mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			647 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			647 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
/*
 | 
						|
 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
 | 
						|
 *
 | 
						|
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 | 
						|
 * this file except in compliance with the License.  You can obtain a copy
 | 
						|
 * in the file LICENSE in the source distribution or at
 | 
						|
 * https://www.openssl.org/source/license.html
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * RSA low level APIs are deprecated for public use, but still ok for
 | 
						|
 * internal use.
 | 
						|
 */
 | 
						|
#include "internal/deprecated.h"
 | 
						|
 | 
						|
#include "internal/constant_time.h"
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <openssl/bn.h>
 | 
						|
#include <openssl/rsa.h>
 | 
						|
#include <openssl/rand.h>
 | 
						|
/* Just for the SSL_MAX_MASTER_KEY_LENGTH value */
 | 
						|
#include <openssl/prov_ssl.h>
 | 
						|
#include <openssl/evp.h>
 | 
						|
#include <openssl/sha.h>
 | 
						|
#include <openssl/hmac.h>
 | 
						|
#include "internal/cryptlib.h"
 | 
						|
#include "crypto/rsa.h"
 | 
						|
#include "rsa_local.h"
 | 
						|
 | 
						|
 | 
						|
int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen,
 | 
						|
                                 const unsigned char *from, int flen)
 | 
						|
{
 | 
						|
    int j;
 | 
						|
    unsigned char *p;
 | 
						|
 | 
						|
    if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    p = (unsigned char *)to;
 | 
						|
 | 
						|
    *(p++) = 0;
 | 
						|
    *(p++) = 1;                 /* Private Key BT (Block Type) */
 | 
						|
 | 
						|
    /* pad out with 0xff data */
 | 
						|
    j = tlen - 3 - flen;
 | 
						|
    memset(p, 0xff, j);
 | 
						|
    p += j;
 | 
						|
    *(p++) = '\0';
 | 
						|
    memcpy(p, from, (unsigned int)flen);
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen,
 | 
						|
                                   const unsigned char *from, int flen,
 | 
						|
                                   int num)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    const unsigned char *p;
 | 
						|
 | 
						|
    p = from;
 | 
						|
 | 
						|
    /*
 | 
						|
     * The format is
 | 
						|
     * 00 || 01 || PS || 00 || D
 | 
						|
     * PS - padding string, at least 8 bytes of FF
 | 
						|
     * D  - data.
 | 
						|
     */
 | 
						|
 | 
						|
    if (num < RSA_PKCS1_PADDING_SIZE)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    /* Accept inputs with and without the leading 0-byte. */
 | 
						|
    if (num == flen) {
 | 
						|
        if ((*p++) != 0x00) {
 | 
						|
            ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_PADDING);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        flen--;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((num != (flen + 1)) || (*(p++) != 0x01)) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, RSA_R_BLOCK_TYPE_IS_NOT_01);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* scan over padding data */
 | 
						|
    j = flen - 1;               /* one for type. */
 | 
						|
    for (i = 0; i < j; i++) {
 | 
						|
        if (*p != 0xff) {       /* should decrypt to 0xff */
 | 
						|
            if (*p == 0) {
 | 
						|
                p++;
 | 
						|
                break;
 | 
						|
            } else {
 | 
						|
                ERR_raise(ERR_LIB_RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT);
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        p++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (i == j) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (i < 8) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, RSA_R_BAD_PAD_BYTE_COUNT);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    i++;                        /* Skip over the '\0' */
 | 
						|
    j -= i;
 | 
						|
    if (j > tlen) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    memcpy(to, p, (unsigned int)j);
 | 
						|
 | 
						|
    return j;
 | 
						|
}
 | 
						|
 | 
						|
int ossl_rsa_padding_add_PKCS1_type_2_ex(OSSL_LIB_CTX *libctx, unsigned char *to,
 | 
						|
                                         int tlen, const unsigned char *from,
 | 
						|
                                         int flen)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    unsigned char *p;
 | 
						|
 | 
						|
    if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
 | 
						|
        return 0;
