX *mdctx = NULL;
 | |
|             long handlen;
 | |
|             void *hdata;
 | |
|             unsigned int hashlenui;
 | |
|             const SSL_CIPHER *sslcipher = SSL_SESSION_get0_cipher(s->session);
 | |
| 
 | |
|             insecret = s->early_secret;
 | |
|             label = client_early_traffic;
 | |
|             labellen = sizeof(client_early_traffic) - 1;
 | |
|             log_label = CLIENT_EARLY_LABEL;
 | |
| 
 | |
|             handlen = BIO_get_mem_data(s->s3->handshake_buffer, &hdata);
 | |
|             if (handlen <= 0) {
 | |
|                 SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE,
 | |
|                        SSL_R_BAD_HANDSHAKE_LENGTH);
 | |
|                 goto err;
 | |
|             }
 | |
|             if (sslcipher == NULL) {
 | |
|                 SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
 | |
|                 goto err;
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * We need to calculate the handshake digest using the digest from
 | |
|              * the session. We haven't yet selected our ciphersuite so we can't
 | |
|              * use ssl_handshake_md().
 | |
|              */
 | |
|             mdctx = EVP_MD_CTX_new();
 | |
|             if (mdctx == NULL) {
 | |
|                 SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
 | |
|                 goto err;
 | |
|             }
 | |
|             cipher = EVP_get_cipherbynid(SSL_CIPHER_get_cipher_nid(sslcipher));
 | |
|             md = ssl_md(sslcipher->algorithm2);
 | |
|             if (md == NULL || !EVP_DigestInit_ex(mdctx, md, NULL)
 | |
|                     || !EVP_DigestUpdate(mdctx, hdata, handlen)
 | |
|                     || !EVP_DigestFinal_ex(mdctx, hashval, &hashlenui)) {
 | |
|                 SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
 | |
|                 EVP_MD_CTX_free(mdctx);
 | |
|                 goto err;
 | |
|             }
 | |
|             hashlen = hashlenui;
 | |
|             EVP_MD_CTX_free(mdctx);
 | |
|         } else if (which & SSL3_CC_HANDSHAKE) {
 | |
|             insecret = s->handshake_secret;
 | |
|             finsecret = s->client_finished_secret;
 | |
|             finsecretlen = EVP_MD_size(ssl_handshake_md(s));
 | |
|             label = client_handshake_traffic;
 | |
|             labellen = sizeof(client_handshake_traffic) - 1;
 | |
|             log_label = CLIENT_HANDSHAKE_LABEL;
 | |
|             /*
 | |
|              * The handshake hash used for the server read/client write handshake
 | |
|              * traffic secret is the same as the hash for the server
 | |
|              * write/client read handshake traffic secret. However, if we
 | |
|              * processed early data then we delay changing the server
 | |
|              * read/client write cipher state until later, and the handshake
 | |
|              * hashes have moved on. Therefore we use the value saved earlier
 | |
|              * when we did the server write/client read change cipher state.
 | |
|              */
 | |
|             hash = s->handshake_traffic_hash;
 | |
|         } else {
 | |
|             insecret = s->master_secret;
 | |
|             label = client_application_traffic;
 | |
|             labellen = sizeof(client_application_traffic) - 1;
 | |
|             log_label = CLIENT_APPLICATION_LABEL;
 | |
|             /*
 | |
|              * For this we only use the handshake hashes up until the server
 | |
|              * Finished hash. We do not include the client's Finished, which is
 | |
|              * what ssl_handshake_hash() would give us. Instead we use the
 | |
|              * previously saved value.
