mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			3254 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3254 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2015-2019 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the Apache License 2.0 (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <stdlib.h>
 | |
| #include <ctype.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/pem.h>
 | |
| #include <openssl/err.h>
 | |
| #include <openssl/provider.h>
 | |
| #include <openssl/x509v3.h>
 | |
| #include <openssl/pkcs12.h>
 | |
| #include <openssl/kdf.h>
 | |
| #include <openssl/params.h>
 | |
| #include <openssl/core_names.h>
 | |
| #include "internal/numbers.h"
 | |
| #include "internal/nelem.h"
 | |
| #include "testutil.h"
 | |
| #include "evp_test.h"
 | |
| 
 | |
| #define AAD_NUM 4
 | |
| 
 | |
| typedef struct evp_test_method_st EVP_TEST_METHOD;
 | |
| 
 | |
| /*
 | |
|  * Structure holding test information
 | |
|  */
 | |
| typedef struct evp_test_st {
 | |
|     STANZA s;                     /* Common test stanza */
 | |
|     char *name;
 | |
|     int skip;                     /* Current test should be skipped */
 | |
|     const EVP_TEST_METHOD *meth;  /* method for this test */
 | |
|     const char *err, *aux_err;    /* Error string for test */
 | |
|     char *expected_err;           /* Expected error value of test */
 | |
|     char *reason;                 /* Expected error reason string */
 | |
|     void *data;                   /* test specific data */
 | |
| } EVP_TEST;
 | |
| 
 | |
| /*
 | |
|  * Test method structure
 | |
|  */
 | |
| struct evp_test_method_st {
 | |
|     /* Name of test as it appears in file */
 | |
|     const char *name;
 | |
|     /* Initialise test for "alg" */
 | |
|     int (*init) (EVP_TEST * t, const char *alg);
 | |
|     /* Clean up method */
 | |
|     void (*cleanup) (EVP_TEST * t);
 | |
|     /* Test specific name value pair processing */
 | |
|     int (*parse) (EVP_TEST * t, const char *name, const char *value);
 | |
|     /* Run the test itself */
 | |
|     int (*run_test) (EVP_TEST * t);
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Linked list of named keys.
 | |
|  */
 | |
| typedef struct key_list_st {
 | |
|     char *name;
 | |
|     EVP_PKEY *key;
 | |
|     struct key_list_st *next;
 | |
| } KEY_LIST;
 | |
| 
 | |
| /*
 | |
|  * List of public and private keys
 | |
|  */
 | |
| static KEY_LIST *private_keys;
 | |
| static KEY_LIST *public_keys;
 | |
| static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst);
 | |
| 
 | |
| static int parse_bin(const char *value, unsigned char **buf, size_t *buflen);
 | |
| 
 | |
| /*
 | |
|  * Compare two memory regions for equality, returning zero if they differ.
 | |
|  * However, if there is expected to be an error and the actual error
 | |
|  * matches then the memory is expected to be different so handle this
 | |
|  * case without producing unnecessary test framework output.
 | |
|  */
 | |
| static int memory_err_compare(EVP_TEST *t, const char *err,
 | |
|                               const void *expected, size_t expected_len,
 | |
|                               const void *got, size_t got_len)
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0)
 | |
|         r = !TEST_mem_ne(expected, expected_len, got, got_len);
 | |
|     else
 | |
|         r = TEST_mem_eq(expected, expected_len, got, got_len);
 | |
|     if (!r)
 | |
|         t->err = err;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Structure used to hold a list of blocks of memory to test
 | |
|  * calls to "update" like functions.
 | |
|  */
 | |
| struct evp_test_buffer_st {
 | |
|     unsigned char *buf;
 | |
|     size_t buflen;
 | |
|     size_t count;
 | |
|     int count_set;
 | |
| };
 | |
| 
 | |
| static void evp_test_buffer_free(EVP_TEST_BUFFER *db)
 | |
| {
 | |
|     if (db != NULL) {
 | |
|         OPENSSL_free(db->buf);
 | |
|         OPENSSL_free(db);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * append buffer to a list
 | |
|  */
 | |
| static int evp_test_buffer_append(const char *value,
 | |
|                                   STACK_OF(EVP_TEST_BUFFER) **sk)
 | |
| {
 | |
|     EVP_TEST_BUFFER *db = NULL;
 | |
| 
 | |
|     if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db))))
 | |
|         goto err;
 | |
| 
 | |
|     if (!parse_bin(value, &db->buf, &db->buflen))
 | |
|         goto err;
 | |
|     db->count = 1;
 | |
|     db->count_set = 0;
 | |
| 
 | |
|     if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null()))
 | |
|         goto err;
 | |
|     if (!sk_EVP_TEST_BUFFER_push(*sk, db))
 | |
|         goto err;
 | |
| 
 | |
|     return 1;
 | |
| 
 | |
| err:
 | |
|     evp_test_buffer_free(db);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * replace last buffer in list with copies of itself
 | |
|  */
 | |
| static int evp_test_buffer_ncopy(const char *value,
 | |
|                                  STACK_OF(EVP_TEST_BUFFER) *sk)
 | |
| {
 | |
|     EVP_TEST_BUFFER *db;
 | |
|     unsigned char *tbuf, *p;
 | |
|     size_t tbuflen;
 | |
|     int ncopy = atoi(value);
 | |
|     int i;
 | |
| 
 | |
|     if (ncopy <= 0)
 | |
|         return 0;
 | |
|     if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
 | |
|         return 0;
 | |
|     db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
 | |
| 
 | |
|     tbuflen = db->buflen * ncopy;
 | |
|     if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen)))
 | |
|         return 0;
 | |
|     for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen)
 | |
|         memcpy(p, db->buf, db->buflen);
 | |
| 
 | |
|     OPENSSL_free(db->buf);
 | |
|     db->buf = tbuf;
 | |
|     db->buflen = tbuflen;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set repeat count for last buffer in list
 | |
|  */
 | |
| static int evp_test_buffer_set_count(const char *value,
 | |
|                                      STACK_OF(EVP_TEST_BUFFER) *sk)
 | |
| {
 | |
|     EVP_TEST_BUFFER *db;
 | |
|     int count = atoi(value);
 | |
| 
 | |
|     if (count <= 0)
 | |
|         return 0;
 | |
| 
 | |
|     if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
 | |
|         return 0;
 | |
| 
 | |
|     db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
 | |
|     if (db->count_set != 0)
 | |
|         return 0;
 | |
| 
 | |
|     db->count = (size_t)count;
 | |
|     db->count_set = 1;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call "fn" with each element of the list in turn
 | |
|  */
 | |
| static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk,
 | |
|                               int (*fn)(void *ctx,
 | |
|                                         const unsigned char *buf,
 | |
|                                         size_t buflen),
 | |
|                               void *ctx)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) {
 | |
|         EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i);
 | |
|         size_t j;
 | |
| 
 | |
|         for (j = 0; j < tb->count; j++) {
 | |
|             if (fn(ctx, tb->buf, tb->buflen) <= 0)
 | |
|                 return 0;
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unescape some sequences in string literals (only \n for now).
 | |
|  * Return an allocated buffer, set |out_len|.  If |input_len|
 | |
|  * is zero, get an empty buffer but set length to zero.
 | |
|  */
 | |
| static unsigned char* unescape(const char *input, size_t input_len,
 | |
|                                size_t *out_len)
 | |
| {
 | |
|     unsigned char *ret, *p;
 | |
|     size_t i;
 | |
| 
 | |
|     if (input_len == 0) {
 | |
|         *out_len = 0;
 | |
|         return OPENSSL_zalloc(1);
 | |
|     }
 | |
| 
 | |
|     /* Escaping is non-expanding; over-allocate original size for simplicity. */
 | |
|     if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len)))
 | |
|         return NULL;
 | |
| 
 | |
|     for (i = 0; i < input_len; i++) {
 | |
|         if (*input == '\\') {
 | |
|             if (i == input_len - 1 || *++input != 'n') {
 | |
|                 TEST_error("Bad escape sequence in file");
 | |
|                 goto err;
 | |
|             }
 | |
|             *p++ = '\n';
 | |
|             i++;
 | |
|             input++;
 | |
|         } else {
 | |
|             *p++ = *input++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *out_len = p - ret;
 | |
|     return ret;
 | |
| 
 | |
|  err:
 | |
|     OPENSSL_free(ret);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For a hex string "value" convert to a binary allocated buffer.
 | |
|  * Return 1 on success or 0 on failure.
 | |
|  */
 | |
| static int parse_bin(const char *value, unsigned char **buf, size_t *buflen)
 | |
| {
 | |
|     long len;
 | |
| 
 | |
|     /* Check for NULL literal */
 | |
|     if (strcmp(value, "NULL") == 0) {
 | |
|         *buf = NULL;
 | |
|         *buflen = 0;
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* Check for empty value */
 | |
|     if (*value == '\0') {
 | |
|         /*
 | |
|          * Don't return NULL for zero length buffer. This is needed for
 | |
|          * some tests with empty keys: HMAC_Init_ex() expects a non-NULL key
 | |
|          * buffer even if the key length is 0, in order to detect key reset.
 | |
|          */
 | |
|         *buf = OPENSSL_malloc(1);
 | |
|         if (*buf == NULL)
 | |
|             return 0;
 | |
|         **buf = 0;
 | |
|         *buflen = 0;
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* Check for string literal */
 | |
|     if (value[0] == '"') {
 | |
|         size_t vlen = strlen(++value);
 | |
| 
 | |
|         if (vlen == 0 || value[vlen - 1] != '"')
 | |
|             return 0;
 | |
|         vlen--;
 | |
|         *buf = unescape(value, vlen, buflen);
 | |
|         return *buf == NULL ? 0 : 1;
 | |
|     }
 | |
| 
 | |
|     /* Otherwise assume as hex literal and convert it to binary buffer */
 | |
|     if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) {
 | |
|         TEST_info("Can't convert %s", value);
 | |
|         TEST_openssl_errors();
 | |
|         return -1;
 | |
|     }
 | |
|     /* Size of input buffer means we'll never overflow */
 | |
|     *buflen = len;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
| ***  MESSAGE DIGEST TESTS
 | |
| **/
 | |
| 
 | |
| typedef struct digest_data_st {
 | |
|     /* Digest this test is for */
 | |
|     const EVP_MD *digest;
 | |
|     EVP_MD *fetched_digest;
 | |
|     /* Input to digest */
 | |
|     STACK_OF(EVP_TEST_BUFFER) *input;
 | |
|     /* Expected output */
 | |
|     unsigned char *output;
 | |
|     size_t output_len;
 | |
| } DIGEST_DATA;
 | |
| 
 | |
| static int digest_test_init(EVP_TEST *t, const char *alg)
 | |
| {
 | |
|     DIGEST_DATA *mdat;
 | |
|     const EVP_MD *digest;
 | |
|     EVP_MD *fetched_digest;
 | |
| 
 | |
|     if ((digest = fetched_digest = EVP_MD_fetch(NULL, alg, NULL)) == NULL
 | |
|         && (digest = EVP_get_digestbyname(alg)) == NULL) {
 | |
|         /* If alg has an OID assume disabled algorithm */
 | |
|         if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
 | |
|             t->skip = 1;
 | |
|             return 1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
 | |
|         return 0;
 | |
|     t->data = mdat;
 | |
|     mdat->digest = digest;
 | |
|     mdat->fetched_digest = fetched_digest;
 | |
|     if (fetched_digest != NULL)
 | |
|         TEST_info("%s is fetched", alg);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static void digest_test_cleanup(EVP_TEST *t)
 | |
| {
 | |
|     DIGEST_DATA *mdat = t->data;
 | |
| 
 | |
|     sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free);
 | |
|     OPENSSL_free(mdat->output);
 | |
|     EVP_MD_meth_free(mdat->fetched_digest);
 | |
| }
 | |
| 
 | |
| static int digest_test_parse(EVP_TEST *t,
 | |
|                              const char *keyword, const char *value)
 | |
| {
 | |
|     DIGEST_DATA *mdata = t->data;
 | |
| 
 | |
|     if (strcmp(keyword, "Input") == 0)
 | |
|         return evp_test_buffer_append(value, &mdata->input);
 | |
|     if (strcmp(keyword, "Output") == 0)
 | |
|         return parse_bin(value, &mdata->output, &mdata->output_len);
 | |
|     if (strcmp(keyword, "Count") == 0)
 | |
|         return evp_test_buffer_set_count(value, mdata->input);
 | |
|     if (strcmp(keyword, "Ncopy") == 0)
 | |
|         return evp_test_buffer_ncopy(value, mdata->input);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen)
 | |
| {
 | |
|     return EVP_DigestUpdate(ctx, buf, buflen);
 | |
| }
 | |
| 
 | |
| static int digest_test_run(EVP_TEST *t)
 | |
| {
 | |
|     DIGEST_DATA *expected = t->data;
 | |
|     EVP_MD_CTX *mctx;
 | |
|     unsigned char *got = NULL;
 | |
|     unsigned int got_len;
 | |
| 
 | |
|     t->err = "TEST_FAILURE";
 | |
|     if (!TEST_ptr(mctx = EVP_MD_CTX_new()))
 | |
|         goto err;
 | |
| 
 | |
|     got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ?