 | 
						|
    } else if (flen < 0) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    p = (unsigned char *)to;
 | 
						|
 | 
						|
    *(p++) = 0;
 | 
						|
    *(p++) = 2;                 /* Public Key BT (Block Type) */
 | 
						|
 | 
						|
    /* pad out with non-zero random data */
 | 
						|
    j = tlen - 3 - flen;
 | 
						|
 | 
						|
    if (RAND_bytes_ex(libctx, p, j, 0) <= 0)
 | 
						|
        return 0;
 | 
						|
    for (i = 0; i < j; i++) {
 | 
						|
        if (*p == '\0')
 | 
						|
            do {
 | 
						|
                if (RAND_bytes_ex(libctx, p, 1, 0) <= 0)
 | 
						|
                    return 0;
 | 
						|
            } while (*p == '\0');
 | 
						|
        p++;
 | 
						|
    }
 | 
						|
 | 
						|
    *(p++) = '\0';
 | 
						|
 | 
						|
    memcpy(p, from, (unsigned int)flen);
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen,
 | 
						|
                                 const unsigned char *from, int flen)
 | 
						|
{
 | 
						|
    return ossl_rsa_padding_add_PKCS1_type_2_ex(NULL, to, tlen, from, flen);
 | 
						|
}
 | 
						|
 | 
						|
int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,
 | 
						|
                                   const unsigned char *from, int flen,
 | 
						|
                                   int num)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    /* |em| is the encoded message, zero-padded to exactly |num| bytes */
 | 
						|
    unsigned char *em = NULL;
 | 
						|
    unsigned int good, found_zero_byte, mask;
 | 
						|
    int zero_index = 0, msg_index, mlen = -1;
 | 
						|
 | 
						|
    if (tlen <= 0 || flen <= 0)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    /*
 | 
						|
     * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard",
 | 
						|
     * section 7.2.2.
 | 
						|
     */
 | 
						|
 | 
						|
    if (flen > num || num < RSA_PKCS1_PADDING_SIZE) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    em = OPENSSL_malloc(num);
 | 
						|
    if (em == NULL)
 | 
						|
        return -1;
 | 
						|
    /*
 | 
						|
     * Caller is encouraged to pass zero-padded message created with
 | 
						|
     * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
 | 
						|
     * bounds, it's impossible to have an invariant memory access pattern
 | 
						|
     * in case |from| was not zero-padded in advance.
 | 
						|
     */
 | 
						|
    for (from += flen, em += num, i = 0; i < num; i++) {
 | 
						|
        mask = ~constant_time_is_zero(flen);
 | 
						|
        flen -= 1 & mask;
 | 
						|
        from -= 1 & mask;
 | 
						|
        *--em = *from & mask;
 | 
						|
    }
 | 
						|
 | 
						|
    good = constant_time_is_zero(em[0]);
 | 
						|
    good &= constant_time_eq(em[1], 2);
 | 
						|
 | 
						|
    /* scan over padding data */
 | 
						|
    found_zero_byte = 0;
 | 
						|
    for (i = 2; i < num; i++) {
 | 
						|
        unsigned int equals0 = constant_time_is_zero(em[i]);
 | 
						|
 | 
						|
        zero_index = constant_time_select_int(~found_zero_byte & equals0,
 | 
						|
                                              i, zero_index);
 | 
						|
        found_zero_byte |= equals0;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * PS must be at least 8 bytes long, and it starts two bytes into |em|.
 | 
						|
     * If we never found a 0-byte, then |zero_index| is 0 and the check
 | 
						|
     * also fails.
 | 
						|
     */
 | 
						|
    good &= constant_time_ge(zero_index, 2 + 8);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Skip the zero byte. This is incorrect if we never found a zero-byte
 | 
						|
     * but in this case we also do not copy the message out.
 | 
						|
     */
 | 
						|
    msg_index = zero_index + 1;
 | 
						|
    mlen = num - msg_index;
 | 
						|
 | 
						|
    /*
 | 
						|
     * For good measure, do this check in constant time as well.
 | 
						|
     */
 | 
						|
    good &= constant_time_ge(tlen, mlen);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left.
 | 
						|
     * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|.
 | 
						|
     * Otherwise leave |to| unchanged.
 | 
						|
     * Copy the memory back in a way that does not reveal the size of
 | 
						|
     * the data being copied via a timing side channel. This requires copying
 | 
						|
     * parts of the buffer multiple times based on the bits set in the real
 | 
						|
     * length. Clear bits do a non-copy with identical access pattern.
 | 
						|
     * The loop below has overall complexity of O(N*log(N)).
