mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			742 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			742 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the Apache License 2.0 (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| # include <windows.h>
 | |
| # if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x600
 | |
| #  define USE_RWLOCK
 | |
| # endif
 | |
| #endif
 | |
| #include <assert.h>
 | |
| 
 | |
| /*
 | |
|  * VC++ 2008 or earlier x86 compilers do not have an inline implementation
 | |
|  * of InterlockedOr64 for 32bit and will fail to run on Windows XP 32bit.
 | |
|  * https://docs.microsoft.com/en-us/cpp/intrinsics/interlockedor-intrinsic-functions#requirements
 | |
|  * To work around this problem, we implement a manual locking mechanism for
 | |
|  * only VC++ 2008 or earlier x86 compilers.
 | |
|  */
 | |
| 
 | |
| #if ((defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER <= 1600) || (defined(__MINGW32__) && !defined(__MINGW64__)))
 | |
| # define NO_INTERLOCKEDOR64
 | |
| #endif
 | |
| 
 | |
| #include <openssl/crypto.h>
 | |
| #include <crypto/cryptlib.h>
 | |
| #include "internal/common.h"
 | |
| #include "internal/thread_arch.h"
 | |
| #include "internal/threads_common.h"
 | |
| #include "internal/rcu.h"
 | |
| #include "rcu_internal.h"
 | |
| 
 | |
| #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && defined(OPENSSL_SYS_WINDOWS)
 | |
| 
 | |
| # ifdef USE_RWLOCK
 | |
| typedef struct {
 | |
|     SRWLOCK lock;
 | |
|     int exclusive;
 | |
| } CRYPTO_win_rwlock;
 | |
| # endif
 | |
| 
 | |
| /*
 | |
|  * This defines a quescent point (qp)
 | |
|  * This is the barrier beyond which a writer
 | |
|  * must wait before freeing data that was
 | |
|  * atomically updated
 | |
|  */
 | |
| struct rcu_qp {
 | |
|     volatile uint64_t users;
 | |
| };
 | |
| 
 | |
| struct thread_qp {
 | |
|     struct rcu_qp *qp;
 | |
|     unsigned int depth;
 | |
|     CRYPTO_RCU_LOCK *lock;
 | |
| };
 | |
| 
 | |
| # define MAX_QPS 10
 | |
| /*
 | |
|  * This is the per thread tracking data
 | |
|  * that is assigned to each thread participating
 | |
|  * in an rcu qp
 | |
|  *
 | |
|  * qp points to the qp that it last acquired
 | |
|  *
 | |
|  */
 | |
| struct rcu_thr_data {
 | |
|     struct thread_qp thread_qps[MAX_QPS];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This is the internal version of a CRYPTO_RCU_LOCK
 | |
|  * it is cast from CRYPTO_RCU_LOCK
 | |
|  */
 | |
| struct rcu_lock_st {
 | |
|     /* Callbacks to call for next ossl_synchronize_rcu */
 | |
|     struct rcu_cb_item *cb_items;
 | |
| 
 | |
|     /* The context we are being created against */
 | |
|     OSSL_LIB_CTX *ctx;
 | |
| 
 | |
|     /* Array of quiescent points for synchronization */
 | |
|     struct rcu_qp *qp_group;
 | |
| 
 | |
|     /* rcu generation counter for in-order retirement */
 | |
|     uint32_t id_ctr;
 | |
| 
 | |
|     /* Number of elements in qp_group array */
 | |
|     uint32_t group_count;
 | |
| 
 | |
|     /* Index of the current qp in the qp_group array */
 | |
|     uint32_t reader_idx;
 | |
| 
 | |
|     /* value of the next id_ctr value to be retired */
 | |
|     uint32_t next_to_retire;
 | |
| 
 | |
|     /* index of the next free rcu_qp in the qp_group */
 | |
|     uint32_t current_alloc_idx;
 | |
| 
 | |
|     /* number of qp's in qp_group array currently being retired */
 | |
|     uint32_t writers_alloced;