 | |
|              */
 | |
|             hash = s->server_finished_hash;
 | |
|         }
 | |
|     } else {
 | |
|         /* Early data never applies to client-read/server-write */
 | |
|         if (which & SSL3_CC_HANDSHAKE) {
 | |
|             insecret = s->handshake_secret;
 | |
|             finsecret = s->server_finished_secret;
 | |
|             finsecretlen = EVP_MD_size(ssl_handshake_md(s));
 | |
|             label = server_handshake_traffic;
 | |
|             labellen = sizeof(server_handshake_traffic) - 1;
 | |
|             log_label = SERVER_HANDSHAKE_LABEL;
 | |
|         } else {
 | |
|             insecret = s->master_secret;
 | |
|             label = server_application_traffic;
 | |
|             labellen = sizeof(server_application_traffic) - 1;
 | |
|             log_label = SERVER_APPLICATION_LABEL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!(which & SSL3_CC_EARLY)) {
 | |
|         md = ssl_handshake_md(s);
 | |
|         cipher = s->s3->tmp.new_sym_enc;
 | |
|         if (!ssl3_digest_cached_records(s, 1)
 | |
|                 || !ssl_handshake_hash(s, hashval, sizeof(hashval), &hashlen)) {
 | |
|             SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Save the hash of handshakes up to now for use when we calculate the
 | |
|      * client application traffic secret
 | |
|      */
 | |
|     if (label == server_application_traffic)
 | |
|         memcpy(s->server_finished_hash, hashval, hashlen);
 | |
| 
 | |
|     if (label == server_handshake_traffic)
 | |
|         memcpy(s->handshake_traffic_hash, hashval, hashlen);
 | |
| 
 | |
|     if (label == client_application_traffic) {
 | |
|         /*
 | |
|          * We also create the resumption master secret, but this time use the
 | |
|          * hash for the whole handshake including the Client Finished
 | |
|          */
 | |
|         if (!tls13_hkdf_expand(s, ssl_handshake_md(s), insecret,
 | |
|                                resumption_master_secret,
 | |
|                                sizeof(resumption_master_secret) - 1,
 | |
|                                hashval, s->session->master_key, hashlen)) {
 | |
|             SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
 | |
|             goto err;
 | |
|         }
 | |
|         s->session->master_key_length = hashlen;
 | |
|     }
 | |
| 
 | |
|     if (!derive_secret_key_and_iv(s, which & SSL3_CC_WRITE, md, cipher,
 | |
|                                   insecret, hash, label, labellen, secret, iv,
 | |
|                                   ciph_ctx)) {
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (label == server_application_traffic)
 | |
|         memcpy(s->server_app_traffic_secret, secret, hashlen);
 | |
|     else if (label == client_application_traffic)
 | |
|         memcpy(s->client_app_traffic_secret, secret, hashlen);
 | |
| 
 | |
|     if (!ssl_log_secret(s, log_label, secret, hashlen)) {
 | |
|         SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (finsecret != NULL
 | |
|             && !tls13_derive_finishedkey(s, ssl_handshake_md(s), secret,
 | |
|                                          finsecret, finsecretlen)) {
 | |
|         SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     ret = 1;
 | |
|  err:
 | |
|     OPENSSL_cleanse(secret, sizeof(secret));
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int tls13_update_key(SSL *s, int send)
 | |
| {
 | |
|     static const unsigned char application_traffic[] =
 | |
|         "application traffic secret";
 | |
|     const EVP_MD *md = ssl_handshake_md(s);
 | |
|     size_t hashlen = EVP_MD_size(md);
 | |
|     unsigned char *insecret, *iv;
 | |
|     unsigned char secret[EVP_MAX_MD_SIZE];
 | |
|     EVP_CIPHER_CTX *ciph_ctx;
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (s->server == send)
 | |
|         insecret = s->server_app_traffic_secret;
 | |
|     else
 | |
|         insecret = s->client_app_traffic_secret;
 | |
| 
 | |
|     if (send) {
 | |
|         iv = s->write_iv;
 | |
|         ciph_ctx = s->enc_write_ctx;
 | |
|         RECORD_LAYER_reset_write_sequence(&s->rlayer);
 | |
|     } else {
 | |
|         iv = s->read_iv;
 | |
|         ciph_ctx = s->enc_read_ctx;
 | |
|         RECORD_LAYER_reset_read_sequence(&s->rlayer);
 | |
|     }
 | |
| 
 | |
|     if (!derive_secret_key_and_iv(s, send, ssl_handshake_md(s),
 | |
|                                   s->s3->tmp.new_sym_enc, insecret, NULL,
 | |
|                                   application_traffic,
 | |
|                                   sizeof(application_traffic) - 1, secret, iv,
 | |
|                                   ciph_ctx))
 | |
|         goto err;
 | |
| 
 | |
|     memcpy(insecret, secret, hashlen);
 | |
| 
 | |
|     ret = 1;
 | |
|  err:
 | |
|     OPENSSL_cleanse(secret, sizeof(secret));
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int tls13_alert_code(int code)
 | |
| {
 | |
|     if (code == SSL_AD_MISSING_EXTENSION)
 | |
|         return code;
 | |
| 
 | |
|     return tls1_alert_code(code);
 | |
| }
 |