 | |
|                          expected->output_len : EVP_MAX_MD_SIZE);
 | |
|     if (!TEST_ptr(got))
 | |
|         goto err;
 | |
| 
 | |
|     if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) {
 | |
|         t->err = "DIGESTINIT_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) {
 | |
|         t->err = "DIGESTUPDATE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (EVP_MD_flags(expected->digest) & EVP_MD_FLAG_XOF) {
 | |
|         EVP_MD_CTX *mctx_cpy;
 | |
|         char dont[] = "touch";
 | |
| 
 | |
|         if (!TEST_ptr(mctx_cpy = EVP_MD_CTX_new())) {
 | |
|             goto err;
 | |
|         }
 | |
|         if (!EVP_MD_CTX_copy(mctx_cpy, mctx)) {
 | |
|             EVP_MD_CTX_free(mctx_cpy);
 | |
|             goto err;
 | |
|         }
 | |
|         if (!EVP_DigestFinalXOF(mctx_cpy, (unsigned char *)dont, 0)) {
 | |
|             EVP_MD_CTX_free(mctx_cpy);
 | |
|             t->err = "DIGESTFINALXOF_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|         if (!TEST_str_eq(dont, "touch")) {
 | |
|             EVP_MD_CTX_free(mctx_cpy);
 | |
|             t->err = "DIGESTFINALXOF_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|         EVP_MD_CTX_free(mctx_cpy);
 | |
| 
 | |
|         got_len = expected->output_len;
 | |
|         if (!EVP_DigestFinalXOF(mctx, got, got_len)) {
 | |
|             t->err = "DIGESTFINALXOF_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|     } else {
 | |
|         if (!EVP_DigestFinal(mctx, got, &got_len)) {
 | |
|             t->err = "DIGESTFINAL_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     if (!TEST_int_eq(expected->output_len, got_len)) {
 | |
|         t->err = "DIGEST_LENGTH_MISMATCH";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!memory_err_compare(t, "DIGEST_MISMATCH",
 | |
|                             expected->output, expected->output_len,
 | |
|                             got, got_len))
 | |
|         goto err;
 | |
| 
 | |
|     t->err = NULL;
 | |
| 
 | |
|  err:
 | |
|     OPENSSL_free(got);
 | |
|     EVP_MD_CTX_free(mctx);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD digest_test_method = {
 | |
|     "Digest",
 | |
|     digest_test_init,
 | |
|     digest_test_cleanup,
 | |
|     digest_test_parse,
 | |
|     digest_test_run
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
| ***  CIPHER TESTS
 | |
| **/
 | |
| 
 | |
| typedef struct cipher_data_st {
 | |
|     const EVP_CIPHER *cipher;
 | |
|     EVP_CIPHER *fetched_cipher;
 | |
|     int enc;
 | |
|     /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
 | |
|     int aead;
 | |
|     unsigned char *key;
 | |
|     size_t key_len;
 | |
|     size_t key_bits; /* Used by RC2 */
 | |
|     unsigned char *iv;
 | |
|     unsigned int rounds;
 | |
|     size_t iv_len;
 | |
|     unsigned char *plaintext;
 | |
|     size_t plaintext_len;
 | |
|     unsigned char *ciphertext;
 | |
|     size_t ciphertext_len;
 | |
|     /* GCM, CCM, OCB and SIV only */
 | |
|     unsigned char *aad[AAD_NUM];
 | |
|     size_t aad_len[AAD_NUM];
 | |
|     unsigned char *tag;
 | |
|     size_t tag_len;
 | |
|     int tag_late;
 | |
| } CIPHER_DATA;
 | |
| 
 | |
| static int cipher_test_init(EVP_TEST *t, const char *alg)
 | |
| {
 | |
|     const EVP_CIPHER *cipher;
 | |
|     EVP_CIPHER *fetched_cipher;
 | |
|     CIPHER_DATA *cdat;
 | |
|     int m;
 | |
| 
 | |
|     if ((cipher = fetched_cipher = EVP_CIPHER_fetch(NULL, alg, NULL)) == NULL
 | |
|         && (cipher = EVP_get_cipherbyname(alg)) == NULL) {
 | |
|         /* If alg has an OID assume disabled algorithm */
 | |
|         if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
 | |
|             t->skip = 1;
 | |
|             return 1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     cdat = OPENSSL_zalloc(sizeof(*cdat));
 | |
|     cdat->cipher = cipher;
 | |
|     cdat->fetched_cipher = fetched_cipher;
 | |
|     cdat->enc = -1;
 | |
|     m = EVP_CIPHER_mode(cipher);
 | |
|     if (m == EVP_CIPH_GCM_MODE
 | |
|             || m == EVP_CIPH_OCB_MODE
 | |
|             || m == EVP_CIPH_SIV_MODE
 | |
|             || m == EVP_CIPH_CCM_MODE)
 | |
|         cdat->aead = m;
 | |
|     else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
 | |
|         cdat->aead = -1;
 | |
|     else
 | |
|         cdat->aead = 0;
 | |
| 
 | |
|     t->data = cdat;
 | |
|     if (fetched_cipher != NULL)
 | |
|         TEST_info("%s is fetched", alg);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static void cipher_test_cleanup(EVP_TEST *t)
 | |
| {
 | |
|     int i;
 | |
|     CIPHER_DATA *cdat = t->data;
 | |
| 
 | |
|     OPENSSL_free(cdat->key);
 | |
|     OPENSSL_free(cdat->iv);
 | |
|     OPENSSL_free(cdat->ciphertext);
 | |
|     OPENSSL_free(cdat->plaintext);
 | |
|     for (i = 0; i < AAD_NUM; i++)
 | |
|         OPENSSL_free(cdat->aad[i]);
 | |
|     OPENSSL_free(cdat->tag);
 | |
|     EVP_CIPHER_meth_free(cdat->fetched_cipher);
 | |
| }
 | |
| 
 | |
| static int cipher_test_parse(EVP_TEST *t, const char *keyword,
 | |
|                              const char *value)
 | |
| {
 | |
|     CIPHER_DATA *cdat = t->data;
 | |
|     int i;
 | |
| 
 | |
|     if (strcmp(keyword, "Key") == 0)
 | |
|         return parse_bin(value, &cdat->key, &cdat->key_len);
 | |
|     if (strcmp(keyword, "Rounds") == 0) {
 | |
|         i = atoi(value);
 | |
|         if (i < 0)
 | |
|             return -1;
 | |
|         cdat->rounds = (unsigned int)i;
 | |
|         return 1;
 | |
|     }
 | |
|     if (strcmp(keyword, "IV") == 0)
 | |
|         return parse_bin(value, &cdat->iv, &cdat->iv_len);
 | |
|     if (strcmp(keyword, "Plaintext") == 0)
 | |
|         return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len);
 | |
|     if (strcmp(keyword, "Ciphertext") == 0)
 | |
|         return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
 | |
|     if (strcmp(keyword, "KeyBits") == 0) {
 | |
|         i = atoi(value);
 | |
|         if (i < 0)
 | |
|             return -1;
 | |
|         cdat->key_bits = (size_t)i;
 | |
|         return 1;
 | |
|     }
 | |
|     if (cdat->aead) {
 | |
|         if (strcmp(keyword, "AAD") == 0) {
 | |
|             for (i = 0; i < AAD_NUM; i++) {
 | |
|                 if (cdat->aad[i] == NULL)
 | |
|                     return parse_bin(value, &cdat->aad[i], &cdat->aad_len[i]);
 | |
|             }
 | |
|             return -1;
 | |
|         }
 | |
|         if (strcmp(keyword, "Tag") == 0)
 | |
|             return parse_bin(value, &cdat->tag, &cdat->tag_len);
 | |
|         if (strcmp(keyword, "SetTagLate") == 0) {
 | |
|             if (strcmp(value, "TRUE") == 0)
 | |
|                 cdat->tag_late = 1;
 | |
|             else if (strcmp(value, "FALSE") == 0)
 | |
|                 cdat->tag_late = 0;
 | |
|             else
 | |
|                 return -1;
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (strcmp(keyword, "Operation") == 0) {
 | |
|         if (strcmp(value, "ENCRYPT") == 0)
 | |
|             cdat->enc = 1;
 | |
|         else if (strcmp(value, "DECRYPT") == 0)
 | |
|             cdat->enc = 0;
 | |
|         else
 | |
|             return -1;
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cipher_test_enc(EVP_TEST *t, int enc,
 | |
|                            size_t out_misalign, size_t inp_misalign, int frag)
 | |
| {
 | |
|     CIPHER_DATA *expected = t->data;
 | |
|     unsigned char *in, *expected_out, *tmp = NULL;
 | |
|     size_t in_len, out_len, donelen = 0;
 | |
|     int ok = 0, tmplen, chunklen, tmpflen, i;
 | |
|     EVP_CIPHER_CTX *ctx_base = NULL;
 | |
|     EVP_CIPHER_CTX *ctx = NULL;
 | |
| 
 | |
|     t->err = "TEST_FAILURE";
 | |
|     if (!TEST_ptr(ctx_base = EVP_CIPHER_CTX_new()))
 | |
|         goto err;
 | |
|     if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new()))
 | |
|         goto err;
 | |
|     EVP_CIPHER_CTX_set_flags(ctx_base, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
 | |
|     if (enc) {
 | |
|         in = expected->plaintext;
 | |
|         in_len = expected->plaintext_len;
 | |
|         expected_out = expected->ciphertext;
 | |
|         out_len = expected->ciphertext_len;
 | |
|     } else {
 | |
|         in = expected->ciphertext;
 | |
|         in_len = expected->ciphertext_len;
 | |
|         expected_out = expected->plaintext;
 | |
|         out_len = expected->plaintext_len;
 | |
|     }
 | |
|     if (inp_misalign == (size_t)-1) {
 | |
|         /*
 | |
|          * Exercise in-place encryption
 | |
|          */
 | |
|         tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
 | |
|         if (!tmp)
 | |
|             goto err;
 | |
|         in = memcpy(tmp + out_misalign, in, in_len);
 | |
|     } else {
 | |
|         inp_misalign += 16 - ((out_misalign + in_len) & 15);
 | |
|         /*
 | |
|          * 'tmp' will store both output and copy of input. We make the copy
 | |
|          * of input to specifically aligned part of 'tmp'. So we just
 | |
|          * figured out how much padding would ensure the required alignment,
 | |
|          * now we allocate extended buffer and finally copy the input just
 | |
|          * past inp_misalign in expression below. Output will be written
 | |
|          * past out_misalign...
 | |
|          */
 | |
|         tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
 | |
|                              inp_misalign + in_len);
 | |
|         if (!tmp)
 | |
|             goto err;
 | |
|         in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
 | |
|                     inp_misalign, in, in_len);
 | |
|     }
 | |
|     if (!EVP_CipherInit_ex(ctx_base, expected->cipher, NULL, NULL, NULL, enc)) {
 | |
|         t->err = "CIPHERINIT_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (expected->iv) {
 | |
|         if (expected->aead) {
 | |
|             if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_AEAD_SET_IVLEN,
 | |
|                                      expected->iv_len, 0)) {
 | |
|                 t->err = "INVALID_IV_LENGTH";
 | |
|                 goto err;
 | |
|             }
 | |
|         } else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx_base)) {
 | |
|             t->err = "INVALID_IV_LENGTH";
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     if (expected->aead) {
 | |
|         unsigned char *tag;
 | |
|         /*
 | |
|          * If encrypting or OCB just set tag length initially, otherwise
 | |
|          * set tag length and value.
 | |
|          */
 | |
|         if (enc || expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late) {
 | |
|             t->err = "TAG_LENGTH_SET_ERROR";
 | |
|             tag = NULL;
 | |
|         } else {
 | |
|             t->err = "TAG_SET_ERROR";
 | |
|             tag = expected->tag;
 | |
|         }
 | |
|         if (tag || expected->aead != EVP_CIPH_GCM_MODE) {
 | |
|             if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_AEAD_SET_TAG,
 | |
|                                      expected->tag_len, tag))
 | |
|                 goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (expected->rounds > 0) {
 | |
|         int  rounds = (int)expected->rounds;
 | |
| 
 | |
|         if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_SET_RC5_ROUNDS, rounds, NULL)) {
 | |
|             t->err = "INVALID_ROUNDS";
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!EVP_CIPHER_CTX_set_key_length(ctx_base, expected->key_len)) {
 | |
|         t->err = "INVALID_KEY_LENGTH";
 | |
|         goto err;
 | |
|     }
 | |
|     if (expected->key_bits > 0) {
 | |
|         int bits = (int)expected->key_bits;
 | |
| 
 | |
|         if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_SET_RC2_KEY_BITS, bits, NULL)) {
 | |
|             t->err = "INVALID KEY BITS";
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     if (!EVP_CipherInit_ex(ctx_base, NULL, NULL, expected->key, expected->iv, -1)) {
 | |
|         t->err = "KEY_SET_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* Check that we get the same IV back */
 | |
|     if (expected->iv != NULL
 | |
|         && (EVP_CIPHER_flags(expected->cipher) & EVP_CIPH_CUSTOM_IV) == 0
 | |
|         && !TEST_mem_eq(expected->iv, expected->iv_len,
 | |
|                         EVP_CIPHER_CTX_iv(ctx_base), expected->iv_len)) {
 | |
|         t->err = "INVALID_IV";
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* Test that the cipher dup functions correctly if it is supported */
 | |
|     if (EVP_CIPHER_CTX_copy(ctx, ctx_base)) {
 | |
|         EVP_CIPHER_CTX_free(ctx_base);
 | |
|         ctx_base = NULL;
 | |
|     } else {
 | |
|         EVP_CIPHER_CTX_free(ctx);
 | |
|         ctx = ctx_base;
 | |
|     }
 | |
| 
 | |
|     if (expected->aead == EVP_CIPH_CCM_MODE) {
 | |
|         if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
 | |
|             t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     if (expected->aad[0] != NULL) {
 | |
|         t->err = "AAD_SET_ERROR";
 | |
|         if (!frag) {
 | |
|             for (i = 0; expected->aad[i] != NULL; i++) {
 | |
|                 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i],
 | |
|                                       expected->aad_len[i]))
 | |
|                     goto err;
 | |
|             }
 | |
|         } else {
 | |
|             /*
 | |
|              * Supply the AAD in chunks less than the block size where possible
 | |
|              */
 | |
|             for (i = 0; expected->aad[i] != NULL; i++) {
 | |
|                 if (expected->aad_len[i] > 0) {
 | |
|                     if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i], 1))
 | |
|                         goto err;
 | |
|                     donelen++;
 | |
|                 }
 | |
|                 if (expected->aad_len[i] > 2) {
 | |
|                     if (!EVP_CipherUpdate(ctx, NULL, &chunklen,
 | |
|                                           expected->aad[i] + donelen,
 | |
|                                           expected->aad_len[i] - 2))
 | |
|                         goto err;
 | |
|                     donelen += expected->aad_len[i] - 2;
 | |
|                 }
 | |
|                 if (expected->aad_len[i] > 1
 | |
|                     && !EVP_CipherUpdate(ctx, NULL, &chunklen,
 | |
|                                          expected->aad[i] + donelen, 1))
 | |
|                     goto err;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!enc && (expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late)) {
 | |
|         if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
 | |
|                                  expected->tag_len, expected->tag)) {
 | |
|             t->err = "TAG_SET_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     EVP_CIPHER_CTX_set_padding(ctx, 0);
 | |
|     t->err = "CIPHERUPDATE_ERROR";
 | |
|     tmplen = 0;
 | |
|     if (!frag) {
 | |
|         /* We supply the data all in one go */
 | |
|         if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
 | |
|             goto err;
 | |
|     } else {
 | |
|         /* Supply the data in chunks less than the block size where possible */
 | |
|         if (in_len > 0) {
 | |
|             if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1))
 | |
|                 goto err;
 | |
