mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			1046 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1046 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the Apache License 2.0 (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| /* We need to use the OPENSSL_fork_*() deprecated APIs */
 | |
| #define OPENSSL_SUPPRESS_DEPRECATED
 | |
| 
 | |
| #include <openssl/crypto.h>
 | |
| #include <crypto/cryptlib.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include "internal/rcu.h"
 | |
| #include "rcu_internal.h"
 | |
| 
 | |
| #if defined(__clang__) && defined(__has_feature)
 | |
| # if __has_feature(thread_sanitizer)
 | |
| #  define __SANITIZE_THREAD__
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #if defined(__SANITIZE_THREAD__)
 | |
| # include <sanitizer/tsan_interface.h>
 | |
| # define TSAN_FAKE_UNLOCK(x)   __tsan_mutex_pre_unlock((x), 0); \
 | |
| __tsan_mutex_post_unlock((x), 0)
 | |
| 
 | |
| # define TSAN_FAKE_LOCK(x)  __tsan_mutex_pre_lock((x), 0); \
 | |
| __tsan_mutex_post_lock((x), 0, 0)
 | |
| #else
 | |
| # define TSAN_FAKE_UNLOCK(x)
 | |
| # define TSAN_FAKE_LOCK(x)
 | |
| #endif
 | |
| 
 | |
| #if defined(__sun)
 | |
| # include <atomic.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(__apple_build_version__) && __apple_build_version__ < 6000000
 | |
| /*
 | |
|  * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
 | |
|  * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
 | |
|  * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
 | |
|  * All of this makes impossible to use __atomic_is_lock_free here.
 | |
|  *
 | |
|  * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
 | |
|  */
 | |
| # define BROKEN_CLANG_ATOMICS
 | |
| #endif
 | |
| 
 | |
| #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
 | |
| 
 | |
| # if defined(OPENSSL_SYS_UNIX)
 | |
| #  include <sys/types.h>
 | |
| #  include <unistd.h>
 | |
| # endif
 | |
| 
 | |
| # include <assert.h>
 | |
| 
 | |
| /*
 | |
|  * The Non-Stop KLT thread model currently seems broken in its rwlock
 | |
|  * implementation
 | |
|  */
 | |
| # if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_)
 | |
| #  define USE_RWLOCK
 | |
| # endif
 | |
| 
 | |
| /*
 | |
|  * For all GNU/clang atomic builtins, we also need fallbacks, to cover all
 | |
|  * other compilers.
 | |
| 
 | |
|  * Unfortunately, we can't do that with some "generic type", because there's no
 | |
|  * guarantee that the chosen generic type is large enough to cover all cases.
 | |
|  * Therefore, we implement fallbacks for each applicable type, with composed
 | |
|  * names that include the type they handle.
 | |
|  *
 | |
|  * (an anecdote: we previously tried to use |void *| as the generic type, with
 | |
|  * the thought that the pointer itself is the largest type.  However, this is
 | |
|  * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
 | |
|  *
 | |
|  * All applicable ATOMIC_ macros take the intended type as first parameter, so
 | |
|  * they can map to the correct fallback function.  In the GNU/clang case, that
 | |
|  * parameter is simply ignored.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Internal types used with the ATOMIC_ macros, to make it possible to compose
 | |
|  * fallback function names.