 | 
						|
     */
 | 
						|
    tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen),
 | 
						|
                                    num - RSA_PKCS1_PADDING_SIZE, tlen);
 | 
						|
    for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) {
 | 
						|
        mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0);
 | 
						|
        for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++)
 | 
						|
            em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]);
 | 
						|
    }
 | 
						|
    for (i = 0; i < tlen; i++) {
 | 
						|
        mask = good & constant_time_lt(i, mlen);
 | 
						|
        to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    OPENSSL_clear_free(em, num);
 | 
						|
#ifndef FIPS_MODULE
 | 
						|
    /*
 | 
						|
     * This trick doesn't work in the FIPS provider because libcrypto manages
 | 
						|
     * the error stack. Instead we opt not to put an error on the stack at all
 | 
						|
     * in case of padding failure in the FIPS provider.
 | 
						|
     */
 | 
						|
    ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);
 | 
						|
    err_clear_last_constant_time(1 & good);
 | 
						|
#endif
 | 
						|
 | 
						|
    return constant_time_select_int(good, mlen, -1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int ossl_rsa_prf(OSSL_LIB_CTX *ctx,
 | 
						|
                        unsigned char *to, int tlen,
 | 
						|
                        const char *label, int llen,
 | 
						|
                        const unsigned char *kdk,
 | 
						|
                        uint16_t bitlen)
 | 
						|
{
 | 
						|
    int pos;
 | 
						|
    int ret = -1;
 | 
						|
    uint16_t iter = 0;
 | 
						|
    unsigned char be_iter[sizeof(iter)];
 | 
						|
    unsigned char be_bitlen[sizeof(bitlen)];
 | 
						|
    HMAC_CTX *hmac = NULL;
 | 
						|
    EVP_MD *md = NULL;
 | 
						|
    unsigned char hmac_out[SHA256_DIGEST_LENGTH];
 | 
						|
    unsigned int md_len;
 | 
						|
 | 
						|
    if (tlen * 8 != bitlen) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    be_bitlen[0] = (bitlen >> 8) & 0xff;
 | 
						|
    be_bitlen[1] = bitlen & 0xff;
 | 
						|
 | 
						|
    hmac = HMAC_CTX_new();
 | 
						|
    if (hmac == NULL) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * we use hardcoded hash so that migrating between versions that use
 | 
						|
     * different hash doesn't provide a Bleichenbacher oracle:
 | 
						|
     * if the attacker can see that different versions return different
 | 
						|
     * messages for the same ciphertext, they'll know that the message is
 | 
						|
     * synthetically generated, which means that the padding check failed
 | 
						|
     */
 | 
						|
    md = EVP_MD_fetch(ctx, "sha256", NULL);
 | 
						|
    if (md == NULL) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    if (HMAC_Init_ex(hmac, kdk, SHA256_DIGEST_LENGTH, md, NULL) <= 0) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    for (pos = 0; pos < tlen; pos += SHA256_DIGEST_LENGTH, iter++) {
 | 
						|
        if (HMAC_Init_ex(hmac, NULL, 0, NULL, NULL) <= 0) {
 | 
						|
            ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
 | 
						|
        be_iter[0] = (iter >> 8) & 0xff;
 | 
						|
        be_iter[1] = iter & 0xff;
 | 
						|
 | 
						|
        if (HMAC_Update(hmac, be_iter, sizeof(be_iter)) <= 0) {
 | 
						|
            ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
        if (HMAC_Update(hmac, (unsigned char *)label, llen) <= 0) {
 | 
						|
            ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
        if (HMAC_Update(hmac, be_bitlen, sizeof(be_bitlen)) <= 0) {
 | 
						|
            ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * HMAC_Final requires the output buffer to fit the whole MAC
 | 
						|
         * value, so we need to use the intermediate buffer for the last
 | 
						|
         * unaligned block
 | 
						|
         */
 | 
						|
        md_len = SHA256_DIGEST_LENGTH;
 | 
						|
        if (pos + SHA256_DIGEST_LENGTH > tlen) {
 | 
						|
            if (HMAC_Final(hmac, hmac_out, &md_len) <= 0) {
 | 
						|
                ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
                goto err;
 | 
						|
            }
 | 
						|
            memcpy(to + pos, hmac_out, tlen - pos);
 | 
						|
        } else {
 | 
						|
            if (HMAC_Final(hmac, to + pos, &md_len) <= 0) {
 | 
						|
                ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
                goto err;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ret = 0;
 | 
						|
 | 
						|
err:
 | 
						|
    HMAC_CTX_free(hmac);
 | 
						|
    EVP_MD_free(md);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ossl_rsa_padding_check_PKCS1_type_2() checks and removes the PKCS#1 type 2
 | 
						|
 * padding from a decrypted RSA message. Unlike the
 | 
						|
 * RSA_padding_check_PKCS1_type_2() it will not return an error in case it
 | 
						|