|             tmplen += chunklen;
 | |
|             in++;
 | |
|             in_len--;
 | |
|         }
 | |
|         if (in_len > 1) {
 | |
|             if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
 | |
|                                   in, in_len - 1))
 | |
|                 goto err;
 | |
|             tmplen += chunklen;
 | |
|             in += in_len - 1;
 | |
|             in_len = 1;
 | |
|         }
 | |
|         if (in_len > 0 ) {
 | |
|             if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
 | |
|                                   in, 1))
 | |
|                 goto err;
 | |
|             tmplen += chunklen;
 | |
|         }
 | |
|     }
 | |
|     if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) {
 | |
|         t->err = "CIPHERFINAL_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len,
 | |
|                             tmp + out_misalign, tmplen + tmpflen))
 | |
|         goto err;
 | |
|     if (enc && expected->aead) {
 | |
|         unsigned char rtag[16];
 | |
| 
 | |
|         if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) {
 | |
|             t->err = "TAG_LENGTH_INTERNAL_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|         if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
 | |
|                                  expected->tag_len, rtag)) {
 | |
|             t->err = "TAG_RETRIEVE_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|         if (!memory_err_compare(t, "TAG_VALUE_MISMATCH",
 | |
|                                 expected->tag, expected->tag_len,
 | |
|                                 rtag, expected->tag_len))
 | |
|             goto err;
 | |
|     }
 | |
|     t->err = NULL;
 | |
|     ok = 1;
 | |
|  err:
 | |
|     OPENSSL_free(tmp);
 | |
|     if (ctx != ctx_base)
 | |
|         EVP_CIPHER_CTX_free(ctx_base);
 | |
|     EVP_CIPHER_CTX_free(ctx);
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| static int cipher_test_run(EVP_TEST *t)
 | |
| {
 | |
|     CIPHER_DATA *cdat = t->data;
 | |
|     int rv, frag = 0;
 | |
|     size_t out_misalign, inp_misalign;
 | |
| 
 | |
|     if (!cdat->key) {
 | |
|         t->err = "NO_KEY";
 | |
|         return 0;
 | |
|     }
 | |
|     if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
 | |
|         /* IV is optional and usually omitted in wrap mode */
 | |
|         if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
 | |
|             t->err = "NO_IV";
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     if (cdat->aead && !cdat->tag) {
 | |
|         t->err = "NO_TAG";
 | |
|         return 0;
 | |
|     }
 | |
|     for (out_misalign = 0; out_misalign <= 1;) {
 | |
|         static char aux_err[64];
 | |
|         t->aux_err = aux_err;
 | |
|         for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
 | |
|             if (inp_misalign == (size_t)-1) {
 | |
|                 /* kludge: inp_misalign == -1 means "exercise in-place" */
 | |
|                 BIO_snprintf(aux_err, sizeof(aux_err),
 | |
|                              "%s in-place, %sfragmented",
 | |
|                              out_misalign ? "misaligned" : "aligned",
 | |
|                              frag ? "" : "not ");
 | |
|             } else {
 | |
|                 BIO_snprintf(aux_err, sizeof(aux_err),
 | |
|                              "%s output and %s input, %sfragmented",
 | |
|                              out_misalign ? "misaligned" : "aligned",
 | |
|                              inp_misalign ? "misaligned" : "aligned",
 | |
|                              frag ? "" : "not ");
 | |
|             }
 | |
|             if (cdat->enc) {
 | |
|                 rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag);
 | |
|                 /* Not fatal errors: return */
 | |
|                 if (rv != 1) {
 | |
|                     if (rv < 0)
 | |
|                         return 0;
 | |
|                     return 1;
 | |
|                 }
 | |
|             }
 | |
|             if (cdat->enc != 1) {
 | |
|                 rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag);
 | |
|                 /* Not fatal errors: return */
 | |
|                 if (rv != 1) {
 | |
|                     if (rv < 0)
 | |
|                         return 0;
 | |
|                     return 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (out_misalign == 1 && frag == 0) {
 | |
|             /*
 | |
|              * XTS, SIV, CCM and Wrap modes have special requirements about input
 | |
|              * lengths so we don't fragment for those
 | |
|              */
 | |
|             if (cdat->aead == EVP_CIPH_CCM_MODE
 | |
|                     || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_SIV_MODE
 | |
|                     || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE
 | |
|                     || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE)
 | |
|                 break;
 | |
|             out_misalign = 0;
 | |
|             frag++;
 | |
|         } else {
 | |
|             out_misalign++;
 | |
|         }
 | |
|     }
 | |
|     t->aux_err = NULL;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD cipher_test_method = {
 | |
|     "Cipher",
 | |
|     cipher_test_init,
 | |
|     cipher_test_cleanup,
 | |
|     cipher_test_parse,
 | |
|     cipher_test_run
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
| ***  MAC TESTS
 | |
| **/
 | |
| 
 | |
| typedef struct mac_data_st {
 | |
|     /* MAC type in one form or another */
 | |
|     char *mac_name;
 | |
|     EVP_MAC *mac;                /* for mac_test_run_mac */
 | |
|     int type;                    /* for mac_test_run_pkey */
 | |
|     /* Algorithm string for this MAC */
 | |
|     char *alg;
 | |
|     /* MAC key */
 | |
|     unsigned char *key;
 | |
|     size_t key_len;
 | |
|     /* MAC IV (GMAC) */
 | |
|     unsigned char *iv;
 | |
|     size_t iv_len;
 | |
|     /* Input to MAC */
 | |
|     unsigned char *input;
 | |
|     size_t input_len;
 | |
|     /* Expected output */
 | |
|     unsigned char *output;
 | |
|     size_t output_len;
 | |
|     unsigned char *custom;
 | |
|     size_t custom_len;
 | |
|     /* MAC salt (blake2) */
 | |
|     unsigned char *salt;
 | |
|     size_t salt_len;
 | |
|     /* Collection of controls */
 | |
|     STACK_OF(OPENSSL_STRING) *controls;
 | |
| } MAC_DATA;
 | |
| 
 | |
| static int mac_test_init(EVP_TEST *t, const char *alg)
 | |
| {
 | |
|     EVP_MAC *mac = NULL;
 | |
|     int type = NID_undef;
 | |
|     MAC_DATA *mdat;
 | |
| 
 | |
|     if ((mac = EVP_MAC_fetch(NULL, alg, NULL)) == NULL) {
 | |
|         /*
 | |
|          * Since we didn't find an EVP_MAC, we check for known EVP_PKEY methods
 | |
|          * For debugging purposes, we allow 'NNNN by EVP_PKEY' to force running
 | |
|          * the EVP_PKEY method.
 | |
|          */
 | |
|         size_t sz = strlen(alg);
 | |
|         static const char epilogue[] = " by EVP_PKEY";
 | |
| 
 | |
|         if (sz >= sizeof(epilogue)
 | |
|             && strcmp(alg + sz - (sizeof(epilogue) - 1), epilogue) == 0)
 | |
|             sz -= sizeof(epilogue) - 1;
 | |
| 
 | |
|         if (strncmp(alg, "HMAC", sz) == 0) {
 | |
|             type = EVP_PKEY_HMAC;
 | |
|         } else if (strncmp(alg, "CMAC", sz) == 0) {
 | |
| #ifndef OPENSSL_NO_CMAC
 | |
|             type = EVP_PKEY_CMAC;
 | |
| #else
 | |
|             t->skip = 1;
 | |
|             return 1;
 | |
| #endif
 | |
|         } else if (strncmp(alg, "Poly1305", sz) == 0) {
 | |
| #ifndef OPENSSL_NO_POLY1305
 | |
|             type = EVP_PKEY_POLY1305;
 | |
| #else
 | |
|             t->skip = 1;
 | |
|             return 1;
 | |
| #endif
 | |
|         } else if (strncmp(alg, "SipHash", sz) == 0) {
 | |
| #ifndef OPENSSL_NO_SIPHASH
 | |
|             type = EVP_PKEY_SIPHASH;
 | |
| #else
 | |
|             t->skip = 1;
 | |
|             return 1;
 | |
| #endif
 | |
|         } else {
 | |
|             /*
 | |
|              * Not a known EVP_PKEY method either.  If it's a known OID, then
 | |
|              * assume it's been disabled.
 | |
|              */
 | |
|             if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
 | |
|                 t->skip = 1;
 | |
|                 return 1;
 | |
|             }
 | |
| 
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     mdat = OPENSSL_zalloc(sizeof(*mdat));
 | |
|     mdat->type = type;
 | |
|     mdat->mac_name = OPENSSL_strdup(alg);
 | |
|     mdat->mac = mac;
 | |
|     mdat->controls = sk_OPENSSL_STRING_new_null();
 | |
|     t->data = mdat;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Because OPENSSL_free is a macro, it can't be passed as a function pointer */
 | |
| static void openssl_free(char *m)
 | |
| {
 | |
|     OPENSSL_free(m);
 | |
| }
 | |
| 
 | |
| static void mac_test_cleanup(EVP_TEST *t)
 | |
| {
 | |
|     MAC_DATA *mdat = t->data;
 | |
| 
 | |
|     EVP_MAC_free(mdat->mac);
 | |
|     OPENSSL_free(mdat->mac_name);
 | |
|     sk_OPENSSL_STRING_pop_free(mdat->controls, openssl_free);
 | |
|     OPENSSL_free(mdat->alg);
 | |
|     OPENSSL_free(mdat->key);
 | |
|     OPENSSL_free(mdat->iv);
 | |
|     OPENSSL_free(mdat->custom);
 | |
|     OPENSSL_free(mdat->salt);
 | |
|     OPENSSL_free(mdat->input);
 | |
|     OPENSSL_free(mdat->output);
 | |
| }
 | |
| 
 | |
| static int mac_test_parse(EVP_TEST *t,
 | |
|                           const char *keyword, const char *value)
 | |
| {
 | |
|     MAC_DATA *mdata = t->data;
 | |
| 
 | |
|     if (strcmp(keyword, "Key") == 0)
 | |
|         return parse_bin(value, &mdata->key, &mdata->key_len);
 | |
|     if (strcmp(keyword, "IV") == 0)
 | |
|         return parse_bin(value, &mdata->iv, &mdata->iv_len);
 | |
|     if (strcmp(keyword, "Custom") == 0)
 | |
|         return parse_bin(value, &mdata->custom, &mdata->custom_len);
 | |
|     if (strcmp(keyword, "Salt") == 0)
 | |
|         return parse_bin(value, &mdata->salt, &mdata->salt_len);
 | |
|     if (strcmp(keyword, "Algorithm") == 0) {
 | |
|         mdata->alg = OPENSSL_strdup(value);
 | |
|         if (!mdata->alg)
 | |
|             return -1;
 | |
|         return 1;
 | |
|     }
 | |
|     if (strcmp(keyword, "Input") == 0)
 | |
|         return parse_bin(value, &mdata->input, &mdata->input_len);
 | |
|     if (strcmp(keyword, "Output") == 0)
 | |
|         return parse_bin(value, &mdata->output, &mdata->output_len);
 | |
|     if (strcmp(keyword, "Ctrl") == 0)
 | |
|         return sk_OPENSSL_STRING_push(mdata->controls,
 | |
|                                       OPENSSL_strdup(value)) != 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int mac_test_ctrl_pkey(EVP_TEST *t, EVP_PKEY_CTX *pctx,
 | |
|                               const char *value)
 | |
| {
 | |
|     int rv;
 | |
|     char *p, *tmpval;
 | |
| 
 | |
|     if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
 | |
|         return 0;
 | |
|     p = strchr(tmpval, ':');
 | |
|     if (p != NULL)
 | |
|         *p++ = '\0';
 | |
|     rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
 | |
|     if (rv == -2)
 | |
|         t->err = "PKEY_CTRL_INVALID";
 | |
|     else if (rv <= 0)
 | |
|         t->err = "PKEY_CTRL_ERROR";
 | |
|     else
 | |
|         rv = 1;
 | |
|     OPENSSL_free(tmpval);
 | |
|     return rv > 0;
 | |
| }
 | |
| 
 | |
| static int mac_test_run_pkey(EVP_TEST *t)
 | |
| {
 | |
|     MAC_DATA *expected = t->data;
 | |
|     EVP_MD_CTX *mctx = NULL;
 | |
|     EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
 | |
|     EVP_PKEY *key = NULL;
 | |
|     const EVP_MD *md = NULL;
 | |
|     unsigned char *got = NULL;
 | |
|     size_t got_len;
 | |
|     int i;
 | |
| 
 | |
|     if (expected->alg == NULL)
 | |
|         TEST_info("Trying the EVP_PKEY %s test", OBJ_nid2sn(expected->type));
 | |
|     else
 | |
|         TEST_info("Trying the EVP_PKEY %s test with %s",
 | |
|                   OBJ_nid2sn(expected->type), expected->alg);
 | |
| 
 | |
| #ifdef OPENSSL_NO_DES
 | |
|     if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
 | |
|         /* Skip DES */
 | |
|         t->err = NULL;
 | |
|         goto err;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (expected->type == EVP_PKEY_CMAC)
 | |
|         key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len,
 | |
|                                     EVP_get_cipherbyname(expected->alg));
 | |
|     else
 | |
|         key = EVP_PKEY_new_raw_private_key(expected->type, NULL, expected->key,
 | |
|                                            expected->key_len);
 | |
|     if (key == NULL) {
 | |
|         t->err = "MAC_KEY_CREATE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (expected->type == EVP_PKEY_HMAC) {
 | |
|         if (!TEST_ptr(md = EVP_get_digestbyname(expected->alg))) {
 | |
|             t->err = "MAC_ALGORITHM_SET_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     if (!TEST_ptr(mctx = EVP_MD_CTX_new())) {
 | |
|         t->err = "INTERNAL_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) {
 | |
|         t->err = "DIGESTSIGNINIT_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++)
 | |
|         if (!mac_test_ctrl_pkey(t, pctx,
 | |
|                                 sk_OPENSSL_STRING_value(expected->controls,
 | |
|                                                         i))) {
 | |
|             t->err = "EVPPKEYCTXCTRL_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|     if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) {
 | |
|         t->err = "DIGESTSIGNUPDATE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) {
 | |
|         t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
 | |
|         t->err = "TEST_FAILURE";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!EVP_DigestSignFinal(mctx, got, &got_len)
 | |
|             || !memory_err_compare(t, "TEST_MAC_ERR",
 | |
|                                    expected->output, expected->output_len,
 | |
|                                    got, got_len)) {
 | |
|         t->err = "TEST_MAC_ERR";
 | |
|         goto err;
 | |
|     }
 | |
|     t->err = NULL;
 | |
|  err:
 | |
|     EVP_MD_CTX_free(mctx);
 | |
|     OPENSSL_free(got);
 | |
|     EVP_PKEY_CTX_free(genctx);
 | |
|     EVP_PKEY_free(key);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int mac_test_run_mac(EVP_TEST *t)
 | |
| {
 | |
|     MAC_DATA *expected = t->data;
 | |
|     EVP_MAC_CTX *ctx = NULL;
 | |
|     unsigned char *got = NULL;
 | |
|     size_t got_len;
 | |
|     int i;
 | |
|     OSSL_PARAM params[21];
 | |
|     size_t params_n = 0;
 | |
|     size_t params_n_allocstart = 0;
 | |
|     const OSSL_PARAM *defined_params =
 | |
|         EVP_MAC_settable_ctx_params(expected->mac);
 | |
| 
 | |
|     if (expected->alg == NULL)
 | |
|         TEST_info("Trying the EVP_MAC %s test", expected->mac_name);
 | |
|     else
 | |
|         TEST_info("Trying the EVP_MAC %s test with %s",
 | |
|                   expected->mac_name, expected->alg);
 | |
| 
 | |
| #ifdef OPENSSL_NO_DES
 | |
|     if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
 | |
|         /* Skip DES */
 | |
|         t->err = NULL;
 | |
|         goto err;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (expected->alg != NULL) {
 | |
|         /*
 | |
|          * The underlying algorithm may be a cipher or a digest.