 | |
| 
 | |
|     /* lock protecting write side operations */
 | |
|     CRYPTO_MUTEX *write_lock;
 | |
| 
 | |
|     /* lock protecting updates to writers_alloced/current_alloc_idx */
 | |
|     CRYPTO_MUTEX *alloc_lock;
 | |
| 
 | |
|     /* signal to wake threads waiting on alloc_lock */
 | |
|     CRYPTO_CONDVAR *alloc_signal;
 | |
| 
 | |
|     /* lock to enforce in-order retirement */
 | |
|     CRYPTO_MUTEX *prior_lock;
 | |
| 
 | |
|     /* signal to wake threads waiting on prior_lock */
 | |
|     CRYPTO_CONDVAR *prior_signal;
 | |
| 
 | |
|     /* lock used with NO_INTERLOCKEDOR64: VS2010 x86 */
 | |
|     CRYPTO_RWLOCK *rw_lock;
 | |
| };
 | |
| 
 | |
| static struct rcu_qp *allocate_new_qp_group(struct rcu_lock_st *lock,
 | |
|                                             uint32_t count)
 | |
| {
 | |
|     struct rcu_qp *new =
 | |
|         OPENSSL_zalloc(sizeof(*new) * count);
 | |
| 
 | |
|     lock->group_count = count;
 | |
|     return new;
 | |
| }
 | |
| 
 | |
| CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
 | |
| {
 | |
|     struct rcu_lock_st *new;
 | |
| 
 | |
|     /*
 | |
|      * We need a minimum of 2 qps
 | |
|      */
 | |
|     if (num_writers < 2)
 | |
|         num_writers = 2;
 | |
| 
 | |
|     ctx = ossl_lib_ctx_get_concrete(ctx);
 | |
|     if (ctx == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     new = OPENSSL_zalloc(sizeof(*new));
 | |
| 
 | |
|     if (new == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     new->ctx = ctx;
 | |
|     new->rw_lock = CRYPTO_THREAD_lock_new();
 | |
|     new->write_lock = ossl_crypto_mutex_new();
 | |
|     new->alloc_signal = ossl_crypto_condvar_new();
 | |
|     new->prior_signal = ossl_crypto_condvar_new();
 | |
|     new->alloc_lock = ossl_crypto_mutex_new();
 | |
|     new->prior_lock = ossl_crypto_mutex_new();
 | |
|     new->qp_group = allocate_new_qp_group(new, num_writers);
 | |
|     if (new->qp_group == NULL
 | |
|         || new->alloc_signal == NULL
 | |
|         || new->prior_signal == NULL
 | |
|         || new->write_lock == NULL
 | |
|         || new->alloc_lock == NULL
 | |
|         || new->prior_lock == NULL
 | |
|         || new->rw_lock == NULL) {
 | |
|         CRYPTO_THREAD_lock_free(new->rw_lock);
 | |
|         OPENSSL_free(new->qp_group);
 | |
|         ossl_crypto_condvar_free(&new->alloc_signal);
 | |
|         ossl_crypto_condvar_free(&new->prior_signal);
 | |
|         ossl_crypto_mutex_free(&new->alloc_lock);
 | |
|         ossl_crypto_mutex_free(&new->prior_lock);
 | |
|         ossl_crypto_mutex_free(&new->write_lock);
 | |
|         OPENSSL_free(new);
 | |
|         new = NULL;
 | |
|     }
 | |
| 
 | |
|     return new;
 | |
| 
 | |
| }
 | |
| 
 | |
| void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     CRYPTO_THREAD_lock_free(lock->rw_lock);
 | |
|     OPENSSL_free(lock->qp_group);
 | |
|     ossl_crypto_condvar_free(&lock->alloc_signal);
 | |
|     ossl_crypto_condvar_free(&lock->prior_signal);
 | |
|     ossl_crypto_mutex_free(&lock->alloc_lock);
 | |
|     ossl_crypto_mutex_free(&lock->prior_lock);
 | |
|     ossl_crypto_mutex_free(&lock->write_lock);
 | |
|     OPENSSL_free(lock);
 | |
| }
 | |
| 
 | |
| /* Read side acquisition of the current qp */
 | |
| static ossl_inline struct rcu_qp *get_hold_current_qp(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     uint32_t qp_idx;
 | |
|     uint32_t tmp;