 | |
|  */
 | |
| typedef void *pvoid;
 | |
| typedef struct rcu_cb_item *prcu_cb_item;
 | |
| 
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
 | |
|     && !defined(USE_ATOMIC_FALLBACKS)
 | |
| #  if defined(__APPLE__) && defined(__clang__) && defined(__aarch64__)
 | |
| /*
 | |
|  * For pointers, Apple M1 virtualized cpu seems to have some problem using the
 | |
|  * ldapr instruction (see https://github.com/openssl/openssl/pull/23974)
 | |
|  * When using the native apple clang compiler, this instruction is emitted for
 | |
|  * atomic loads, which is bad.  So, if
 | |
|  * 1) We are building on a target that defines __APPLE__ AND
 | |
|  * 2) We are building on a target using clang (__clang__) AND
 | |
|  * 3) We are building for an M1 processor (__aarch64__)
 | |
|  * Then we should not use __atomic_load_n and instead implement our own
 | |
|  * function to issue the ldar instruction instead, which produces the proper
 | |
|  * sequencing guarantees
 | |
|  */
 | |
| static inline void *apple_atomic_load_n_pvoid(void **p,
 | |
|                                               ossl_unused int memorder)
 | |
| {
 | |
|     void *ret;
 | |
| 
 | |
|     __asm volatile("ldar %0, [%1]" : "=r" (ret): "r" (p):);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* For uint64_t, we should be fine, though */
 | |
| #   define apple_atomic_load_n_uint32_t(p, o) __atomic_load_n(p, o)
 | |
| #   define apple_atomic_load_n_uint64_t(p, o) __atomic_load_n(p, o)
 | |
| 
 | |
| #   define ATOMIC_LOAD_N(t, p, o) apple_atomic_load_n_##t(p, o)
 | |
| #  else
 | |
| #   define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
 | |
| #  endif
 | |
| #  define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
 | |
| #  define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
 | |
| #  define ATOMIC_EXCHANGE_N(t, p, v, o) __atomic_exchange_n(p, v, o)
 | |
| #  define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
 | |
| #  define ATOMIC_FETCH_ADD(p, v, o) __atomic_fetch_add(p, v, o)
 | |
| #  define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
 | |
| #  define ATOMIC_AND_FETCH(p, m, o) __atomic_and_fetch(p, m, o)
 | |
| #  define ATOMIC_OR_FETCH(p, m, o) __atomic_or_fetch(p, m, o)
 | |
| # else
 | |
| static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
 | |
| 
 | |
| #  define IMPL_fallback_atomic_load_n(t)                        \
 | |
|     static ossl_inline t fallback_atomic_load_n_##t(t *p)            \
 | |
|     {                                                           \
 | |
|         t ret;                                                  \
 | |
|                                                                 \
 | |
|         pthread_mutex_lock(&atomic_sim_lock);                   \
 | |
|         ret = *p;                                               \
 | |
|         pthread_mutex_unlock(&atomic_sim_lock);                 \
 | |
|         return ret;                                             \
 | |
|     }
 | |
| IMPL_fallback_atomic_load_n(uint32_t)
 | |
| IMPL_fallback_atomic_load_n(uint64_t)
 | |
| IMPL_fallback_atomic_load_n(pvoid)
 | |
| 
 | |
| #  define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
 | |
| 
 | |
| #  define IMPL_fallback_atomic_store_n(t)                       \
 | |
|     static ossl_inline t fallback_atomic_store_n_##t(t *p, t v)      \
 | |
|     {                                                           \
 | |
|         t ret;                                                  \
 | |
|                                                                 \
 | |
|         pthread_mutex_lock(&atomic_sim_lock);                   \
 | |
|         ret = *p;                                               \
 | |
|         *p = v;                                                 \
 | |
|         pthread_mutex_unlock(&atomic_sim_lock);                 \
 | |
|         return ret;                                             \
 | |
|     }
 | |
| IMPL_fallback_atomic_store_n(uint32_t)
 | |
| IMPL_fallback_atomic_store_n(uint64_t)
 | |
| 
 | |
| #  define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
 | |
| 
 | |
| #  define IMPL_fallback_atomic_store(t)                         \
 | |
|     static ossl_inline void fallback_atomic_store_##t(t *p, t *v)    \
 | |
|     {                                                           \
 | |
|         pthread_mutex_lock(&atomic_sim_lock);                   \
 | |
|         *p = *v;                                                \
 | |
|         pthread_mutex_unlock(&atomic_sim_lock);                 \
 | |
|     }
 | |
| IMPL_fallback_atomic_store(uint64_t)
 | |
| IMPL_fallback_atomic_store(pvoid)
 | |
| 
 | |
| #  define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
 | |
| 
 | |
| #  define IMPL_fallback_atomic_exchange_n(t)                            \
 | |
|     static ossl_inline t fallback_atomic_exchange_n_##t(t *p, t v)           \
 | |
|     {                                                                   \
 | |
|         t ret;                                                          \
 | |
|                                                                         \
 | |
|         pthread_mutex_lock(&atomic_sim_lock);                           \
 | |
|         ret = *p;                                                       \
 | |
|         *p = v;                                                         \
 | |
|         pthread_mutex_unlock(&atomic_sim_lock);                         \
 | |
|         return ret;                                                     \
 | |
|     }
 | |
| IMPL_fallback_atomic_exchange_n(uint64_t)
 | |
| IMPL_fallback_atomic_exchange_n(prcu_cb_item)
 | |
| 
 | |
| #  define ATOMIC_EXCHANGE_N(t, p, v, o) fallback_atomic_exchange_n_##t(p, v)
 | |
| 
 | |
| /*
 | |
|  * The fallbacks that follow don't need any per type implementation, as
 | |
|  * they are designed for uint64_t only.  If there comes a time when multiple
 | |
|  * types need to be covered, it's relatively easy to refactor them the same
 | |
|  * way as the fallbacks above.