 | |
|          * We don't know which it is, but we can ask the MAC what it
 | |
|          * should be and bet on that.
 | |
|          */
 | |
|         if (OSSL_PARAM_locate_const(defined_params,
 | |
|                                     OSSL_MAC_PARAM_CIPHER) != NULL) {
 | |
|             params[params_n++] =
 | |
|                 OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER,
 | |
|                                                  expected->alg, 0);
 | |
|         } else if (OSSL_PARAM_locate_const(defined_params,
 | |
|                                            OSSL_MAC_PARAM_DIGEST) != NULL) {
 | |
|             params[params_n++] =
 | |
|                 OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
 | |
|                                                  expected->alg, 0);
 | |
|         } else {
 | |
|             t->err = "MAC_BAD_PARAMS";
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     if (expected->key != NULL)
 | |
|         params[params_n++] =
 | |
|             OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
 | |
|                                               expected->key,
 | |
|                                               expected->key_len);
 | |
|     if (expected->custom != NULL)
 | |
|         params[params_n++] =
 | |
|             OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_CUSTOM,
 | |
|                                               expected->custom,
 | |
|                                               expected->custom_len);
 | |
|     if (expected->salt != NULL)
 | |
|         params[params_n++] =
 | |
|             OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_SALT,
 | |
|                                               expected->salt,
 | |
|                                               expected->salt_len);
 | |
|     if (expected->iv != NULL)
 | |
|         params[params_n++] =
 | |
|             OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV,
 | |
|                                               expected->iv,
 | |
|                                               expected->iv_len);
 | |
| 
 | |
|     /*
 | |
|      * Unknown controls.  They must match parameters that the MAC recognises
 | |
|      */
 | |
|     if (params_n + sk_OPENSSL_STRING_num(expected->controls)
 | |
|         >= OSSL_NELEM(params)) {
 | |
|         t->err = "MAC_TOO_MANY_PARAMETERS";
 | |
|         goto err;
 | |
|     }
 | |
|     params_n_allocstart = params_n;
 | |
|     for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) {
 | |
|         char *tmpkey, *tmpval;
 | |
|         char *value = sk_OPENSSL_STRING_value(expected->controls, i);
 | |
| 
 | |
|         if (!TEST_ptr(tmpkey = OPENSSL_strdup(value))) {
 | |
|             t->err = "MAC_PARAM_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|         tmpval = strchr(tmpkey, ':');
 | |
|         if (tmpval != NULL)
 | |
|             *tmpval++ = '\0';
 | |
| 
 | |
|         if (tmpval == NULL
 | |
|             || !OSSL_PARAM_allocate_from_text(¶ms[params_n],
 | |
|                                               defined_params,
 | |
|                                               tmpkey, tmpval,
 | |
|                                               strlen(tmpval))) {
 | |
|             OPENSSL_free(tmpkey);
 | |
|             t->err = "MAC_PARAM_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|         params_n++;
 | |
| 
 | |
|         OPENSSL_free(tmpkey);
 | |
|     }
 | |
|     params[params_n] = OSSL_PARAM_construct_end();
 | |
| 
 | |
|     if ((ctx = EVP_MAC_CTX_new(expected->mac)) == NULL) {
 | |
|         t->err = "MAC_CREATE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (!EVP_MAC_CTX_set_params(ctx, params)) {
 | |
|         t->err = "MAC_BAD_PARAMS";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!EVP_MAC_init(ctx)) {
 | |
|         t->err = "MAC_INIT_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!EVP_MAC_update(ctx, expected->input, expected->input_len)) {
 | |
|         t->err = "MAC_UPDATE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!EVP_MAC_final(ctx, NULL, &got_len, 0)) {
 | |
|         t->err = "MAC_FINAL_LENGTH_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
 | |
|         t->err = "TEST_FAILURE";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!EVP_MAC_final(ctx, got, &got_len, got_len)
 | |
|         || !memory_err_compare(t, "TEST_MAC_ERR",
 | |
|                                expected->output, expected->output_len,
 | |
|                                got, got_len)) {
 | |
|         t->err = "TEST_MAC_ERR";
 | |
|         goto err;
 | |
|     }
 | |
|     t->err = NULL;
 | |
|  err:
 | |
|     while (params_n-- > params_n_allocstart) {
 | |
|         OPENSSL_free(params[params_n].data);
 | |
|     }
 | |
|     EVP_MAC_CTX_free(ctx);
 | |
|     OPENSSL_free(got);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int mac_test_run(EVP_TEST *t)
 | |
| {
 | |
|     MAC_DATA *expected = t->data;
 | |
| 
 | |
|     if (expected->mac != NULL)
 | |
|         return mac_test_run_mac(t);
 | |
|     return mac_test_run_pkey(t);
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD mac_test_method = {
 | |
|     "MAC",
 | |
|     mac_test_init,
 | |
|     mac_test_cleanup,
 | |
|     mac_test_parse,
 | |
|     mac_test_run
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
| ***  PUBLIC KEY TESTS
 | |
| ***  These are all very similar and share much common code.
 | |
| **/
 | |
| 
 | |
| typedef struct pkey_data_st {
 | |
|     /* Context for this operation */
 | |
|     EVP_PKEY_CTX *ctx;
 | |
|     /* Key operation to perform */
 | |
|     int (*keyop) (EVP_PKEY_CTX *ctx,
 | |
|                   unsigned char *sig, size_t *siglen,
 | |
|                   const unsigned char *tbs, size_t tbslen);
 | |
|     /* Input to MAC */
 | |
|     unsigned char *input;
 | |
|     size_t input_len;
 | |
|     /* Expected output */
 | |
|     unsigned char *output;
 | |
|     size_t output_len;
 | |
| } PKEY_DATA;
 | |
| 
 | |
| /*
 | |
|  * Perform public key operation setup: lookup key, allocated ctx and call
 | |
|  * the appropriate initialisation function
 | |
|  */
 | |
| static int pkey_test_init(EVP_TEST *t, const char *name,
 | |
|                           int use_public,
 | |
|                           int (*keyopinit) (EVP_PKEY_CTX *ctx),
 | |
|                           int (*keyop)(EVP_PKEY_CTX *ctx,
 | |
|                                        unsigned char *sig, size_t *siglen,
 | |
|                                        const unsigned char *tbs,
 | |
|                                        size_t tbslen))
 | |
| {
 | |
|     PKEY_DATA *kdata;
 | |
|     EVP_PKEY *pkey = NULL;
 | |
|     int rv = 0;
 | |
| 
 | |
|     if (use_public)
 | |
|         rv = find_key(&pkey, name, public_keys);
 | |
|     if (rv == 0)
 | |
|         rv = find_key(&pkey, name, private_keys);
 | |
|     if (rv == 0 || pkey == NULL) {
 | |
|         t->skip = 1;
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) {
 | |
|         EVP_PKEY_free(pkey);
 | |
|         return 0;
 | |
|     }
 | |
|     kdata->keyop = keyop;
 | |
|     if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL))) {
 | |
|         EVP_PKEY_free(pkey);
 | |
|         OPENSSL_free(kdata);
 | |
|         return 0;
 | |
|     }
 | |
|     if (keyopinit(kdata->ctx) <= 0)
 | |
|         t->err = "KEYOP_INIT_ERROR";
 | |
|     t->data = kdata;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static void pkey_test_cleanup(EVP_TEST *t)
 | |
| {
 | |
|     PKEY_DATA *kdata = t->data;
 | |
| 
 | |
|     OPENSSL_free(kdata->input);
 | |
|     OPENSSL_free(kdata->output);
 | |
|     EVP_PKEY_CTX_free(kdata->ctx);
 | |
| }
 | |
| 
 | |
| static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx,
 | |
|                           const char *value)
 | |
| {
 | |
|     int rv;
 | |
|     char *p, *tmpval;
 | |
| 
 | |
|     if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
 | |
|         return 0;
 | |
|     p = strchr(tmpval, ':');
 | |
|     if (p != NULL)
 | |
|         *p++ = '\0';
 | |
|     rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
 | |
|     if (rv == -2) {
 | |
|         t->err = "PKEY_CTRL_INVALID";
 | |
|         rv = 1;
 | |
|     } else if (p != NULL && rv <= 0) {
 | |
|         /* If p has an OID and lookup fails assume disabled algorithm */
 | |
|         int nid = OBJ_sn2nid(p);
 | |
| 
 | |
|         if (nid == NID_undef)
 | |
|              nid = OBJ_ln2nid(p);
 | |
|         if (nid != NID_undef
 | |
|                 && EVP_get_digestbynid(nid) == NULL
 | |
|                 && EVP_get_cipherbynid(nid) == NULL) {
 | |
|             t->skip = 1;
 | |
|             rv = 1;
 | |
|         } else {
 | |
|             t->err = "PKEY_CTRL_ERROR";
 | |
|             rv = 1;
 | |
|         }
 | |
|     }
 | |
|     OPENSSL_free(tmpval);
 | |
|     return rv > 0;
 | |
| }
 | |
| 
 | |
| static int pkey_test_parse(EVP_TEST *t,
 | |
|                            const char *keyword, const char *value)
 | |
| {
 | |
|     PKEY_DATA *kdata = t->data;
 | |
|     if (strcmp(keyword, "Input") == 0)
 | |
|         return parse_bin(value, &kdata->input, &kdata->input_len);
 | |
|     if (strcmp(keyword, "Output") == 0)
 | |
|         return parse_bin(value, &kdata->output, &kdata->output_len);
 | |
|     if (strcmp(keyword, "Ctrl") == 0)
 | |
|         return pkey_test_ctrl(t, kdata->ctx, value);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pkey_test_run(EVP_TEST *t)
 | |
| {
 | |
|     PKEY_DATA *expected = t->data;
 | |
|     unsigned char *got = NULL;
 | |
|     size_t got_len;
 | |
|     EVP_PKEY_CTX *copy = NULL;
 | |
| 
 | |
|     if (expected->keyop(expected->ctx, NULL, &got_len,
 | |
|                         expected->input, expected->input_len) <= 0
 | |
|             || !TEST_ptr(got = OPENSSL_malloc(got_len))) {
 | |
|         t->err = "KEYOP_LENGTH_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (expected->keyop(expected->ctx, got, &got_len,
 | |
|                         expected->input, expected->input_len) <= 0) {
 | |
|         t->err = "KEYOP_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!memory_err_compare(t, "KEYOP_MISMATCH",
 | |
|                             expected->output, expected->output_len,
 | |
|                             got, got_len))
 | |
|         goto err;
 | |
| 
 | |
|     t->err = NULL;
 | |
|     OPENSSL_free(got);
 | |
|     got = NULL;
 | |
| 
 | |
|     /* Repeat the test on a copy. */
 | |
|     if (!TEST_ptr(copy = EVP_PKEY_CTX_dup(expected->ctx))) {
 | |
|         t->err = "INTERNAL_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (expected->keyop(copy, NULL, &got_len, expected->input,
 | |
|                         expected->input_len) <= 0
 | |
|             || !TEST_ptr(got = OPENSSL_malloc(got_len))) {
 | |
|         t->err = "KEYOP_LENGTH_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (expected->keyop(copy, got, &got_len, expected->input,
 | |
|                         expected->input_len) <= 0) {
 | |
|         t->err = "KEYOP_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!memory_err_compare(t, "KEYOP_MISMATCH",
 | |
|                             expected->output, expected->output_len,
 | |
|                             got, got_len))
 | |
|         goto err;
 | |
| 
 | |
|  err:
 | |
|     OPENSSL_free(got);
 | |
|     EVP_PKEY_CTX_free(copy);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int sign_test_init(EVP_TEST *t, const char *name)
 | |
| {
 | |
|     return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD psign_test_method = {
 | |
|     "Sign",
 | |
|     sign_test_init,
 | |
|     pkey_test_cleanup,
 | |
|     pkey_test_parse,
 | |
|     pkey_test_run
 | |
| };
 | |
| 
 | |
| static int verify_recover_test_init(EVP_TEST *t, const char *name)
 | |
| {
 | |
|     return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