 | |
|     uint64_t tmp64;
 | |
| 
 | |
|     /* get the current qp index */
 | |
|     for (;;) {
 | |
|         CRYPTO_atomic_load_int((int *)&lock->reader_idx, (int *)&qp_idx,
 | |
|                                lock->rw_lock);
 | |
|         CRYPTO_atomic_add64(&lock->qp_group[qp_idx].users, (uint64_t)1, &tmp64,
 | |
|                             lock->rw_lock);
 | |
|         CRYPTO_atomic_load_int((int *)&lock->reader_idx, (int *)&tmp,
 | |
|                                lock->rw_lock);
 | |
|         if (qp_idx == tmp)
 | |
|             break;
 | |
|         CRYPTO_atomic_add64(&lock->qp_group[qp_idx].users, (uint64_t)-1, &tmp64,
 | |
|                             lock->rw_lock);
 | |
|     }
 | |
| 
 | |
|     return &lock->qp_group[qp_idx];
 | |
| }
 | |
| 
 | |
| static void ossl_rcu_free_local_data(void *arg)
 | |
| {
 | |
|     OSSL_LIB_CTX *ctx = arg;
 | |
|     struct rcu_thr_data *data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, ctx);
 | |
| 
 | |
|     CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, ctx, NULL);
 | |
|     OPENSSL_free(data);
 | |
| }
 | |
| 
 | |
| void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     struct rcu_thr_data *data;
 | |
|     int i;
 | |
|     int available_qp = -1;
 | |
| 
 | |
|     /*
 | |
|      * we're going to access current_qp here so ask the
 | |
|      * processor to fetch it
 | |
|      */
 | |
|     data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx);
 | |
| 
 | |
|     if (data == NULL) {
 | |
|         data = OPENSSL_zalloc(sizeof(*data));
 | |
|         OPENSSL_assert(data != NULL);
 | |
|         CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx, data);
 | |
|         ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < MAX_QPS; i++) {
 | |
|         if (data->thread_qps[i].qp == NULL && available_qp == -1)
 | |
|             available_qp = i;
 | |
|         /* If we have a hold on this lock already, we're good */
 | |
|         if (data->thread_qps[i].lock == lock)
 | |
|             return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * if we get here, then we don't have a hold on this lock yet
 | |
|      */
 | |
|     assert(available_qp != -1);
 | |
| 
 | |
|     data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
 | |
|     data->thread_qps[available_qp].depth = 1;
 | |
|     data->thread_qps[available_qp].lock = lock;
 | |
| }
 | |
| 
 | |
| void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     ossl_crypto_mutex_lock(lock->write_lock);
 | |
| }
 | |
| 
 | |
| void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     ossl_crypto_mutex_unlock(lock->write_lock);
 | |
| }
 | |
| 
 | |
| void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     struct rcu_thr_data *data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx);
 | |
|     int i;
 | |
|     LONG64 ret;
 | |
| 
 | |
|     assert(data != NULL);
 | |
| 
 | |
|     for (i = 0; i < MAX_QPS; i++) {
 | |
|         if (data->thread_qps[i].lock == lock) {
 | |
|             data->thread_qps[i].depth--;
 | |
|             if (data->thread_qps[i].depth == 0) {
 | |
|                 CRYPTO_atomic_add64(&data->thread_qps[i].qp->users,
 | |
|                                     (uint64_t)-1, (uint64_t *)&ret,
 | |
|                                     lock->rw_lock);
 | |
|                 OPENSSL_assert(ret >= 0);
 | |
|                 data->thread_qps[i].qp = NULL;
 | |