 | |
|  */
 | |
| 
 | |
| static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
 | |
| {
 | |
|     uint64_t ret;
 | |
| 
 | |
|     pthread_mutex_lock(&atomic_sim_lock);
 | |
|     *p += v;
 | |
|     ret = *p;
 | |
|     pthread_mutex_unlock(&atomic_sim_lock);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #  define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
 | |
| 
 | |
| static ossl_inline uint64_t fallback_atomic_fetch_add(uint64_t *p, uint64_t v)
 | |
| {
 | |
|     uint64_t ret;
 | |
| 
 | |
|     pthread_mutex_lock(&atomic_sim_lock);
 | |
|     ret = *p;
 | |
|     *p += v;
 | |
|     pthread_mutex_unlock(&atomic_sim_lock);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #  define ATOMIC_FETCH_ADD(p, v, o) fallback_atomic_fetch_add(p, v)
 | |
| 
 | |
| static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
 | |
| {
 | |
|     uint64_t ret;
 | |
| 
 | |
|     pthread_mutex_lock(&atomic_sim_lock);
 | |
|     *p -= v;
 | |
|     ret = *p;
 | |
|     pthread_mutex_unlock(&atomic_sim_lock);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #  define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
 | |
| 
 | |
| static ossl_inline uint64_t fallback_atomic_and_fetch(uint64_t *p, uint64_t m)
 | |
| {
 | |
|     uint64_t ret;
 | |
| 
 | |
|     pthread_mutex_lock(&atomic_sim_lock);
 | |
|     *p &= m;
 | |
|     ret = *p;
 | |
|     pthread_mutex_unlock(&atomic_sim_lock);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #  define ATOMIC_AND_FETCH(p, v, o) fallback_atomic_and_fetch(p, v)
 | |
| 
 | |
| static ossl_inline uint64_t fallback_atomic_or_fetch(uint64_t *p, uint64_t m)
 | |
| {
 | |
|     uint64_t ret;
 | |
| 
 | |
|     pthread_mutex_lock(&atomic_sim_lock);
 | |
|     *p |= m;
 | |
|     ret = *p;
 | |
|     pthread_mutex_unlock(&atomic_sim_lock);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #  define ATOMIC_OR_FETCH(p, v, o) fallback_atomic_or_fetch(p, v)
 | |
| # endif
 | |
| 
 | |
| /*
 | |
|  * users is broken up into 2 parts
 | |
|  * bits 0-15 current readers
 | |
|  * bit 32-63 ID
 | |
|  */
 | |
| # define READER_SHIFT 0
 | |
| # define ID_SHIFT 32
 | |
| /* TODO: READER_SIZE 32 in threads_win.c */
 | |
| # define READER_SIZE 16
 | |
| # define ID_SIZE 32
 | |
| 
 | |
| # define READER_MASK     (((uint64_t)1 << READER_SIZE) - 1)
 | |
| # define ID_MASK         (((uint64_t)1 << ID_SIZE) - 1)
 | |
| # define READER_COUNT(x) ((uint32_t)(((uint64_t)(x) >> READER_SHIFT) & \
 | |
|                                      READER_MASK))
 | |
| # define ID_VAL(x)       ((uint32_t)(((uint64_t)(x) >> ID_SHIFT) & ID_MASK))
 | |
| # define VAL_READER      ((uint64_t)1 << READER_SHIFT)
 | |
| # define VAL_ID(x)       ((uint64_t)x << ID_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * This is the core of an rcu lock. It tracks the readers and writers for the
 | |
|  * current quiescence point for a given lock. Users is the 64 bit value that
 | |
|  * stores the READERS/ID as defined above
 | |
|  *
 | |
|  */
 | |
| struct rcu_qp {
 | |
|     uint64_t users;
 | |
| };
 | |
| 
 | |
| struct thread_qp {
 | |
|     struct rcu_qp *qp;
 | |
|     unsigned int depth;
 | |
|     CRYPTO_RCU_LOCK *lock;
 | |
| };
 | |
| 
 | |
| # define MAX_QPS 10
 | |
| /*
 | |
|  * This is the per thread tracking data
 | |
|  * that is assigned to each thread participating
 | |
|  * in an rcu qp
 | |
|  *
 | |
|  * qp points to the qp that it last acquired
 | |
|  *
 | |
|  */
 | |
| struct rcu_thr_data {
 | |