 | |
|                           EVP_PKEY_verify_recover);
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD pverify_recover_test_method = {
 | |
|     "VerifyRecover",
 | |
|     verify_recover_test_init,
 | |
|     pkey_test_cleanup,
 | |
|     pkey_test_parse,
 | |
|     pkey_test_run
 | |
| };
 | |
| 
 | |
| static int decrypt_test_init(EVP_TEST *t, const char *name)
 | |
| {
 | |
|     return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
 | |
|                           EVP_PKEY_decrypt);
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD pdecrypt_test_method = {
 | |
|     "Decrypt",
 | |
|     decrypt_test_init,
 | |
|     pkey_test_cleanup,
 | |
|     pkey_test_parse,
 | |
|     pkey_test_run
 | |
| };
 | |
| 
 | |
| static int verify_test_init(EVP_TEST *t, const char *name)
 | |
| {
 | |
|     return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
 | |
| }
 | |
| 
 | |
| static int verify_test_run(EVP_TEST *t)
 | |
| {
 | |
|     PKEY_DATA *kdata = t->data;
 | |
| 
 | |
|     if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
 | |
|                         kdata->input, kdata->input_len) <= 0)
 | |
|         t->err = "VERIFY_ERROR";
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD pverify_test_method = {
 | |
|     "Verify",
 | |
|     verify_test_init,
 | |
|     pkey_test_cleanup,
 | |
|     pkey_test_parse,
 | |
|     verify_test_run
 | |
| };
 | |
| 
 | |
| 
 | |
| static int pderive_test_init(EVP_TEST *t, const char *name)
 | |
| {
 | |
|     return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
 | |
| }
 | |
| 
 | |
| static int pderive_test_parse(EVP_TEST *t,
 | |
|                               const char *keyword, const char *value)
 | |
| {
 | |
|     PKEY_DATA *kdata = t->data;
 | |
| 
 | |
|     if (strcmp(keyword, "PeerKey") == 0) {
 | |
|         EVP_PKEY *peer;
 | |
|         if (find_key(&peer, value, public_keys) == 0)
 | |
|             return -1;
 | |
|         if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
 | |
|             return -1;
 | |
|         return 1;
 | |
|     }
 | |
|     if (strcmp(keyword, "SharedSecret") == 0)
 | |
|         return parse_bin(value, &kdata->output, &kdata->output_len);
 | |
|     if (strcmp(keyword, "Ctrl") == 0)
 | |
|         return pkey_test_ctrl(t, kdata->ctx, value);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pderive_test_run(EVP_TEST *t)
 | |
| {
 | |
|     PKEY_DATA *expected = t->data;
 | |
|     unsigned char *got = NULL;
 | |
|     size_t got_len;
 | |
| 
 | |
|     if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) {
 | |
|         t->err = "DERIVE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
 | |
|         t->err = "DERIVE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
 | |
|         t->err = "DERIVE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH",
 | |
|                             expected->output, expected->output_len,
 | |
|                             got, got_len))
 | |
|         goto err;
 | |
| 
 | |
|     t->err = NULL;
 | |
|  err:
 | |
|     OPENSSL_free(got);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD pderive_test_method = {
 | |
|     "Derive",
 | |
|     pderive_test_init,
 | |
|     pkey_test_cleanup,
 | |
|     pderive_test_parse,
 | |
|     pderive_test_run
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
| ***  PBE TESTS
 | |
| **/
 | |
| 
 | |
| typedef enum pbe_type_enum {
 | |
|     PBE_TYPE_INVALID = 0,
 | |
|     PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12
 | |
| } PBE_TYPE;
 | |
| 
 | |
| typedef struct pbe_data_st {
 | |
|     PBE_TYPE pbe_type;
 | |
|         /* scrypt parameters */
 | |
|     uint64_t N, r, p, maxmem;
 | |
|         /* PKCS#12 parameters */
 | |
|     int id, iter;
 | |
|     const EVP_MD *md;
 | |
|         /* password */
 | |
|     unsigned char *pass;
 | |
|     size_t pass_len;
 | |
|         /* salt */
 | |
|     unsigned char *salt;
 | |
|     size_t salt_len;
 | |
|         /* Expected output */
 | |
|     unsigned char *key;
 | |
|     size_t key_len;
 | |
| } PBE_DATA;
 | |
| 
 | |
| #ifndef OPENSSL_NO_SCRYPT
 | |
| /*
 | |
|  * Parse unsigned decimal 64 bit integer value
 | |
|  */
 | |
| static int parse_uint64(const char *value, uint64_t *pr)
 | |
| {
 | |
|     const char *p = value;
 | |
| 
 | |
|     if (!TEST_true(*p)) {
 | |
|         TEST_info("Invalid empty integer value");
 | |
|         return -1;
 | |
|     }
 | |
|     for (*pr = 0; *p; ) {
 | |
|         if (*pr > UINT64_MAX / 10) {
 | |
|             TEST_error("Integer overflow in string %s", value);
 | |
|             return -1;
 | |
|         }
 | |
|         *pr *= 10;
 | |
|         if (!TEST_true(isdigit((unsigned char)*p))) {
 | |
|             TEST_error("Invalid character in string %s", value);
 | |
|             return -1;
 | |
|         }
 | |
|         *pr += *p - '0';
 | |
|         p++;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int scrypt_test_parse(EVP_TEST *t,
 | |
|                              const char *keyword, const char *value)
 | |
| {
 | |
|     PBE_DATA *pdata = t->data;
 | |
| 
 | |
|     if (strcmp(keyword, "N") == 0)
 | |
|         return parse_uint64(value, &pdata->N);
 | |
|     if (strcmp(keyword, "p") == 0)
 | |
|         return parse_uint64(value, &pdata->p);
 | |
|     if (strcmp(keyword, "r") == 0)
 | |
|         return parse_uint64(value, &pdata->r);
 | |
|     if (strcmp(keyword, "maxmem") == 0)
 | |
|         return parse_uint64(value, &pdata->maxmem);
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int pbkdf2_test_parse(EVP_TEST *t,
 | |
|                              const char *keyword, const char *value)
 | |
| {
 | |
|     PBE_DATA *pdata = t->data;
 | |
| 
 | |
|     if (strcmp(keyword, "iter") == 0) {
 | |
|         pdata->iter = atoi(value);
 | |
|         if (pdata->iter <= 0)
 | |
|             return -1;
 | |
|         return 1;
 | |
|     }
 | |
|     if (strcmp(keyword, "MD") == 0) {
 | |
|         pdata->md = EVP_get_digestbyname(value);
 | |
|         if (pdata->md == NULL)
 | |
|             return -1;
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pkcs12_test_parse(EVP_TEST *t,
 | |
|                              const char *keyword, const char *value)
 | |
| {
 | |
|     PBE_DATA *pdata = t->data;
 | |
| 
 | |
|     if (strcmp(keyword, "id") == 0) {
 | |
|         pdata->id = atoi(value);
 | |
|         if (pdata->id <= 0)
 | |
|             return -1;
 | |
|         return 1;
 | |
|     }
 | |
|     return pbkdf2_test_parse(t, keyword, value);
 | |
| }
 | |
| 
 | |
| static int pbe_test_init(EVP_TEST *t, const char *alg)
 | |
| {
 | |
|     PBE_DATA *pdat;
 | |
|     PBE_TYPE pbe_type = PBE_TYPE_INVALID;
 | |
| 
 | |
|     if (strcmp(alg, "scrypt") == 0) {
 | |
| #ifndef OPENSSL_NO_SCRYPT
 | |
|         pbe_type = PBE_TYPE_SCRYPT;
 | |
| #else
 | |
|         t->skip = 1;
 | |
|         return 1;
 | |
| #endif
 | |
|     } else if (strcmp(alg, "pbkdf2") == 0) {
 | |
|         pbe_type = PBE_TYPE_PBKDF2;
 | |
|     } else if (strcmp(alg, "pkcs12") == 0) {
 | |
|         pbe_type = PBE_TYPE_PKCS12;
 | |
|     } else {
 | |
|         TEST_error("Unknown pbe algorithm %s", alg);
 | |
|     }
 | |
|     pdat = OPENSSL_zalloc(sizeof(*pdat));
 | |
|     pdat->pbe_type = pbe_type;
 | |
|     t->data = pdat;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static void pbe_test_cleanup(EVP_TEST *t)
 | |
| {
 | |
|     PBE_DATA *pdat = t->data;
 | |
| 
 | |
|     OPENSSL_free(pdat->pass);
 | |
|     OPENSSL_free(pdat->salt);
 | |
|     OPENSSL_free(pdat->key);
 | |
| }
 | |
| 
 | |
| static int pbe_test_parse(EVP_TEST *t,
 | |
|                           const char *keyword, const char *value)
 | |
| {
 | |
|     PBE_DATA *pdata = t->data;
 | |
| 
 | |
|     if (strcmp(keyword, "Password") == 0)
 | |
|         return parse_bin(value, &pdata->pass, &pdata->pass_len);
 | |
|     if (strcmp(keyword, "Salt") == 0)
 | |
|         return parse_bin(value, &pdata->salt, &pdata->salt_len);
 | |
|     if (strcmp(keyword, "Key") == 0)
 | |
|         return parse_bin(value, &pdata->key, &pdata->key_len);
 | |
|     if (pdata->pbe_type == PBE_TYPE_PBKDF2)
 | |
|         return pbkdf2_test_parse(t, keyword, value);
 | |
|     else if (pdata->pbe_type == PBE_TYPE_PKCS12)
 | |
|         return pkcs12_test_parse(t, keyword, value);
 | |
| #ifndef OPENSSL_NO_SCRYPT
 | |
|     else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
 | |
|         return scrypt_test_parse(t, keyword, value);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pbe_test_run(EVP_TEST *t)
 | |
| {
 | |
|     PBE_DATA *expected = t->data;
 | |
|     unsigned char *key;
 | |
| 
 | |
|     if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) {
 | |
|         t->err = "INTERNAL_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (expected->pbe_type == PBE_TYPE_PBKDF2) {
 | |
|         if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len,
 | |
|                               expected->salt, expected->salt_len,
 | |
|                               expected->iter, expected->md,
 | |
|                               expected->key_len, key) == 0) {
 | |
|             t->err = "PBKDF2_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
| #ifndef OPENSSL_NO_SCRYPT
 | |
|     } else if (expected->pbe_type == PBE_TYPE_SCRYPT) {
 | |
|         if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len,
 | |
|                            expected->salt, expected->salt_len, expected->N,
 | |
|                            expected->r, expected->p, expected->maxmem,
 | |
|                            key, expected->key_len) == 0) {
 | |
|             t->err = "SCRYPT_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
| #endif
 | |
|     } else if (expected->pbe_type == PBE_TYPE_PKCS12) {
 | |
|         if (PKCS12_key_gen_uni(expected->pass, expected->pass_len,
 | |
|                                expected->salt, expected->salt_len,
 | |
|                                expected->id, expected->iter, expected->key_len,
 | |
|                                key, expected->md) == 0) {
 | |
|             t->err = "PKCS12_ERROR";
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len,
 | |
|                             key, expected->key_len))
 | |
|         goto err;
 | |
| 
 | |
|     t->err = NULL;
 | |
| err:
 | |
|     OPENSSL_free(key);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD pbe_test_method = {
 | |
|     "PBE",
 | |
|     pbe_test_init,
 | |
|     pbe_test_cleanup,
 | |
|     pbe_test_parse,
 | |
|     pbe_test_run
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
| ***  BASE64 TESTS
 | |
| **/
 | |
| 
 | |
| typedef enum {
 | |
|     BASE64_CANONICAL_ENCODING = 0,
 | |
|     BASE64_VALID_ENCODING = 1,
 | |
|     BASE64_INVALID_ENCODING = 2
 | |
| } base64_encoding_type;
 | |
| 
 | |
| typedef struct encode_data_st {
 | |
|     /* Input to encoding */
 | |
|     unsigned char *input;
 | |
|     size_t input_len;
 | |
|     /* Expected output */
 | |
|     unsigned char *output;
 | |
|     size_t output_len;
 | |
|     base64_encoding_type encoding;
 | |
| } ENCODE_DATA;
 | |
| 
 | |
| static int encode_test_init(EVP_TEST *t, const char *encoding)
 | |
| {
 | |
|     ENCODE_DATA *edata;
 | |
| 
 | |
|     if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata))))
 | |
|         return 0;
 | |
|     if (strcmp(encoding, "canonical") == 0) {
 | |
|         edata->encoding = BASE64_CANONICAL_ENCODING;
 | |
|     } else if (strcmp(encoding, "valid") == 0) {
 | |
|         edata->encoding = BASE64_VALID_ENCODING;
 | |
|     } else if (strcmp(encoding, "invalid") == 0) {
 | |
|         edata->encoding = BASE64_INVALID_ENCODING;
 | |
|         if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR")))
 | |
|             goto err;
 | |
|     } else {
 | |
|         TEST_error("Bad encoding: %s."