|                 data->thread_qps[i].lock = NULL;
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write side allocation routine to get the current qp
 | |
|  * and replace it with a new one
 | |
|  */
 | |
| static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id)
 | |
| {
 | |
|     uint32_t current_idx;
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     ossl_crypto_mutex_lock(lock->alloc_lock);
 | |
|     /*
 | |
|      * we need at least one qp to be available with one
 | |
|      * left over, so that readers can start working on
 | |
|      * one that isn't yet being waited on
 | |
|      */
 | |
|     while (lock->group_count - lock->writers_alloced < 2)
 | |
|         /* we have to wait for one to be free */
 | |
|         ossl_crypto_condvar_wait(lock->alloc_signal, lock->alloc_lock);
 | |
| 
 | |
|     current_idx = lock->current_alloc_idx;
 | |
| 
 | |
|     /* Allocate the qp */
 | |
|     lock->writers_alloced++;
 | |
| 
 | |
|     /* increment the allocation index */
 | |
|     lock->current_alloc_idx =
 | |
|         (lock->current_alloc_idx + 1) % lock->group_count;
 | |
| 
 | |
|     /* get and insert a new id */
 | |
|     *curr_id = lock->id_ctr;
 | |
|     lock->id_ctr++;
 | |
| 
 | |
|     /* update the reader index to be the prior qp */
 | |
|     tmp = lock->current_alloc_idx;
 | |
| # if (defined(NO_INTERLOCKEDOR64))
 | |
|     CRYPTO_THREAD_write_lock(lock->rw_lock);
 | |
|     lock->reader_idx = tmp;
 | |
|     CRYPTO_THREAD_unlock(lock->rw_lock);
 | |
| # else
 | |
|     InterlockedExchange((LONG volatile *)&lock->reader_idx, tmp);
 | |
| # endif
 | |
| 
 | |
|     /* wake up any waiters */
 | |
|     ossl_crypto_condvar_broadcast(lock->alloc_signal);
 | |
|     ossl_crypto_mutex_unlock(lock->alloc_lock);
 | |
|     return &lock->qp_group[current_idx];
 | |
| }
 | |
| 
 | |
| static void retire_qp(CRYPTO_RCU_LOCK *lock,
 | |
|                       struct rcu_qp *qp)
 | |
| {
 | |
|     ossl_crypto_mutex_lock(lock->alloc_lock);
 | |
|     lock->writers_alloced--;
 | |
|     ossl_crypto_condvar_broadcast(lock->alloc_signal);
 | |
|     ossl_crypto_mutex_unlock(lock->alloc_lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     struct rcu_qp *qp;
 | |
|     uint64_t count;
 | |
|     uint32_t curr_id;
 | |
|     struct rcu_cb_item *cb_items, *tmpcb;
 | |
| 
 | |
|     /* before we do anything else, lets grab the cb list */
 | |
|     ossl_crypto_mutex_lock(lock->write_lock);
 | |
|     cb_items = lock->cb_items;
 | |
|     lock->cb_items = NULL;
 | |
|     ossl_crypto_mutex_unlock(lock->write_lock);
 | |
| 
 | |
|     qp = update_qp(lock, &curr_id);
 | |
| 
 | |
|     /* retire in order */
 | |
|     ossl_crypto_mutex_lock(lock->prior_lock);
 | |
|     while (lock->next_to_retire != curr_id)
 | |
|         ossl_crypto_condvar_wait(lock->prior_signal, lock->prior_lock);
 | |
| 
 | |
|     /* wait for the reader count to reach zero */
 | |
|     do {
 | |
|         CRYPTO_atomic_load(&qp->users, &count, lock->rw_lock);
 | |
|     } while (count != (uint64_t)0);
 | |
| 
 | |
|     lock->next_to_retire++;
 | |
|     ossl_crypto_condvar_broadcast(lock->prior_signal);
 | |
|     ossl_crypto_mutex_unlock(lock->prior_lock);
 | |
| 
 | |
|     retire_qp(lock, qp);
 | |
| 
 | |
|     /* handle any callbacks that we have */
 | |
|     while (cb_items != NULL) {
 | |
|         tmpcb = cb_items;
 | |
|         cb_items = cb_items->next;