|     struct thread_qp thread_qps[MAX_QPS];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This is the internal version of a CRYPTO_RCU_LOCK
 | |
|  * it is cast from CRYPTO_RCU_LOCK
 | |
|  */
 | |
| struct rcu_lock_st {
 | |
|     /* Callbacks to call for next ossl_synchronize_rcu */
 | |
|     struct rcu_cb_item *cb_items;
 | |
| 
 | |
|     /* The context we are being created against */
 | |
|     OSSL_LIB_CTX *ctx;
 | |
| 
 | |
|     /* rcu generation counter for in-order retirement */
 | |
|     uint32_t id_ctr;
 | |
| 
 | |
|     /* TODO: can be moved before id_ctr for better alignment */
 | |
|     /* Array of quiescent points for synchronization */
 | |
|     struct rcu_qp *qp_group;
 | |
| 
 | |
|     /* Number of elements in qp_group array */
 | |
|     uint32_t group_count;
 | |
| 
 | |
|     /* Index of the current qp in the qp_group array */
 | |
|     uint32_t reader_idx;
 | |
| 
 | |
|     /* value of the next id_ctr value to be retired */
 | |
|     uint32_t next_to_retire;
 | |
| 
 | |
|     /* index of the next free rcu_qp in the qp_group */
 | |
|     uint32_t current_alloc_idx;
 | |
| 
 | |
|     /* number of qp's in qp_group array currently being retired */
 | |
|     uint32_t writers_alloced;
 | |
| 
 | |
|     /* lock protecting write side operations */
 | |
|     pthread_mutex_t write_lock;
 | |
| 
 | |
|     /* lock protecting updates to writers_alloced/current_alloc_idx */
 | |
|     pthread_mutex_t alloc_lock;
 | |
| 
 | |
|     /* signal to wake threads waiting on alloc_lock */
 | |
|     pthread_cond_t alloc_signal;
 | |
| 
 | |
|     /* lock to enforce in-order retirement */
 | |
|     pthread_mutex_t prior_lock;
 | |
| 
 | |
|     /* signal to wake threads waiting on prior_lock */
 | |
|     pthread_cond_t prior_signal;
 | |
| };
 | |
| 
 | |
| /* Read side acquisition of the current qp */
 | |
| static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
 | |
| {
 | |
|     uint32_t qp_idx;
 | |
| 
 | |
|     /* get the current qp index */
 | |
|     for (;;) {
 | |
|         /*
 | |
|          * Notes on use of __ATOMIC_ACQUIRE
 | |
|          * We need to ensure the following:
 | |
|          * 1) That subsequent operations aren't optimized by hoisting them above
 | |
|          * this operation.  Specifically, we don't want the below re-load of
 | |
|          * qp_idx to get optimized away
 | |
|          * 2) We want to ensure that any updating of reader_idx on the write side
 | |
|          * of the lock is flushed from a local cpu cache so that we see any
 | |
|          * updates prior to the load.  This is a non-issue on cache coherent
 | |
|          * systems like x86, but is relevant on other arches
 | |
|          * Note: This applies to the reload below as well
 | |
|          */
 | |
|         qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_ACQUIRE);
 | |
| 
 | |
|         /*
 | |
|          * Notes of use of __ATOMIC_RELEASE
 | |
|          * This counter is only read by the write side of the lock, and so we
 | |
|          * specify __ATOMIC_RELEASE here to ensure that the write side of the
 | |
|          * lock see this during the spin loop read of users, as it waits for the
 | |
|          * reader count to approach zero
 | |
|          */
 | |
|         ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
 | |
|                          __ATOMIC_RELEASE);
 | |
| 
 | |
|         /* if the idx hasn't changed, we're good, else try again */
 | |
|         if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx,