 | |
|                    " Should be one of {canonical, valid, invalid}",
 | |
|                    encoding);
 | |
|         goto err;
 | |
|     }
 | |
|     t->data = edata;
 | |
|     return 1;
 | |
| err:
 | |
|     OPENSSL_free(edata);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void encode_test_cleanup(EVP_TEST *t)
 | |
| {
 | |
|     ENCODE_DATA *edata = t->data;
 | |
| 
 | |
|     OPENSSL_free(edata->input);
 | |
|     OPENSSL_free(edata->output);
 | |
|     memset(edata, 0, sizeof(*edata));
 | |
| }
 | |
| 
 | |
| static int encode_test_parse(EVP_TEST *t,
 | |
|                              const char *keyword, const char *value)
 | |
| {
 | |
|     ENCODE_DATA *edata = t->data;
 | |
| 
 | |
|     if (strcmp(keyword, "Input") == 0)
 | |
|         return parse_bin(value, &edata->input, &edata->input_len);
 | |
|     if (strcmp(keyword, "Output") == 0)
 | |
|         return parse_bin(value, &edata->output, &edata->output_len);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int encode_test_run(EVP_TEST *t)
 | |
| {
 | |
|     ENCODE_DATA *expected = t->data;
 | |
|     unsigned char *encode_out = NULL, *decode_out = NULL;
 | |
|     int output_len, chunk_len;
 | |
|     EVP_ENCODE_CTX *decode_ctx = NULL, *encode_ctx = NULL;
 | |
| 
 | |
|     if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) {
 | |
|         t->err = "INTERNAL_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (expected->encoding == BASE64_CANONICAL_ENCODING) {
 | |
| 
 | |
|         if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new())
 | |
|                 || !TEST_ptr(encode_out =
 | |
|                         OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len))))
 | |
|             goto err;
 | |
| 
 | |
|         EVP_EncodeInit(encode_ctx);
 | |
|         if (!TEST_true(EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
 | |
|                                         expected->input, expected->input_len)))
 | |
|             goto err;
 | |
| 
 | |
|         output_len = chunk_len;
 | |
| 
 | |
|         EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
 | |
|         output_len += chunk_len;
 | |
| 
 | |
|         if (!memory_err_compare(t, "BAD_ENCODING",
 | |
|                                 expected->output, expected->output_len,
 | |
|                                 encode_out, output_len))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (!TEST_ptr(decode_out =
 | |
|                 OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len))))
 | |
|         goto err;
 | |
| 
 | |
|     EVP_DecodeInit(decode_ctx);
 | |
|     if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output,
 | |
|                          expected->output_len) < 0) {
 | |
|         t->err = "DECODE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     output_len = chunk_len;
 | |
| 
 | |
|     if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
 | |
|         t->err = "DECODE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     output_len += chunk_len;
 | |
| 
 | |
|     if (expected->encoding != BASE64_INVALID_ENCODING
 | |
|             && !memory_err_compare(t, "BAD_DECODING",
 | |
|                                    expected->input, expected->input_len,
 | |
|                                    decode_out, output_len)) {
 | |
|         t->err = "BAD_DECODING";
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     t->err = NULL;
 | |
|  err:
 | |
|     OPENSSL_free(encode_out);
 | |
|     OPENSSL_free(decode_out);
 | |
|     EVP_ENCODE_CTX_free(decode_ctx);
 | |
|     EVP_ENCODE_CTX_free(encode_ctx);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD encode_test_method = {
 | |
|     "Encoding",
 | |
|     encode_test_init,
 | |
|     encode_test_cleanup,
 | |
|     encode_test_parse,
 | |
|     encode_test_run,
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
| ***  KDF TESTS
 | |
| **/
 | |
| 
 | |
| typedef struct kdf_data_st {
 | |
|     /* Context for this operation */
 | |
|     EVP_KDF_CTX *ctx;
 | |
|     /* Expected output */
 | |
|     unsigned char *output;
 | |
|     size_t output_len;
 | |
|     OSSL_PARAM params[20];
 | |
|     OSSL_PARAM *p;
 | |
| } KDF_DATA;
 | |
| 
 | |
| /*
 | |
|  * Perform public key operation setup: lookup key, allocated ctx and call
 | |
|  * the appropriate initialisation function
 | |
|  */
 | |
| static int kdf_test_init(EVP_TEST *t, const char *name)
 | |
| {
 | |
|     KDF_DATA *kdata;
 | |
|     EVP_KDF *kdf;
 | |
| 
 | |
| #ifdef OPENSSL_NO_SCRYPT
 | |
|     /* TODO(3.0) Replace with "scrypt" once aliases are supported */
 | |
|     if (strcmp(name, "id-scrypt") == 0) {
 | |
|         t->skip = 1;
 | |
|         return 1;
 | |
|     }
 | |
| #endif /* OPENSSL_NO_SCRYPT */
 | |
| 
 | |
| #ifdef OPENSSL_NO_CMS
 | |
|     if (strcmp(name, "X942KDF") == 0) {
 | |
|         t->skip = 1;
 | |
|         return 1;
 | |
|     }
 | |
| #endif /* OPENSSL_NO_CMS */
 | |
| 
 | |
|     if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
 | |
|         return 0;
 | |
|     kdata->p = kdata->params;
 | |
|     *kdata->p = OSSL_PARAM_construct_end();
 | |
| 
 | |
|     kdf = EVP_KDF_fetch(NULL, name, NULL);
 | |
|     if (kdf == NULL) {
 | |
|         OPENSSL_free(kdata);
 | |
|         return 0;
 | |
|     }
 | |
|     kdata->ctx = EVP_KDF_CTX_new(kdf);
 | |
|     EVP_KDF_free(kdf);
 | |
|     if (kdata->ctx == NULL) {
 | |
|         OPENSSL_free(kdata);
 | |
|         return 0;
 | |
|     }
 | |
|     t->data = kdata;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static void kdf_test_cleanup(EVP_TEST *t)
 | |
| {
 | |
|     KDF_DATA *kdata = t->data;
 | |
|     OSSL_PARAM *p;
 | |
| 
 | |
|     for (p = kdata->params; p->key != NULL; p++)
 | |
|         OPENSSL_free(p->data);
 | |
|     OPENSSL_free(kdata->output);
 | |
|     EVP_KDF_CTX_free(kdata->ctx);
 | |
| }
 | |
| 
 | |
| static int kdf_test_ctrl(EVP_TEST *t, EVP_KDF_CTX *kctx,
 | |
|                          const char *value)
 | |
| {
 | |
|     KDF_DATA *kdata = t->data;
 | |
|     int rv;
 | |
|     char *p, *name;
 | |
|     const OSSL_PARAM *defs = EVP_KDF_settable_ctx_params(EVP_KDF_CTX_kdf(kctx));
 | |
| 
 | |
|     if (!TEST_ptr(name = OPENSSL_strdup(value)))
 | |
|         return 0;
 | |
|     p = strchr(name, ':');
 | |
|     if (p != NULL)
 | |
|         *p++ = '\0';
 | |
| 
 | |
|     rv = OSSL_PARAM_allocate_from_text(kdata->p, defs, name, p,
 | |
|                                        p != NULL ? strlen(p) : 0);
 | |
|     *++kdata->p = OSSL_PARAM_construct_end();
 | |
|     if (!rv) {
 | |
|         t->err = "KDF_PARAM_ERROR";
 | |
|         OPENSSL_free(name);
 | |
|         return 0;
 | |
|     }
 | |
|     if (p != NULL && strcmp(name, "digest") == 0) {
 | |
|         /* If p has an OID and lookup fails assume disabled algorithm */
 | |
|         int nid = OBJ_sn2nid(p);
 | |
| 
 | |
|         if (nid == NID_undef)
 | |
|              nid = OBJ_ln2nid(p);
 | |
|         if (nid != NID_undef && EVP_get_digestbynid(nid) == NULL)
 | |
|             t->skip = 1;
 | |
|     }
 | |
|     if (p != NULL && strcmp(name, "cipher") == 0) {
 | |
|         /* If p has an OID and lookup fails assume disabled algorithm */
 | |
|         int nid = OBJ_sn2nid(p);
 | |
| 
 | |
|         if (nid == NID_undef)
 | |
|              nid = OBJ_ln2nid(p);
 | |
|         if (nid != NID_undef && EVP_get_cipherbynid(nid) == NULL)
 | |
|             t->skip = 1;
 | |
|     }
 | |
|     OPENSSL_free(name);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int kdf_test_parse(EVP_TEST *t,
 | |
|                           const char *keyword, const char *value)
 | |
| {
 | |
|     KDF_DATA *kdata = t->data;
 | |
| 
 | |
|     if (strcmp(keyword, "Output") == 0)
 | |
|         return parse_bin(value, &kdata->output, &kdata->output_len);
 | |
|     if (strncmp(keyword, "Ctrl", 4) == 0)
 | |
|         return kdf_test_ctrl(t, kdata->ctx, value);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kdf_test_run(EVP_TEST *t)
 | |
| {
 | |
|     KDF_DATA *expected = t->data;
 | |
|     unsigned char *got = NULL;
 | |
|     size_t got_len = expected->output_len;
 | |
| 
 | |
|     if (!EVP_KDF_CTX_set_params(expected->ctx, expected->params)) {
 | |
|         t->err = "KDF_CTRL_ERROR";
 | |
|         return 1;
 | |
|     }
 | |
|     if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
 | |
|         t->err = "INTERNAL_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (EVP_KDF_derive(expected->ctx, got, got_len) <= 0) {
 | |
|         t->err = "KDF_DERIVE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!memory_err_compare(t, "KDF_MISMATCH",
 | |
|                             expected->output, expected->output_len,
 | |
|                             got, got_len))
 | |
|         goto err;
 | |
| 
 | |
|     t->err = NULL;
 | |
| 
 | |
|  err:
 | |
|     OPENSSL_free(got);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD kdf_test_method = {
 | |
|     "KDF",
 | |
|     kdf_test_init,
 | |
|     kdf_test_cleanup,
 | |
|     kdf_test_parse,
 | |
|     kdf_test_run
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
| ***  PKEY KDF TESTS
 | |
| **/
 | |
| 
 | |
| typedef struct pkey_kdf_data_st {
 | |
|     /* Context for this operation */
 | |
|     EVP_PKEY_CTX *ctx;
 | |
|     /* Expected output */
 | |
|     unsigned char *output;
 | |
|     size_t output_len;
 | |
| } PKEY_KDF_DATA;
 | |
| 
 | |
| /*
 | |
|  * Perform public key operation setup: lookup key, allocated ctx and call
 | |
|  * the appropriate initialisation function
 | |
|  */
 | |
| static int pkey_kdf_test_init(EVP_TEST *t, const char *name)
 | |
| {
 | |
|     PKEY_KDF_DATA *kdata;
 | |
|     int kdf_nid = OBJ_sn2nid(name);
 | |
| 
 | |
| #ifdef OPENSSL_NO_SCRYPT
 | |
|     if (strcmp(name, "scrypt") == 0) {
 | |
|         t->skip = 1;
 | |
|         return 1;
 | |
|     }
 | |
| #endif /* OPENSSL_NO_SCRYPT */
 | |
| 
 | |
| #ifdef OPENSSL_NO_CMS
 | |
|     if (strcmp(name, "X942KDF") == 0) {
 | |
|         t->skip = 1;
 | |
|         return 1;
 | |
|     }
 | |
| #endif /* OPENSSL_NO_CMS */
 | |
| 
 | |
|     if (kdf_nid == NID_undef)
 | |
|         kdf_nid = OBJ_ln2nid(name);
 | |
| 
 | |
|     if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
 | |
|         return 0;
 | |
|     kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL);
 | |
|     if (kdata->ctx == NULL) {
 | |
|         OPENSSL_free(kdata);
 | |
|         return 0;
 | |
|     }
 | |
|     if (EVP_PKEY_derive_init(kdata->ctx) <= 0) {
 | |
|         EVP_PKEY_CTX_free(kdata->ctx);
 | |
|         OPENSSL_free(kdata);
 | |
|         return 0;
 | |
|     }
 | |
|     t->data = kdata;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static void pkey_kdf_test_cleanup(EVP_TEST *t)
 | |
| {
 | |
|     PKEY_KDF_DATA *kdata = t->data;
 | |
| 
 | |
|     OPENSSL_free(kdata->output);
 | |
|     EVP_PKEY_CTX_free(kdata->ctx);
 | |
| }
 | |
| 
 | |
| static int pkey_kdf_test_parse(EVP_TEST *t,
 | |
|                                const char *keyword, const char *value)
 | |
| {
 | |
|     PKEY_KDF_DATA *kdata = t->data;
 | |
| 
 | |
|     if (strcmp(keyword, "Output") == 0)
 | |
|         return parse_bin(value, &kdata->output, &kdata->output_len);
 | |
|     if (strncmp(keyword, "Ctrl", 4) == 0)
 | |
|         return pkey_test_ctrl(t, kdata->ctx, value);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pkey_kdf_test_run(EVP_TEST *t)
 | |
| {
 | |
|     PKEY_KDF_DATA *expected = t->data;
 | |
|     unsigned char *got = NULL;
 | |
|     size_t got_len = expected->output_len;
 | |
| 
 | |
|     if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
 | |
|         t->err = "INTERNAL_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
 | |
|         t->err = "KDF_DERIVE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
 | |
|         t->err = "KDF_MISMATCH";
 | |
|         goto err;
 | |
|     }
 | |
|     t->err = NULL;
 | |
| 
 | |
|  err:
 | |
|     OPENSSL_free(got);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD pkey_kdf_test_method = {
 | |
|     "PKEYKDF",
 | |
|     pkey_kdf_test_init,
 | |
|     pkey_kdf_test_cleanup,
 | |
|     pkey_kdf_test_parse,
 | |
|     pkey_kdf_test_run
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
| ***  KEYPAIR TESTS
 | |
| **/
 | |
| 
 | |
| typedef struct keypair_test_data_st {
 | |
|     EVP_PKEY *privk;
 | |
|     EVP_PKEY *pubk;
 | |
| } KEYPAIR_TEST_DATA;
 | |
| 
 | |
| static int keypair_test_init(EVP_TEST *t, const char *pair)
 | |
| {
 | |
|     KEYPAIR_TEST_DATA *data;
 | |
|     int rv = 0;
 | |
|     EVP_PKEY *pk = NULL, *pubk = NULL;
 | |
|     char *pub, *priv = NULL;
 | |
| 
 | |
|     /* Split private and public names. */
 | |
|     if (!TEST_ptr(priv = OPENSSL_strdup(pair))
 | |
|             || !TEST_ptr(pub = strchr(priv, ':'))) {
 | |
|         t->err = "PARSING_ERROR";
 | |
|         goto end;
 | |
|     }
 | |
|     *pub++ = '\0';
 | |
| 
 | |
|     if (!TEST_true(find_key(&pk, priv, private_keys))) {
 | |
|         TEST_info("Can't find private key: %s", priv);
 | |
|         t->err = "MISSING_PRIVATE_KEY";
 | |
|         goto end;
 | |
|     }
 | |
|     if (!TEST_true(find_key(&pubk, pub, public_keys))) {
 | |
|         TEST_info("Can't find public key: %s", pub);
 | |
|         t->err = "MISSING_PUBLIC_KEY";
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     if (pk == NULL && pubk == NULL) {
 | |
|         /* Both keys are listed but unsupported: skip this test */
 | |
|         t->skip = 1;
 | |
|         rv = 1;
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
 | |
|         goto end;
 | |
|     data->privk = pk;
 | |
|     data->pubk = pubk;
 | |
|     t->data = data;
 | |
|     rv = 1;
 | |
|     t->err = NULL;
 | |
| 
 | |
| end:
 | |
|     OPENSSL_free(priv);
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| static void keypair_test_cleanup(EVP_TEST *t)
 | |
| {
 | |
|     OPENSSL_free(t->data);
 | |
|     t->data = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For tests that do not accept any custom keywords.
 | |
|  */
 | |
| static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int keypair_test_run(EVP_TEST *t)
 | |
| {
 | |
|     int rv = 0;
 | |
|     const KEYPAIR_TEST_DATA *pair = t->data;
 | |
| 
 | |
|     if (pair->privk == NULL || pair->pubk == NULL) {
 | |
|         /*
 | |
|          * this can only happen if only one of the keys is not set
 | |
|          * which means that one of them was unsupported while the
 | |
|          * other isn't: hence a key type mismatch.