 | |
|         tmpcb->fn(tmpcb->data);
 | |
|         OPENSSL_free(tmpcb);
 | |
|     }
 | |
| 
 | |
|     /* and we're done */
 | |
|     return;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note, must be called under the protection of ossl_rcu_write_lock
 | |
|  */
 | |
| int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
 | |
| {
 | |
|     struct rcu_cb_item *new;
 | |
| 
 | |
|     new = OPENSSL_zalloc(sizeof(struct rcu_cb_item));
 | |
|     if (new == NULL)
 | |
|         return 0;
 | |
|     new->data = data;
 | |
|     new->fn = cb;
 | |
| 
 | |
|     new->next = lock->cb_items;
 | |
|     lock->cb_items = new;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void *ossl_rcu_uptr_deref(void **p)
 | |
| {
 | |
|     return (void *)*p;
 | |
| }
 | |
| 
 | |
| void ossl_rcu_assign_uptr(void **p, void **v)
 | |
| {
 | |
|     InterlockedExchangePointer((void * volatile *)p, (void *)*v);
 | |
| }
 | |
| 
 | |
| 
 | |
| CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
 | |
| {
 | |
|     CRYPTO_RWLOCK *lock;
 | |
| # ifdef USE_RWLOCK
 | |
|     CRYPTO_win_rwlock *rwlock;
 | |
| 
 | |
|     if ((lock = OPENSSL_zalloc(sizeof(CRYPTO_win_rwlock))) == NULL)
 | |
|         /* Don't set error, to avoid recursion blowup. */
 | |
|         return NULL;
 | |
|     rwlock = lock;
 | |
|     InitializeSRWLock(&rwlock->lock);
 | |
| # else
 | |
| 
 | |
|     if ((lock = OPENSSL_zalloc(sizeof(CRITICAL_SECTION))) == NULL)
 | |
|         /* Don't set error, to avoid recursion blowup. */
 | |
|         return NULL;
 | |
| 
 | |
| #  if !defined(_WIN32_WCE)
 | |
|     /* 0x400 is the spin count value suggested in the documentation */
 | |
|     if (!InitializeCriticalSectionAndSpinCount(lock, 0x400)) {
 | |
|         OPENSSL_free(lock);
 | |
|         return NULL;
 | |
|     }
 | |
| #  else
 | |
|     InitializeCriticalSection(lock);
 | |
| #  endif
 | |
| # endif
 | |
| 
 | |
|     return lock;
 | |
| }
 | |
| 
 | |
| __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # ifdef USE_RWLOCK
 | |
|     CRYPTO_win_rwlock *rwlock = lock;
 | |
| 
 | |
|     AcquireSRWLockShared(&rwlock->lock);
 | |
| # else
 | |
|     EnterCriticalSection(lock);
 | |
| # endif
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # ifdef USE_RWLOCK
 | |
|     CRYPTO_win_rwlock *rwlock = lock;
 | |
| 
 | |
|     AcquireSRWLockExclusive(&rwlock->lock);
 | |
|     rwlock->exclusive = 1;
 | |
| # else
 | |
|     EnterCriticalSection(lock);
 | |
| # endif
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # ifdef USE_RWLOCK
 | |
|     CRYPTO_win_rwlock *rwlock = lock;
 | |
| 
 | |
|     if (rwlock->exclusive) {
 | |
|         rwlock->exclusive = 0;
 | |
|         ReleaseSRWLockExclusive(&rwlock->lock);
 | |
|     } else {
 | |
|         ReleaseSRWLockShared(&rwlock->lock);
 | |
|     }
 | |
| # else
 | |
|     LeaveCriticalSection(lock);
 | |
| # endif
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
 | |
| {
 | |
|     if (lock == NULL)
 | |
|         return;
 | |
| 
 | |
| # ifndef USE_RWLOCK
 | |
|     DeleteCriticalSection(lock);
 | |
| # endif
 | |
|     OPENSSL_free(lock);
 | |
| 
 | |
|     return;
 | |
| }
 | |
| 
 | |
| # define ONCE_UNINITED     0
 | |
| # define ONCE_ININIT       1
 | |
| # define ONCE_DONE         2
 | |
| 
 | |
| /*
 | |
|  * We don't use InitOnceExecuteOnce because that isn't available in WinXP which
 | |
|  * we still have to support.