 * detects a padding error, rather it will return a deterministically generated
 | 
						|
 * random message. In other words it will perform an implicit rejection
 | 
						|
 * of an invalid padding. This means that the returned value does not indicate
 | 
						|
 * if the padding of the encrypted message was correct or not, making
 | 
						|
 * side channel attacks like the ones described by Bleichenbacher impossible
 | 
						|
 * without access to the full decrypted value and a brute-force search of
 | 
						|
 * remaining padding bytes
 | 
						|
 */
 | 
						|
int ossl_rsa_padding_check_PKCS1_type_2(OSSL_LIB_CTX *ctx,
 | 
						|
                                        unsigned char *to, int tlen,
 | 
						|
                                        const unsigned char *from, int flen,
 | 
						|
                                        int num, unsigned char *kdk)
 | 
						|
{
 | 
						|
/*
 | 
						|
 * We need to generate a random length for the synthetic message, to avoid
 | 
						|
 * bias towards zero and avoid non-constant timeness of DIV, we prepare
 | 
						|
 * 128 values to check if they are not too large for the used key size,
 | 
						|
 * and use 0 in case none of them are small enough, as 2^-128 is a good enough
 | 
						|
 * safety margin
 | 
						|
 */
 | 
						|
#define MAX_LEN_GEN_TRIES 128
 | 
						|
    unsigned char *synthetic = NULL;
 | 
						|
    int synthetic_length;
 | 
						|
    uint16_t len_candidate;
 | 
						|
    unsigned char candidate_lengths[MAX_LEN_GEN_TRIES * sizeof(len_candidate)];
 | 
						|
    uint16_t len_mask;
 | 
						|
    uint16_t max_sep_offset;
 | 
						|
    int synth_msg_index = 0;
 | 
						|
    int ret = -1;
 | 
						|
    int i, j;
 | 
						|
    unsigned int good, found_zero_byte;
 | 
						|
    int zero_index = 0, msg_index;
 | 
						|
 | 
						|
    /*
 | 
						|
     * If these checks fail then either the message in publicly invalid, or
 | 
						|
     * we've been called incorrectly. We can fail immediately.
 | 
						|
     * Since this code is called only internally by openssl, those are just
 | 
						|
     * sanity checks
 | 
						|
     */
 | 
						|
    if (num != flen || tlen <= 0 || flen <= 0) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Generate a random message to return in case the padding checks fail */
 | 
						|
    synthetic = OPENSSL_malloc(flen);
 | 
						|
    if (synthetic == NULL) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ossl_rsa_prf(ctx, synthetic, flen, "message", 7, kdk, flen * 8) < 0)
 | 
						|
        goto err;
 | 
						|
 | 
						|
    /* decide how long the random message should be */
 | 
						|
    if (ossl_rsa_prf(ctx, candidate_lengths, sizeof(candidate_lengths),
 | 
						|
                     "length", 6, kdk,
 | 
						|
                     MAX_LEN_GEN_TRIES * sizeof(len_candidate) * 8) < 0)
 | 
						|
        goto err;
 | 
						|
 | 
						|
    /*
 | 
						|
     * max message size is the size of the modulus size less 2 bytes for
 | 
						|
     * version and padding type and a minimum of 8 bytes padding
 | 
						|
     */
 | 
						|
    len_mask = max_sep_offset = flen - 2 - 8;
 | 
						|
    /*
 | 
						|
     * we want a mask so lets propagate the high bit to all positions less
 | 
						|
     * significant than it
 | 
						|
     */
 | 
						|
    len_mask |= len_mask >> 1;
 | 
						|
    len_mask |= len_mask >> 2;
 | 
						|
    len_mask |= len_mask >> 4;
 | 
						|
    len_mask |= len_mask >> 8;
 | 
						|
 | 
						|
    synthetic_length = 0;
 | 
						|
    for (i = 0; i < MAX_LEN_GEN_TRIES * (int)sizeof(len_candidate);
 | 
						|
            i += sizeof(len_candidate)) {
 | 
						|
        len_candidate = (candidate_lengths[i] << 8) | candidate_lengths[i + 1];
 | 
						|
        len_candidate &= len_mask;
 | 
						|
 | 
						|
        synthetic_length = constant_time_select_int(
 | 
						|
            constant_time_lt(len_candidate, max_sep_offset),
 | 
						|
            len_candidate, synthetic_length);
 | 
						|
    }
 | 
						|
 | 
						|
    synth_msg_index = flen - synthetic_length;
 | 
						|
 | 
						|
    /* we have alternative message ready, check the real one */
 | 
						|
    good = constant_time_is_zero(from[0]);
 | 
						|
    good &= constant_time_eq(from[1], 2);
 | 
						|
 | 
						|
    /* then look for the padding|message separator (the first zero byte) */
 | 
						|
    found_zero_byte = 0;
 | 
						|
    for (i = 2; i < flen; i++) {
 | 
						|
        unsigned int equals0 = constant_time_is_zero(from[i]);
 | 
						|
        zero_index = constant_time_select_int(~found_zero_byte & equals0,
 | 
						|
                                              i, zero_index);
 | 
						|
        found_zero_byte |= equals0;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * padding must be at least 8 bytes long, and it starts two bytes into
 | 
						|
     * |from|. If we never found a 0-byte, then |zero_index| is 0 and the check
 | 
						|
     * also fails.