 | |
|          */
 | |
|         t->err = "KEYPAIR_TYPE_MISMATCH";
 | |
|         rv = 1;
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     if ((rv = EVP_PKEY_cmp(pair->privk, pair->pubk)) != 1 ) {
 | |
|         if ( 0 == rv ) {
 | |
|             t->err = "KEYPAIR_MISMATCH";
 | |
|         } else if ( -1 == rv ) {
 | |
|             t->err = "KEYPAIR_TYPE_MISMATCH";
 | |
|         } else if ( -2 == rv ) {
 | |
|             t->err = "UNSUPPORTED_KEY_COMPARISON";
 | |
|         } else {
 | |
|             TEST_error("Unexpected error in key comparison");
 | |
|             rv = 0;
 | |
|             goto end;
 | |
|         }
 | |
|         rv = 1;
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     rv = 1;
 | |
|     t->err = NULL;
 | |
| 
 | |
| end:
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD keypair_test_method = {
 | |
|     "PrivPubKeyPair",
 | |
|     keypair_test_init,
 | |
|     keypair_test_cleanup,
 | |
|     void_test_parse,
 | |
|     keypair_test_run
 | |
| };
 | |
| 
 | |
| /**
 | |
| ***  KEYGEN TEST
 | |
| **/
 | |
| 
 | |
| typedef struct keygen_test_data_st {
 | |
|     EVP_PKEY_CTX *genctx; /* Keygen context to use */
 | |
|     char *keyname; /* Key name to store key or NULL */
 | |
| } KEYGEN_TEST_DATA;
 | |
| 
 | |
| static int keygen_test_init(EVP_TEST *t, const char *alg)
 | |
| {
 | |
|     KEYGEN_TEST_DATA *data;
 | |
|     EVP_PKEY_CTX *genctx;
 | |
|     int nid = OBJ_sn2nid(alg);
 | |
| 
 | |
|     if (nid == NID_undef) {
 | |
|         nid = OBJ_ln2nid(alg);
 | |
|         if (nid == NID_undef)
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(nid, NULL))) {
 | |
|         /* assume algorithm disabled */
 | |
|         t->skip = 1;
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (EVP_PKEY_keygen_init(genctx) <= 0) {
 | |
|         t->err = "KEYGEN_INIT_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
 | |
|         goto err;
 | |
|     data->genctx = genctx;
 | |
|     data->keyname = NULL;
 | |
|     t->data = data;
 | |
|     t->err = NULL;
 | |
|     return 1;
 | |
| 
 | |
| err:
 | |
|     EVP_PKEY_CTX_free(genctx);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void keygen_test_cleanup(EVP_TEST *t)
 | |
| {
 | |
|     KEYGEN_TEST_DATA *keygen = t->data;
 | |
| 
 | |
|     EVP_PKEY_CTX_free(keygen->genctx);
 | |
|     OPENSSL_free(keygen->keyname);
 | |
|     OPENSSL_free(t->data);
 | |
|     t->data = NULL;
 | |
| }
 | |
| 
 | |
| static int keygen_test_parse(EVP_TEST *t,
 | |
|                              const char *keyword, const char *value)
 | |
| {
 | |
|     KEYGEN_TEST_DATA *keygen = t->data;
 | |
| 
 | |
|     if (strcmp(keyword, "KeyName") == 0)
 | |
|         return TEST_ptr(keygen->keyname = OPENSSL_strdup(value));
 | |
|     if (strcmp(keyword, "Ctrl") == 0)
 | |
|         return pkey_test_ctrl(t, keygen->genctx, value);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int keygen_test_run(EVP_TEST *t)
 | |
| {
 | |
|     KEYGEN_TEST_DATA *keygen = t->data;
 | |
|     EVP_PKEY *pkey = NULL;
 | |
| 
 | |
|     t->err = NULL;
 | |
|     if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) {
 | |
|         t->err = "KEYGEN_GENERATE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (keygen->keyname != NULL) {
 | |
|         KEY_LIST *key;
 | |
| 
 | |
|         if (find_key(NULL, keygen->keyname, private_keys)) {
 | |
|             TEST_info("Duplicate key %s", keygen->keyname);
 | |
|             goto err;
 | |
|         }
 | |
| 
 | |
|         if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
 | |
|             goto err;
 | |
|         key->name = keygen->keyname;
 | |
|         keygen->keyname = NULL;
 | |
|         key->key = pkey;
 | |
|         key->next = private_keys;
 | |
|         private_keys = key;
 | |
|     } else {
 | |
|         EVP_PKEY_free(pkey);
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| 
 | |
| err:
 | |
|     EVP_PKEY_free(pkey);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD keygen_test_method = {
 | |
|     "KeyGen",
 | |
|     keygen_test_init,
 | |
|     keygen_test_cleanup,
 | |
|     keygen_test_parse,
 | |
|     keygen_test_run,
 | |
| };
 | |
| 
 | |
| /**
 | |
| ***  DIGEST SIGN+VERIFY TESTS
 | |
| **/
 | |
| 
 | |
| typedef struct {
 | |
|     int is_verify; /* Set to 1 if verifying */
 | |
|     int is_oneshot; /* Set to 1 for one shot operation */
 | |
|     const EVP_MD *md; /* Digest to use */
 | |
|     EVP_MD_CTX *ctx; /* Digest context */
 | |
|     EVP_PKEY_CTX *pctx;
 | |
|     STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */
 | |
|     unsigned char *osin; /* Input data if one shot */
 | |
|     size_t osin_len; /* Input length data if one shot */
 | |
|     unsigned char *output; /* Expected output */
 | |
|     size_t output_len; /* Expected output length */
 | |
| } DIGESTSIGN_DATA;
 | |
| 
 | |
| static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify,
 | |
|                                   int is_oneshot)
 | |
| {
 | |
|     const EVP_MD *md = NULL;
 | |
|     DIGESTSIGN_DATA *mdat;
 | |
| 
 | |
|     if (strcmp(alg, "NULL") != 0) {
 | |
|         if ((md = EVP_get_digestbyname(alg)) == NULL) {
 | |
|             /* If alg has an OID assume disabled algorithm */
 | |
|             if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
 | |
|                 t->skip = 1;
 | |
|                 return 1;
 | |
|             }
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
 | |
|         return 0;
 | |
|     mdat->md = md;
 | |
|     if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) {
 | |
|         OPENSSL_free(mdat);
 | |
|         return 0;
 | |
|     }
 | |
|     mdat->is_verify = is_verify;
 | |
|     mdat->is_oneshot = is_oneshot;
 | |
|     t->data = mdat;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int digestsign_test_init(EVP_TEST *t, const char *alg)
 | |
| {
 | |
|     return digestsigver_test_init(t, alg, 0, 0);
 | |
| }
 | |
| 
 | |
| static void digestsigver_test_cleanup(EVP_TEST *t)
 | |
| {
 | |
|     DIGESTSIGN_DATA *mdata = t->data;
 | |
| 
 | |
|     EVP_MD_CTX_free(mdata->ctx);
 | |
|     sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free);
 | |
|     OPENSSL_free(mdata->osin);
 | |
|     OPENSSL_free(mdata->output);
 | |
|     OPENSSL_free(mdata);
 | |
|     t->data = NULL;
 | |
| }
 | |
| 
 | |
| static int digestsigver_test_parse(EVP_TEST *t,
 | |
|                                    const char *keyword, const char *value)
 | |
| {
 | |
|     DIGESTSIGN_DATA *mdata = t->data;
 | |
| 
 | |
|     if (strcmp(keyword, "Key") == 0) {
 | |
|         EVP_PKEY *pkey = NULL;
 | |
|         int rv = 0;
 | |
| 
 | |
|         if (mdata->is_verify)
 | |
|             rv = find_key(&pkey, value, public_keys);
 | |
|         if (rv == 0)
 | |
|             rv = find_key(&pkey, value, private_keys);
 | |
|         if (rv == 0 || pkey == NULL) {
 | |
|             t->skip = 1;
 | |
|             return 1;
 | |
|         }
 | |
|         if (mdata->is_verify) {
 | |
|             if (!EVP_DigestVerifyInit(mdata->ctx, &mdata->pctx, mdata->md,
 | |
|                                       NULL, pkey))
 | |
|                 t->err = "DIGESTVERIFYINIT_ERROR";
 | |
|             return 1;
 | |
|         }
 | |
|         if (!EVP_DigestSignInit(mdata->ctx, &mdata->pctx, mdata->md, NULL,
 | |
|                                 pkey))
 | |
|             t->err = "DIGESTSIGNINIT_ERROR";
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (strcmp(keyword, "Input") == 0) {
 | |
|         if (mdata->is_oneshot)
 | |
|             return parse_bin(value, &mdata->osin, &mdata->osin_len);
 | |
|         return evp_test_buffer_append(value, &mdata->input);
 | |
|     }
 | |
|     if (strcmp(keyword, "Output") == 0)
 | |
|         return parse_bin(value, &mdata->output, &mdata->output_len);
 | |
| 
 | |
|     if (!mdata->is_oneshot) {
 | |
|         if (strcmp(keyword, "Count") == 0)
 | |
|             return evp_test_buffer_set_count(value, mdata->input);
 | |
|         if (strcmp(keyword, "Ncopy") == 0)
 | |
|             return evp_test_buffer_ncopy(value, mdata->input);
 | |
|     }
 | |
|     if (strcmp(keyword, "Ctrl") == 0) {
 | |
|         if (mdata->pctx == NULL)
 | |
|             return -1;
 | |
|         return pkey_test_ctrl(t, mdata->pctx, value);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int digestsign_update_fn(void *ctx, const unsigned char *buf,
 | |
|                                 size_t buflen)
 | |
| {
 | |
|     return EVP_DigestSignUpdate(ctx, buf, buflen);
 | |
| }
 | |
| 
 | |
| static int digestsign_test_run(EVP_TEST *t)
 | |
| {
 | |
|     DIGESTSIGN_DATA *expected = t->data;
 | |
|     unsigned char *got = NULL;
 | |
|     size_t got_len;
 | |
| 
 | |
|     if (!evp_test_buffer_do(expected->input, digestsign_update_fn,
 | |
|                             expected->ctx)) {
 | |
|         t->err = "DIGESTUPDATE_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) {
 | |
|         t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
 | |
|         t->err = "MALLOC_FAILURE";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) {
 | |
|         t->err = "DIGESTSIGNFINAL_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
 | |
|                             expected->output, expected->output_len,
 | |
|                             got, got_len))
 | |
|         goto err;
 | |
| 
 | |
|     t->err = NULL;
 | |
|  err:
 | |
|     OPENSSL_free(got);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD digestsign_test_method = {
 | |
|     "DigestSign",
 | |
|     digestsign_test_init,
 | |
|     digestsigver_test_cleanup,
 | |
|     digestsigver_test_parse,
 | |
|     digestsign_test_run
 | |
| };
 | |
| 
 | |
| static int digestverify_test_init(EVP_TEST *t, const char *alg)
 | |
| {
 | |
|     return digestsigver_test_init(t, alg, 1, 0);
 | |
| }
 | |
| 
 | |
| static int digestverify_update_fn(void *ctx, const unsigned char *buf,
 | |
|                                   size_t buflen)
 | |
| {
 | |
|     return EVP_DigestVerifyUpdate(ctx, buf, buflen);
 | |
| }
 | |
| 
 | |
| static int digestverify_test_run(EVP_TEST *t)
 | |
| {
 | |
|     DIGESTSIGN_DATA *mdata = t->data;
 | |
| 
 | |
|     if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) {
 | |
|         t->err = "DIGESTUPDATE_ERROR";
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output,
 | |
|                               mdata->output_len) <= 0)
 | |
|         t->err = "VERIFY_ERROR";
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD digestverify_test_method = {
 | |
|     "DigestVerify",
 | |
|     digestverify_test_init,
 | |
|     digestsigver_test_cleanup,
 | |
|     digestsigver_test_parse,
 | |
|     digestverify_test_run
 | |
| };
 | |
| 
 | |
| static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg)
 | |
| {
 | |
|     return digestsigver_test_init(t, alg, 0, 1);
 | |
| }
 | |
| 
 | |
| static int oneshot_digestsign_test_run(EVP_TEST *t)
 | |
| {
 | |
|     DIGESTSIGN_DATA *expected = t->data;
 | |
|     unsigned char *got = NULL;
 | |
|     size_t got_len;
 | |
| 
 | |
|     if (!EVP_DigestSign(expected->ctx, NULL, &got_len,
 | |
|                         expected->osin, expected->osin_len)) {
 | |
|         t->err = "DIGESTSIGN_LENGTH_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
 | |
|         t->err = "MALLOC_FAILURE";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!EVP_DigestSign(expected->ctx, got, &got_len,
 | |
|                         expected->osin, expected->osin_len)) {
 | |
|         t->err = "DIGESTSIGN_ERROR";
 | |
|         goto err;
 | |
|     }
 | |
|     if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
 | |
|                             expected->output, expected->output_len,
 | |
|                             got, got_len))
 | |
|         goto err;
 | |
| 
 | |
|     t->err = NULL;
 | |
|  err:
 | |
|     OPENSSL_free(got);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD oneshot_digestsign_test_method = {
 | |
|     "OneShotDigestSign",
 | |
|     oneshot_digestsign_test_init,
 | |
|     digestsigver_test_cleanup,
 | |
|     digestsigver_test_parse,
 | |
|     oneshot_digestsign_test_run
 | |
| };
 | |
| 
 | |
| static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg)
 | |
| {
 | |
|     return digestsigver_test_init(t, alg, 1, 1);
 | |
| }
 | |
| 
 | |
| static int oneshot_digestverify_test_run(EVP_TEST *t)
 | |
| {
 | |
|     DIGESTSIGN_DATA *mdata = t->data;
 | |
| 
 | |
|     if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len,
 | |
|                          mdata->osin, mdata->osin_len) <= 0)
 | |
|         t->err = "VERIFY_ERROR";
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const EVP_TEST_METHOD oneshot_digestverify_test_method = {
 | |
|     "OneShotDigestVerify",
 | |
|     oneshot_digestverify_test_init,
 | |
|     digestsigver_test_cleanup,
 | |
|     digestsigver_test_parse,
 | |
|     oneshot_digestverify_test_run
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
| ***  PARSING AND DISPATCH
 | |
| **/
 | |
| 
 | |
| static const EVP_TEST_METHOD *evp_test_list[] = {
 | |
|     &cipher_test_method,
 | |
|     &digest_test_method,
 | |
|     &digestsign_test_method,
 | |
|     &digestverify_test_method,
 | |
|     &encode_test_method,
 | |
|     &kdf_test_method,
 | |
|     &pkey_kdf_test_method,
 | |
|     &keypair_test_method,
 | |
|     &keygen_test_method,
 | |
|     &mac_test_method,
 | |
|     &oneshot_digestsign_test_method,
 | |
|     &oneshot_digestverify_test_method,
 | |
|     &pbe_test_method,
 | |
|     &pdecrypt_test_method,
 | |
|     &pderive_test_method,
 | |
|     &psign_test_method,
 | |
|     &pverify_recover_test_method,
 | |
|     &pverify_test_method,
 | |
|     NULL
 | |
| };
 | |
| 
 | |
| static const EVP_TEST_METHOD *find_test(const char *name)
 | |
| {
 | |
|     const EVP_TEST_METHOD **tt;
 | |
| 
 | |
|     for (tt = evp_test_list; *tt; tt++) {
 | |
|         if (strcmp(name, (*tt)->name) == 0)
 | |
|             return *tt;
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static void clear_test(EVP_TEST *t)
 | |
| {
 | |
|     test_clearstanza(&t->s);
 | |
|     ERR_clear_error();
 | |
|     if (t->data != NULL) {
 | |
|         if (t->meth != NULL)
 | |
|             t->meth->cleanup(t);
 | |
|         OPENSSL_free(t->data);
 | |
|         t->data = NULL;
 | |
|     }
 | |
|     OPENSSL_free(t->expected_err);
 | |
|     t->expected_err = NULL;
 | |
|     OPENSSL_free(t->reason);
 | |
|     t->reason = NULL;
 | |
| 
 | |
|     /* Text literal. */
 | |
|     t->err = NULL;
 | |
|     t->skip = 0;
 | |
|     t->meth = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for errors in the test structure; return 1 if okay, else 0.