 | |
|  */
 | |
| int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
 | |
| {
 | |
|     LONG volatile *lock = (LONG *)once;
 | |
|     LONG result;
 | |
| 
 | |
|     if (*lock == ONCE_DONE)
 | |
|         return 1;
 | |
| 
 | |
|     do {
 | |
|         result = InterlockedCompareExchange(lock, ONCE_ININIT, ONCE_UNINITED);
 | |
|         if (result == ONCE_UNINITED) {
 | |
|             init();
 | |
|             *lock = ONCE_DONE;
 | |
|             return 1;
 | |
|         }
 | |
|     } while (result == ONCE_ININIT);
 | |
| 
 | |
|     return (*lock == ONCE_DONE);
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
 | |
| {
 | |
|     *key = TlsAlloc();
 | |
|     if (*key == TLS_OUT_OF_INDEXES)
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
 | |
| {
 | |
|     DWORD last_error;
 | |
|     void *ret;
 | |
| 
 | |
|     /*
 | |
|      * TlsGetValue clears the last error even on success, so that callers may
 | |
|      * distinguish it successfully returning NULL or failing. It is documented
 | |
|      * to never fail if the argument is a valid index from TlsAlloc, so we do
 | |
|      * not need to handle this.
 | |
|      *
 | |
|      * However, this error-mangling behavior interferes with the caller's use of
 | |
|      * GetLastError. In particular SSL_get_error queries the error queue to
 | |
|      * determine whether the caller should look at the OS's errors. To avoid
 | |
|      * destroying state, save and restore the Windows error.
 | |
|      *
 | |
|      * https://msdn.microsoft.com/en-us/library/windows/desktop/ms686812(v=vs.85).aspx
 | |
|      */
 | |
|     last_error = GetLastError();
 | |
|     ret = TlsGetValue(*key);
 | |
|     SetLastError(last_error);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
 | |
| {
 | |
|     if (TlsSetValue(*key, val) == 0)
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
 | |
| {
 | |
|     if (TlsFree(*key) == 0)
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
 | |
| {
 | |
|     return GetCurrentThreadId();
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
 | |
| {
 | |
|     return (a == b);
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if (defined(NO_INTERLOCKEDOR64))
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
|     *val += amount;
 | |
|     *ret = *val;
 | |
| 
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| # else
 | |
|     *ret = (int)InterlockedExchangeAdd((LONG volatile *)val, (LONG)amount)
 | |
|         + amount;
 | |
|     return 1;
 | |
| # endif
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
 | |
|                         CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if (defined(NO_INTERLOCKEDOR64))
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
|     *val += op;
 | |
|     *ret = *val;
 | |
| 
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| # else
 | |
|     *ret = (uint64_t)InterlockedAdd64((LONG64 volatile *)val, (LONG64)op);
 | |
|     return 1;
 | |
| # endif
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
 | |
|                       CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if (defined(NO_INTERLOCKEDOR64))
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
|     *val &= op;
 | |
|     *ret = *val;
 | |
| 
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| # else
 | |
|     *ret = (uint64_t)InterlockedAnd64((LONG64 volatile *)val, (LONG64)op) & op;
 | |
|     return 1;
 | |
| # endif
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
 | |
|                      CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if (defined(NO_INTERLOCKEDOR64))
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
|     *val |= op;
 | |
|     *ret = *val;
 | |
| 
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| # else
 | |
|     *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, (LONG64)op) | op;
 | |
|     return 1;
 | |
| # endif
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if (defined(NO_INTERLOCKEDOR64))
 | |
|     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
 | |
|         return 0;
 | |
|     *ret = *val;
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| # else
 | |
|     *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, 0);
 | |
|     return 1;
 | |
| # endif
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if (defined(NO_INTERLOCKEDOR64))
 | |
|     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
 | |
|         return 0;
 | |
|     *dst = val;
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| # else
 | |
|     InterlockedExchange64(dst, val);
 | |
|     return 1;
 | |
| # endif
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if (defined(NO_INTERLOCKEDOR64))
 | |
|     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
 | |
|         return 0;
 | |
|     *ret = *val;
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| # else
 | |
|     /* On Windows, LONG (but not long) is always the same size as int. */
 | |
|     *ret = (int)InterlockedOr((LONG volatile *)val, 0);
 | |
|     return 1;
 | |
| # endif
 | |
| }
 | |
| 
 | |
| int openssl_init_fork_handlers(void)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int openssl_get_fork_id(void)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| #endif
 |