 | |
|                                     __ATOMIC_ACQUIRE))
 | |
|             break;
 | |
| 
 | |
|         /*
 | |
|          * Notes on use of __ATOMIC_RELEASE
 | |
|          * As with the add above, we want to ensure that this decrement is
 | |
|          * seen by the write side of the lock as soon as it happens to prevent
 | |
|          * undue spinning waiting for write side completion
 | |
|          */
 | |
|         ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
 | |
|                          __ATOMIC_RELEASE);
 | |
|     }
 | |
| 
 | |
|     return &lock->qp_group[qp_idx];
 | |
| }
 | |
| 
 | |
| static void ossl_rcu_free_local_data(void *arg)
 | |
| {
 | |
|     OSSL_LIB_CTX *ctx = arg;
 | |
|     CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
 | |
|     struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
 | |
| 
 | |
|     OPENSSL_free(data);
 | |
|     CRYPTO_THREAD_set_local(lkey, NULL);
 | |
| }
 | |
| 
 | |
| void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     struct rcu_thr_data *data;
 | |
|     int i, available_qp = -1;
 | |
|     CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
 | |
| 
 | |
|     /*
 | |
|      * we're going to access current_qp here so ask the
 | |
|      * processor to fetch it
 | |
|      */
 | |
|     data = CRYPTO_THREAD_get_local(lkey);
 | |
| 
 | |
|     if (data == NULL) {
 | |
|         data = OPENSSL_zalloc(sizeof(*data));
 | |
|         OPENSSL_assert(data != NULL);
 | |
|         CRYPTO_THREAD_set_local(lkey, data);
 | |
|         ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < MAX_QPS; i++) {
 | |
|         if (data->thread_qps[i].qp == NULL && available_qp == -1)
 | |
|             available_qp = i;
 | |
|         /* If we have a hold on this lock already, we're good */
 | |
|         if (data->thread_qps[i].lock == lock) {
 | |
|             data->thread_qps[i].depth++;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * if we get here, then we don't have a hold on this lock yet
 | |
|      */
 | |
|     assert(available_qp != -1);
 | |
| 
 | |
|     data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
 | |
|     data->thread_qps[available_qp].depth = 1;
 | |
|     data->thread_qps[available_qp].lock = lock;
 | |
| }
 | |
| 
 | |
| void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     int i;
 | |
|     CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
 | |
|     struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
 | |
|     uint64_t ret;
 | |
| 
 | |
|     assert(data != NULL);
 | |
| 
 | |
|     for (i = 0; i < MAX_QPS; i++) {
 | |
|         if (data->thread_qps[i].lock == lock) {
 | |
|             /*
 | |
|              * As with read side acquisition, we use __ATOMIC_RELEASE here
 | |
|              * to ensure that the decrement is published immediately
 | |
|              * to any write side waiters
 | |
|              */
 | |
|             data->thread_qps[i].depth--;
 | |
|             if (data->thread_qps[i].depth == 0) {
 | |
|                 ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users,
 | |
|                                        VAL_READER, __ATOMIC_RELEASE);
 | |
|                 OPENSSL_assert(ret != UINT64_MAX);
 | |
|                 data->thread_qps[i].qp = NULL;
 | |
|                 data->thread_qps[i].lock = NULL;
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     /*
 | |
|      * If we get here, we're trying to unlock a lock that we never acquired -
 | |
|      * that's fatal.