 | |
|  */
 | |
| static int check_test_error(EVP_TEST *t)
 | |
| {
 | |
|     unsigned long err;
 | |
|     const char *reason;
 | |
| 
 | |
|     if (t->err == NULL && t->expected_err == NULL)
 | |
|         return 1;
 | |
|     if (t->err != NULL && t->expected_err == NULL) {
 | |
|         if (t->aux_err != NULL) {
 | |
|             TEST_info("%s:%d: Source of above error (%s); unexpected error %s",
 | |
|                       t->s.test_file, t->s.start, t->aux_err, t->err);
 | |
|         } else {
 | |
|             TEST_info("%s:%d: Source of above error; unexpected error %s",
 | |
|                       t->s.test_file, t->s.start, t->err);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     if (t->err == NULL && t->expected_err != NULL) {
 | |
|         TEST_info("%s:%d: Succeeded but was expecting %s",
 | |
|                   t->s.test_file, t->s.start, t->expected_err);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (strcmp(t->err, t->expected_err) != 0) {
 | |
|         TEST_info("%s:%d: Expected %s got %s",
 | |
|                   t->s.test_file, t->s.start, t->expected_err, t->err);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (t->reason == NULL)
 | |
|         return 1;
 | |
| 
 | |
|     if (t->reason == NULL) {
 | |
|         TEST_info("%s:%d: Test is missing function or reason code",
 | |
|                   t->s.test_file, t->s.start);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     err = ERR_peek_error();
 | |
|     if (err == 0) {
 | |
|         TEST_info("%s:%d: Expected error \"%s\" not set",
 | |
|                   t->s.test_file, t->s.start, t->reason);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     reason = ERR_reason_error_string(err);
 | |
|     if (reason == NULL) {
 | |
|         TEST_info("%s:%d: Expected error \"%s\", no strings available."
 | |
|                   " Assuming ok.",
 | |
|                   t->s.test_file, t->s.start, t->reason);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (strcmp(reason, t->reason) == 0)
 | |
|         return 1;
 | |
| 
 | |
|     TEST_info("%s:%d: Expected error \"%s\", got \"%s\"",
 | |
|               t->s.test_file, t->s.start, t->reason, reason);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Run a parsed test. Log a message and return 0 on error.
 | |
|  */
 | |
| static int run_test(EVP_TEST *t)
 | |
| {
 | |
|     if (t->meth == NULL)
 | |
|         return 1;
 | |
|     t->s.numtests++;
 | |
|     if (t->skip) {
 | |
|         t->s.numskip++;
 | |
|     } else {
 | |
|         /* run the test */
 | |
|         if (t->err == NULL && t->meth->run_test(t) != 1) {
 | |
|             TEST_info("%s:%d %s error",
 | |
|                       t->s.test_file, t->s.start, t->meth->name);
 | |
|             return 0;
 | |
|         }
 | |
|         if (!check_test_error(t)) {
 | |
|             TEST_openssl_errors();
 | |
|             t->s.errors++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* clean it up */
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst)
 | |
| {
 | |
|     for (; lst != NULL; lst = lst->next) {
 | |
|         if (strcmp(lst->name, name) == 0) {
 | |
|             if (ppk != NULL)
 | |
|                 *ppk = lst->key;
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void free_key_list(KEY_LIST *lst)
 | |
| {
 | |
|     while (lst != NULL) {
 | |
|         KEY_LIST *next = lst->next;
 | |
| 
 | |
|         EVP_PKEY_free(lst->key);
 | |
|         OPENSSL_free(lst->name);
 | |
|         OPENSSL_free(lst);
 | |
|         lst = next;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is the key type an unsupported algorithm?
 | |
|  */
 | |
| static int key_unsupported(void)
 | |
| {
 | |
|     long err = ERR_peek_error();
 | |
| 
 | |
|     if (ERR_GET_LIB(err) == ERR_LIB_EVP
 | |
|             && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) {
 | |
|         ERR_clear_error();
 | |
|         return 1;
 | |
|     }
 | |
| #ifndef OPENSSL_NO_EC
 | |
|     /*
 | |
|      * If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an
 | |
|      * hint to an unsupported algorithm/curve (e.g. if binary EC support is
 | |
|      * disabled).
 | |
|      */
 | |
|     if (ERR_GET_LIB(err) == ERR_LIB_EC
 | |
|         && ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) {
 | |
|         ERR_clear_error();
 | |
|         return 1;
 | |
|     }
 | |
| #endif /* OPENSSL_NO_EC */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NULL out the value from |pp| but return it.  This "steals" a pointer.
 | |
|  */
 | |
| static char *take_value(PAIR *pp)
 | |
| {
 | |
|     char *p = pp->value;
 | |
| 
 | |
|     pp->value = NULL;
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if one of the providers named in the string is available.
 | |
|  * The provider names are separated with whitespace.
 | |
|  * NOTE: destructive function, it inserts '\0' after each provider name.
 | |
|  */
 | |
| static int prov_available(char *providers)
 | |
| {
 | |
|     char *p;
 | |
|     int more = 1;
 | |
| 
 | |
|     while (more) {
 | |
|         for (; isspace(*providers); providers++)
 | |
|             continue;
 | |
|         if (*providers == '\0')
 | |
|             break;               /* End of the road */
 | |
|         for (p = providers; *p != '\0' && !isspace(*p); p++)
 | |
|             continue;
 | |
|         if (*p == '\0')
 | |
|             more = 0;
 | |
|         else
 | |
|             *p = '\0';
 | |
|         if (OSSL_PROVIDER_available(NULL, providers))
 | |
|             return 1;            /* Found one */
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read and parse one test.  Return 0 if failure, 1 if okay.
 | |
|  */
 | |
| static int parse(EVP_TEST *t)
 | |
| {
 | |
|     KEY_LIST *key, **klist;
 | |
|     EVP_PKEY *pkey;
 | |
|     PAIR *pp;
 | |
|     int i;
 | |
| 
 | |
| top:
 | |
|     do {
 | |
|         if (BIO_eof(t->s.fp))
 | |
|             return EOF;
 | |
|         clear_test(t);
 | |
|         if (!test_readstanza(&t->s))
 | |
|             return 0;
 | |
|     } while (t->s.numpairs == 0);
 | |
|     pp = &t->s.pairs[0];
 | |
| 
 | |
|     /* Are we adding a key? */
 | |
|     klist = NULL;
 | |
|     pkey = NULL;
 | |
|     if (strcmp(pp->key, "PrivateKey") == 0) {
 | |
|         pkey = PEM_read_bio_PrivateKey(t->s.key, NULL, 0, NULL);
 | |
|         if (pkey == NULL && !key_unsupported()) {
 | |
|             EVP_PKEY_free(pkey);
 | |
|             TEST_info("Can't read private key %s", pp->value);
 | |
|             TEST_openssl_errors();
 | |
|             return 0;
 | |
|         }
 | |
|         klist = &private_keys;
 | |
|     } else if (strcmp(pp->key, "PublicKey") == 0) {
 | |
|         pkey = PEM_read_bio_PUBKEY(t->s.key, NULL, 0, NULL);
 | |
|         if (pkey == NULL && !key_unsupported()) {
 | |
|             EVP_PKEY_free(pkey);
 | |
|             TEST_info("Can't read public key %s", pp->value);
 | |
|             TEST_openssl_errors();
 | |
|             return 0;
 | |
|         }
 | |
|         klist = &public_keys;
 | |
|     } else if (strcmp(pp->key, "PrivateKeyRaw") == 0
 | |
|                || strcmp(pp->key, "PublicKeyRaw") == 0 ) {
 | |
|         char *strnid = NULL, *keydata = NULL;
 | |
|         unsigned char *keybin;
 | |
|         size_t keylen;
 | |
|         int nid;
 | |
| 
 | |
|         if (strcmp(pp->key, "PrivateKeyRaw") == 0)
 | |
|             klist = &private_keys;
 | |
|         else
 | |
|             klist = &public_keys;
 | |
| 
 | |
|         strnid = strchr(pp->value, ':');
 | |
|         if (strnid != NULL) {
 | |
|             *strnid++ = '\0';
 | |
|             keydata = strchr(strnid, ':');
 | |
|             if (keydata != NULL)
 | |
|                 *keydata++ = '\0';
 | |
|         }
 | |
|         if (keydata == NULL) {
 | |
|             TEST_info("Failed to parse %s value", pp->key);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         nid = OBJ_txt2nid(strnid);
 | |
|         if (nid == NID_undef) {
 | |
|             TEST_info("Uncrecognised algorithm NID");
 | |
|             return 0;
 | |
|         }
 | |
|         if (!parse_bin(keydata, &keybin, &keylen)) {
 | |
|             TEST_info("Failed to create binary key");
 | |
|             return 0;
 | |
|         }
 | |
|         if (klist == &private_keys)
 | |
|             pkey = EVP_PKEY_new_raw_private_key(nid, NULL, keybin, keylen);
 | |
|         else
 | |
|             pkey = EVP_PKEY_new_raw_public_key(nid, NULL, keybin, keylen);
 | |
|         if (pkey == NULL && !key_unsupported()) {
 | |
|             TEST_info("Can't read %s data", pp->key);
 | |
|             OPENSSL_free(keybin);
 | |
|             TEST_openssl_errors();
 | |
|             return 0;
 | |
|         }
 | |
|         OPENSSL_free(keybin);
 | |
|     }
 | |
| 
 | |
|     /* If we have a key add to list */
 | |
|     if (klist != NULL) {
 | |
|         if (find_key(NULL, pp->value, *klist)) {
 | |
|             TEST_info("Duplicate key %s", pp->value);
 | |
|             return 0;
 | |
|         }
 | |
|         if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
 | |
|             return 0;
 | |
|         key->name = take_value(pp);
 | |
| 
 | |
|         /* Hack to detect SM2 keys */
 | |
|         if(pkey != NULL && strstr(key->name, "SM2") != NULL) {
 | |
| #ifdef OPENSSL_NO_SM2
 | |
|             EVP_PKEY_free(pkey);
 | |
|             pkey = NULL;
 | |
| #else
 | |
|             EVP_PKEY_set_alias_type(pkey, EVP_PKEY_SM2);
 | |
| #endif
 | |
|         }
 | |
| 
 | |
|         key->key = pkey;
 | |
|         key->next = *klist;
 | |
|         *klist = key;
 | |
| 
 | |
|         /* Go back and start a new stanza. */
 | |
|         if (t->s.numpairs != 1)
 | |
|             TEST_info("Line %d: missing blank line\n", t->s.curr);
 | |
|         goto top;
 | |
|     }
 | |
| 
 | |
|     /* Find the test, based on first keyword. */
 | |
|     if (!TEST_ptr(t->meth = find_test(pp->key)))
 | |
|         return 0;
 | |
|     if (!t->meth->init(t, pp->value)) {
 | |
|         TEST_error("unknown %s: %s\n", pp->key, pp->value);
 | |
|         return 0;
 | |
|     }
 | |
|     if (t->skip == 1) {
 | |
|         /* TEST_info("skipping %s %s", pp->key, pp->value); */
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     for (pp++, i = 1; i < t->s.numpairs; pp++, i++) {
 | |
|         if (strcmp(pp->key, "Availablein") == 0) {
 | |
|             if (!prov_available(pp->value)) {
 | |
|                 TEST_info("skipping, providers not available: %s:%d",
 | |
|                           t->s.test_file, t->s.start);
 | |
|                 t->skip = 1;
 | |
|                 return 0;
 | |
|             }
 | |
|         } else if (strcmp(pp->key, "Result") == 0) {
 | |
|             if (t->expected_err != NULL) {
 | |
|                 TEST_info("Line %d: multiple result lines", t->s.curr);
 | |
|                 return 0;
 | |
|             }
 | |
|             t->expected_err = take_value(pp);
 | |
|         } else if (strcmp(pp->key, "Function") == 0) {
 | |
|             /* Ignore old line. */
 | |
|         } else if (strcmp(pp->key, "Reason") == 0) {
 | |
|             if (t->reason != NULL) {
 | |
|                 TEST_info("Line %d: multiple reason lines", t->s.curr);
 | |
|                 return 0;
 | |
|             }
 | |
|             t->reason = take_value(pp);
 | |
|         } else {
 | |
|             /* Must be test specific line: try to parse it */
 | |
|             int rv = t->meth->parse(t, pp->key, pp->value);
 | |
| 
 | |
|             if (rv == 0) {
 | |
|                 TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key);
 | |
|                 return 0;
 | |
|             }
 | |
|             if (rv < 0) {
 | |
|                 TEST_info("Line %d: error processing keyword %s = %s\n",
 | |
|                           t->s.curr, pp->key, pp->value);
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int run_file_tests(int i)
 | |
| {
 | |
|     EVP_TEST *t;
 | |
|     const char *testfile = test_get_argument(i);
 | |
|     int c;
 | |
| 
 | |
|     if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t))))
 | |
|         return 0;
 | |
|     if (!test_start_file(&t->s, testfile)) {
 | |
|         OPENSSL_free(t);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     while (!BIO_eof(t->s.fp)) {
 | |
|         c = parse(t);
 | |
|         if (t->skip) {
 | |
|             t->s.numskip++;
 | |
|             continue;
 | |
|         }
 | |
|         if (c == 0 || !run_test(t)) {
 | |
|             t->s.errors++;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     test_end_file(&t->s);
 | |
|     clear_test(t);
 | |
| 
 | |
|     free_key_list(public_keys);
 | |
|     free_key_list(private_keys);
 | |
|     BIO_free(t->s.key);
 | |
|     c = t->s.errors;
 | |
|     OPENSSL_free(t);
 | |
|     return c == 0;
 | |
| }
 | |
| 
 | |
| OPT_TEST_DECLARE_USAGE("file...\n")
 | |
| 
 | |
| int setup_tests(void)
 | |
| {
 | |
|     size_t n = test_get_argument_count();
 | |
| 
 | |
|     if (n == 0)
 | |
|         return 0;
 | |
| 
 | |
|     ADD_ALL_TESTS(run_file_tests, n);
 | |
|     return 1;
 | |
| }
 |