 | 
						|
     */
 | 
						|
    good &= constant_time_ge(zero_index, 2 + 8);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Skip the zero byte. This is incorrect if we never found a zero-byte
 | 
						|
     * but in this case we also do not copy the message out.
 | 
						|
     */
 | 
						|
    msg_index = zero_index + 1;
 | 
						|
 | 
						|
    /*
 | 
						|
     * old code returned an error in case the decrypted message wouldn't fit
 | 
						|
     * into the |to|, since that would leak information, return the synthetic
 | 
						|
     * message instead
 | 
						|
     */
 | 
						|
    good &= constant_time_ge(tlen, num - msg_index);
 | 
						|
 | 
						|
    msg_index = constant_time_select_int(good, msg_index, synth_msg_index);
 | 
						|
 | 
						|
    /*
 | 
						|
     * since at this point the |msg_index| does not provide the signal
 | 
						|
     * indicating if the padding check failed or not, we don't have to worry
 | 
						|
     * about leaking the length of returned message, we still need to ensure
 | 
						|
     * that we read contents of both buffers so that cache accesses don't leak
 | 
						|
     * the value of |good|
 | 
						|
     */
 | 
						|
    for (i = msg_index, j = 0; i < flen && j < tlen; i++, j++)
 | 
						|
        to[j] = constant_time_select_8(good, from[i], synthetic[i]);
 | 
						|
    ret = j;
 | 
						|
 | 
						|
err:
 | 
						|
    /*
 | 
						|
     * the only time ret < 0 is when the ciphertext is publicly invalid
 | 
						|
     * or we were called with invalid parameters, so we don't have to perform
 | 
						|
     * a side-channel secure raising of the error
 | 
						|
     */
 | 
						|
    if (ret < 0)
 | 
						|
        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
    OPENSSL_free(synthetic);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ossl_rsa_padding_check_PKCS1_type_2_TLS() checks and removes the PKCS1 type 2
 | 
						|
 * padding from a decrypted RSA message in a TLS signature. The result is stored
 | 
						|
 * in the buffer pointed to by |to| which should be |tlen| bytes long. |tlen|
 | 
						|
 * must be at least SSL_MAX_MASTER_KEY_LENGTH. The original decrypted message
 | 
						|
 * should be stored in |from| which must be |flen| bytes in length and padded
 | 
						|
 * such that |flen == RSA_size()|. The TLS protocol version that the client
 | 
						|
 * originally requested should be passed in |client_version|. Some buggy clients
 | 
						|
 * can exist which use the negotiated version instead of the originally
 | 
						|
 * requested protocol version. If it is necessary to work around this bug then
 | 
						|
 * the negotiated protocol version can be passed in |alt_version|, otherwise 0
 | 
						|
 * should be passed.
 | 
						|
 *
 | 
						|
 * If the passed message is publicly invalid or some other error that can be
 | 
						|
 * treated in non-constant time occurs then -1 is returned. On success the
 | 
						|
 * length of the decrypted data is returned. This will always be
 | 
						|
 * SSL_MAX_MASTER_KEY_LENGTH. If an error occurs that should be treated in
 | 
						|
 * constant time then this function will appear to return successfully, but the
 | 
						|
 * decrypted data will be randomly generated (as per
 | 
						|
 * https://tools.ietf.org/html/rfc5246#section-7.4.7.1).