 | |
|      */
 | |
|     assert(0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write side allocation routine to get the current qp
 | |
|  * and replace it with a new one
 | |
|  */
 | |
| static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     uint64_t new_id;
 | |
|     uint32_t current_idx;
 | |
| 
 | |
|     pthread_mutex_lock(&lock->alloc_lock);
 | |
| 
 | |
|     /*
 | |
|      * we need at least one qp to be available with one
 | |
|      * left over, so that readers can start working on
 | |
|      * one that isn't yet being waited on
 | |
|      */
 | |
|     while (lock->group_count - lock->writers_alloced < 2)
 | |
|         /* we have to wait for one to be free */
 | |
|         pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
 | |
| 
 | |
|     current_idx = lock->current_alloc_idx;
 | |
| 
 | |
|     /* Allocate the qp */
 | |
|     lock->writers_alloced++;
 | |
| 
 | |
|     /* increment the allocation index */
 | |
|     lock->current_alloc_idx =
 | |
|         (lock->current_alloc_idx + 1) % lock->group_count;
 | |
| 
 | |
|     /* get and insert a new id */
 | |
|     new_id = VAL_ID(lock->id_ctr);
 | |
|     lock->id_ctr++;
 | |
| 
 | |
|     /*
 | |
|      * Even though we are under a write side lock here
 | |
|      * We need to use atomic instructions to ensure that the results
 | |
|      * of this update are published to the read side prior to updating the
 | |
|      * reader idx below
 | |
|      */
 | |
|     ATOMIC_AND_FETCH(&lock->qp_group[current_idx].users, ID_MASK,
 | |
|                      __ATOMIC_RELEASE);
 | |
|     ATOMIC_OR_FETCH(&lock->qp_group[current_idx].users, new_id,
 | |
|                     __ATOMIC_RELEASE);
 | |
| 
 | |
|     /*
 | |
|      * Update the reader index to be the prior qp.
 | |
|      * Note the use of __ATOMIC_RELEASE here is based on the corresponding use
 | |
|      * of __ATOMIC_ACQUIRE in get_hold_current_qp, as we want any publication
 | |
|      * of this value to be seen on the read side immediately after it happens
 | |
|      */
 | |
|     ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx,
 | |
|                    __ATOMIC_RELEASE);
 | |
| 
 | |
|     /* wake up any waiters */
 | |
|     pthread_cond_signal(&lock->alloc_signal);
 | |
|     pthread_mutex_unlock(&lock->alloc_lock);
 | |
|     return &lock->qp_group[current_idx];
 | |
| }
 | |
| 
 | |
| static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
 | |
| {
 | |
|     pthread_mutex_lock(&lock->alloc_lock);
 | |
|     lock->writers_alloced--;
 | |
|     pthread_cond_signal(&lock->alloc_signal);
 | |
|     pthread_mutex_unlock(&lock->alloc_lock);
 | |
| }
 | |
| 
 | |
| /* TODO: count should be unsigned, e.g uint32_t */
 | |
| /* a negative value could result in unexpected behaviour */
 | |
| static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
 | |
|                                             int count)
 | |
| {
 | |
|     struct rcu_qp *new =
 | |
|         OPENSSL_zalloc(sizeof(*new) * count);
 | |
| 
 | |
|     lock->group_count = count;
 | |
|     return new;
 | |
| }
 | |
| 
 | |
| void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     pthread_mutex_lock(&lock->write_lock);
 | |
|     TSAN_FAKE_UNLOCK(&lock->write_lock);
 | |
| }
 | |
| 
 | |
| void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     TSAN_FAKE_LOCK(&lock->write_lock);
 | |
|     pthread_mutex_unlock(&lock->write_lock);
 | |
| }
 | |
| 
 | |
| void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     struct rcu_qp *qp;
 | |
|     uint64_t count;
 | |
|     struct rcu_cb_item *cb_items, *tmpcb;
 | |
| 
 | |
|     pthread_mutex_lock(&lock->write_lock);
 | |
|     cb_items = lock->cb_items;
 | |
|     lock->cb_items = NULL;
 | |
|     pthread_mutex_unlock(&lock->write_lock);
 | |
| 
 | |
|     qp = update_qp(lock);
 | |
| 
 | |
|     /*
 | |
|      * wait for the reader count to reach zero
 | |
|      * Note the use of __ATOMIC_ACQUIRE here to ensure that any
 | |
|      * prior __ATOMIC_RELEASE write operation in get_hold_current_qp
 | |
|      * is visible prior to our read
 | |
|      */
 | |
|     do {
 | |
|         count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
 | |
|     } while (READER_COUNT(count) != 0);
 | |
| 
 | |
|     /* retire in order */
 | |
|     pthread_mutex_lock(&lock->prior_lock);
 | |
|     while (lock->next_to_retire != ID_VAL(count))
 | |
|         pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
 | |
|     lock->next_to_retire++;
 | |
|     pthread_cond_broadcast(&lock->prior_signal);
 | |
|     pthread_mutex_unlock(&lock->prior_lock);
 | |
| 
 | |
|     retire_qp(lock, qp);
 | |
| 
 | |
|     /* handle any callbacks that we have */
 | |
|     while (cb_items != NULL) {
 | |
|         tmpcb = cb_items;
 | |
|         cb_items = cb_items->next;
 | |
|         tmpcb->fn(tmpcb->data);
 | |
|         OPENSSL_free(tmpcb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
 | |
| {
 | |
|     struct rcu_cb_item *new =
 | |
|         OPENSSL_zalloc(sizeof(*new));
 | |
| 
 | |
|     if (new == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     new->data = data;
 | |
|     new->fn = cb;
 | |
|     /*
 | |
|      * Use __ATOMIC_ACQ_REL here to indicate that any prior writes to this
 | |
|      * list are visible to us prior to reading, and publish the new value
 | |
|      * immediately
 | |
|      */
 | |
|     new->next = ATOMIC_EXCHANGE_N(prcu_cb_item, &lock->cb_items, new,
 | |
|                                   __ATOMIC_ACQ_REL);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void *ossl_rcu_uptr_deref(void **p)
 | |
| {
 | |
|     return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
 | |
| }
 | |
| 
 | |
| void ossl_rcu_assign_uptr(void **p, void **v)
 | |
| {
 | |
|     ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
 | |
| }
 | |
| 
 | |
| CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
 | |
| {
 | |
|     struct rcu_lock_st *new;
 | |
| 
 | |
|     if (num_writers < 1)
 | |
|         num_writers = 1;
 | |
| 
 | |
|     ctx = ossl_lib_ctx_get_concrete(ctx);
 | |
|     if (ctx == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     new = OPENSSL_zalloc(sizeof(*new));
 | |
|     if (new == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     new->ctx = ctx;
 | |
|     pthread_mutex_init(&new->write_lock, NULL);
 | |
|     pthread_mutex_init(&new->prior_lock, NULL);
 | |
|     pthread_mutex_init(&new->alloc_lock, NULL);
 | |
|     pthread_cond_init(&new->prior_signal, NULL);
 | |
|     pthread_cond_init(&new->alloc_signal, NULL);
 | |
|     new->qp_group = allocate_new_qp_group(new, num_writers + 1);
 | |
|     if (new->qp_group == NULL) {
 | |
|         OPENSSL_free(new);
 | |
|         new = NULL;
 | |
|     }
 | |
|     return new;
 | |
| }
 | |
| 
 | |
| void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
 | |
| 
 | |
|     if (lock == NULL)
 | |
|         return;
 | |
| 
 | |
|     /* make sure we're synchronized */
 | |
|     ossl_synchronize_rcu(rlock);
 | |
| 
 | |
|     OPENSSL_free(rlock->qp_group);
 | |
|     /* There should only be a single qp left now */
 | |
|     OPENSSL_free(rlock);
 | |
| }
 | |
| 
 | |
| CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
 | |
| {
 | |
| # ifdef USE_RWLOCK
 | |
|     CRYPTO_RWLOCK *lock;
 | |
| 
 | |
|     if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
 | |
|         /* Don't set error, to avoid recursion blowup. */
 | |
|         return NULL;
 | |
| 
 | |
|     if (pthread_rwlock_init(lock, NULL) != 0) {
 | |
|         OPENSSL_free(lock);
 | |
|         return NULL;
 | |
|     }
 | |
| # else
 | |
|     pthread_mutexattr_t attr;
 | |
|     CRYPTO_RWLOCK *lock;
 | |
| 
 | |
|     if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
 | |
|         /* Don't set error, to avoid recursion blowup. */
 | |
|         return NULL;
 | |
| 
 | |
|     /*
 | |
|      * We don't use recursive mutexes, but try to catch errors if we do.