 | 
						|
 */
 | 
						|
int ossl_rsa_padding_check_PKCS1_type_2_TLS(OSSL_LIB_CTX *libctx,
 | 
						|
                                            unsigned char *to, size_t tlen,
 | 
						|
                                            const unsigned char *from,
 | 
						|
                                            size_t flen, int client_version,
 | 
						|
                                            int alt_version)
 | 
						|
{
 | 
						|
    unsigned int i, good, version_good;
 | 
						|
    unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH];
 | 
						|
 | 
						|
    /*
 | 
						|
     * If these checks fail then either the message in publicly invalid, or
 | 
						|
     * we've been called incorrectly. We can fail immediately.
 | 
						|
     */
 | 
						|
    if (flen < RSA_PKCS1_PADDING_SIZE + SSL_MAX_MASTER_KEY_LENGTH
 | 
						|
            || tlen < SSL_MAX_MASTER_KEY_LENGTH) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Generate a random premaster secret to use in the event that we fail
 | 
						|
     * to decrypt.
 | 
						|
     */
 | 
						|
    if (RAND_priv_bytes_ex(libctx, rand_premaster_secret,
 | 
						|
                           sizeof(rand_premaster_secret), 0) <= 0) {
 | 
						|
        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    good = constant_time_is_zero(from[0]);
 | 
						|
    good &= constant_time_eq(from[1], 2);
 | 
						|
 | 
						|
    /* Check we have the expected padding data */
 | 
						|
    for (i = 2; i < flen - SSL_MAX_MASTER_KEY_LENGTH - 1; i++)
 | 
						|
        good &= ~constant_time_is_zero_8(from[i]);
 | 
						|
    good &= constant_time_is_zero_8(from[flen - SSL_MAX_MASTER_KEY_LENGTH - 1]);
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
     * If the version in the decrypted pre-master secret is correct then
 | 
						|
     * version_good will be 0xff, otherwise it'll be zero. The
 | 
						|
     * Klima-Pokorny-Rosa extension of Bleichenbacher's attack
 | 
						|
     * (http://eprint.iacr.org/2003/052/) exploits the version number
 | 
						|
     * check as a "bad version oracle". Thus version checks are done in
 | 
						|
     * constant time and are treated like any other decryption error.
 | 
						|
     */
 | 
						|
    version_good =
 | 
						|
        constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH],
 | 
						|
                         (client_version >> 8) & 0xff);
 | 
						|
    version_good &=
 | 
						|
        constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1],
 | 
						|
                         client_version & 0xff);
 | 
						|
 | 
						|
    /*
 | 
						|
     * The premaster secret must contain the same version number as the
 | 
						|
     * ClientHello to detect version rollback attacks (strangely, the
 | 
						|
     * protocol does not offer such protection for DH ciphersuites).
 | 
						|
     * However, buggy clients exist that send the negotiated protocol
 | 
						|
     * version instead if the server does not support the requested
 | 
						|
     * protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set then we tolerate
 | 
						|
     * such clients. In that case alt_version will be non-zero and set to
 | 
						|
     * the negotiated version.
 | 
						|
     */
 | 
						|
    if (alt_version > 0) {
 | 
						|
        unsigned int workaround_good;
 | 
						|
 | 
						|
        workaround_good =
 | 
						|
            constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH],
 | 
						|
                             (alt_version >> 8) & 0xff);
 | 
						|
        workaround_good &=
 | 
						|
            constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1],
 | 
						|
                             alt_version & 0xff);
 | 
						|
        version_good |= workaround_good;
 | 
						|
    }
 | 
						|
 | 
						|
    good &= version_good;
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
     * Now copy the result over to the to buffer if good, or random data if
 | 
						|
     * not good.
 | 
						|
     */
 | 
						|
    for (i = 0; i < SSL_MAX_MASTER_KEY_LENGTH; i++) {
 | 
						|
        to[i] =
 | 
						|
            constant_time_select_8(good,
 | 
						|
                                   from[flen - SSL_MAX_MASTER_KEY_LENGTH + i],
 | 
						|
                                   rand_premaster_secret[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * We must not leak whether a decryption failure occurs because of
 | 
						|
     * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246,
 | 
						|
     * section 7.4.7.1). The code follows that advice of the TLS RFC and
 | 
						|
     * generates a random premaster secret for the case that the decrypt
 | 
						|
     * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1
 | 
						|
     * So, whether we actually succeeded or not, return success.
 | 
						|
     */
 | 
						|
 | 
						|
    return SSL_MAX_MASTER_KEY_LENGTH;
 | 
						|
}
 |