 | |
|      */
 | |
|     pthread_mutexattr_init(&attr);
 | |
| #  if !defined (__TANDEM) && !defined (_SPT_MODEL_)
 | |
| #   if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
 | |
|     pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
 | |
| #   endif
 | |
| #  else
 | |
|     /* The SPT Thread Library does not define MUTEX attributes. */
 | |
| #  endif
 | |
| 
 | |
|     if (pthread_mutex_init(lock, &attr) != 0) {
 | |
|         pthread_mutexattr_destroy(&attr);
 | |
|         OPENSSL_free(lock);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     pthread_mutexattr_destroy(&attr);
 | |
| # endif
 | |
| 
 | |
|     return lock;
 | |
| }
 | |
| 
 | |
| __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # ifdef USE_RWLOCK
 | |
|     if (pthread_rwlock_rdlock(lock) != 0)
 | |
|         return 0;
 | |
| # else
 | |
|     if (pthread_mutex_lock(lock) != 0) {
 | |
|         assert(errno != EDEADLK && errno != EBUSY);
 | |
|         return 0;
 | |
|     }
 | |
| # endif
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # ifdef USE_RWLOCK
 | |
|     if (pthread_rwlock_wrlock(lock) != 0)
 | |
|         return 0;
 | |
| # else
 | |
|     if (pthread_mutex_lock(lock) != 0) {
 | |
|         assert(errno != EDEADLK && errno != EBUSY);
 | |
|         return 0;
 | |
|     }
 | |
| # endif
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # ifdef USE_RWLOCK
 | |
|     if (pthread_rwlock_unlock(lock) != 0)
 | |
|         return 0;
 | |
| # else
 | |
|     if (pthread_mutex_unlock(lock) != 0) {
 | |
|         assert(errno != EPERM);
 | |
|         return 0;
 | |
|     }
 | |
| # endif
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
 | |
| {
 | |
|     if (lock == NULL)
 | |
|         return;
 | |
| 
 | |
| # ifdef USE_RWLOCK
 | |
|     pthread_rwlock_destroy(lock);
 | |
| # else
 | |
|     pthread_mutex_destroy(lock);
 | |
| # endif
 | |
|     OPENSSL_free(lock);
 | |
| 
 | |
|     return;
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
 | |
| {
 | |
|     if (pthread_once(once, init) != 0)
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
 | |
| {
 | |
|     if (pthread_key_create(key, cleanup) != 0)
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
 | |
| {
 | |
|     return pthread_getspecific(*key);
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
 | |
| {
 | |
|     if (pthread_setspecific(*key, val) != 0)
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
 | |
| {
 | |
|     if (pthread_key_delete(*key) != 0)
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
 | |
| {
 | |
|     return pthread_self();
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
 | |
| {
 | |
|     return pthread_equal(a, b);
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*val), val)) {
 | |
|         *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         *ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     *val += amount;
 | |
|     *ret  = *val;
 | |
| 
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
 | |
|                         CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*val), val)) {
 | |
|         *ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         *ret = atomic_add_64_nv(val, op);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
|     *val += op;
 | |
|     *ret  = *val;
 | |
| 
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
 | |
|                       CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*val), val)) {
 | |
|         *ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         *ret = atomic_and_64_nv(val, op);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
|     *val &= op;
 | |
|     *ret  = *val;
 | |
| 
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
 | |
|                      CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*val), val)) {
 | |
|         *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         *ret = atomic_or_64_nv(val, op);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
|     *val |= op;
 | |
|     *ret  = *val;
 | |
| 
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*val), val)) {
 | |
|         __atomic_load(val, ret, __ATOMIC_ACQUIRE);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         *ret = atomic_or_64_nv(val, 0);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
 | |
|         return 0;
 | |
|     *ret  = *val;
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*dst), dst)) {
 | |
|         __atomic_store(dst, &val, __ATOMIC_RELEASE);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         atomic_swap_64(dst, val);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
|     *dst  = val;
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*val), val)) {
 | |
|         __atomic_load(val, ret, __ATOMIC_ACQUIRE);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         *ret = (int)atomic_or_uint_nv((unsigned int *)val, 0);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
 | |
|         return 0;
 | |
|     *ret  = *val;
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # ifndef FIPS_MODULE
 | |
| int openssl_init_fork_handlers(void)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| # endif /* FIPS_MODULE */
 | |
| 
 | |
| int openssl_get_fork_id(void)
 | |
| {
 | |
|     return getpid();
 | |
| }
 | |
| #endif
 |