mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			494 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			494 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #define _GNU_SOURCE
 | |
| #include "e_os.h"
 | |
| #include <stdio.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include <openssl/rand.h>
 | |
| #include "rand_lcl.h"
 | |
| #include "internal/rand_int.h"
 | |
| #include <stdio.h>
 | |
| #if defined(__linux)
 | |
| # include <sys/syscall.h>
 | |
| #endif
 | |
| #if defined(__FreeBSD__)
 | |
| # include <sys/types.h>
 | |
| # include <sys/sysctl.h>
 | |
| # include <sys/param.h>
 | |
| #endif
 | |
| #if defined(__OpenBSD__)
 | |
| # include <sys/param.h>
 | |
| #endif
 | |
| #ifdef OPENSSL_SYS_UNIX
 | |
| # include <sys/types.h>
 | |
| # include <unistd.h>
 | |
| # include <sys/time.h>
 | |
| 
 | |
| static uint64_t get_time_stamp(void);
 | |
| static uint64_t get_timer_bits(void);
 | |
| 
 | |
| /* Macro to convert two thirty two bit values into a sixty four bit one */
 | |
| # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
 | |
| 
 | |
| /*
 | |
|  * Check for the existence and support of POSIX timers.  The standard
 | |
|  * says that the _POSIX_TIMERS macro will have a positive value if they
 | |
|  * are available.
 | |
|  *
 | |
|  * However, we want an additional constraint: that the timer support does
 | |
|  * not require an extra library dependency.  Early versions of glibc
 | |
|  * require -lrt to be specified on the link line to access the timers,
 | |
|  * so this needs to be checked for.
 | |
|  *
 | |
|  * It is worse because some libraries define __GLIBC__ but don't
 | |
|  * support the version testing macro (e.g. uClibc).  This means
 | |
|  * an extra check is needed.
 | |
|  *
 | |
|  * The final condition is:
 | |
|  *      "have posix timers and either not glibc or glibc without -lrt"
 | |
|  *
 | |
|  * The nested #if sequences are required to avoid using a parameterised
 | |
|  * macro that might be undefined.
 | |
|  */
 | |
| # undef OSSL_POSIX_TIMER_OKAY
 | |
| # if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
 | |
| #  if defined(__GLIBC__)
 | |
| #   if defined(__GLIBC_PREREQ)
 | |
| #    if __GLIBC_PREREQ(2, 17)
 | |
| #     define OSSL_POSIX_TIMER_OKAY
 | |
| #    endif
 | |
| #   endif
 | |
| #  else
 | |
| #   define OSSL_POSIX_TIMER_OKAY
 | |
| #  endif
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| int syscall_random(void *buf, size_t buflen);
 | |
| 
 | |
| #if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
 | |
|         !defined(OPENSSL_RAND_SEED_NONE)
 | |
| # error "UEFI and VXWorks only support seeding NONE"
 | |
| #endif
 | |
| 
 | |
| #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
 | |
|     || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
 | |
|     || defined(OPENSSL_SYS_UEFI))
 | |
| 
 | |
| # if defined(OPENSSL_SYS_VOS)
 | |
| 
 | |
| #  ifndef OPENSSL_RAND_SEED_OS
 | |
| #   error "Unsupported seeding method configured; must be os"
 | |
| #  endif
 | |
| 
 | |
| #  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
 | |
| #   error "Unsupported HP-PA and IA32 at the same time."
 | |
| #  endif
 | |
| #  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
 | |
| #   error "Must have one of HP-PA or IA32"
 | |
| #  endif
 | |
| 
 | |
| /*
 | |
|  * The following algorithm repeatedly samples the real-time clock (RTC) to
 | |
|  * generate a sequence of unpredictable data.  The algorithm relies upon the
 | |
|  * uneven execution speed of the code (due to factors such as cache misses,
 | |
|  * interrupts, bus activity, and scheduling) and upon the rather large
 | |
|  * relative difference between the speed of the clock and the rate at which
 | |
|  * it can be read.  If it is ported to an environment where execution speed
 | |
|  * is more constant or where the RTC ticks at a much slower rate, or the
 | |
|  * clock can be read with fewer instructions, it is likely that the results
 | |
|  * would be far more predictable.  This should only be used for legacy
 | |
|  * platforms.
 | |
|  *
 | |
|  * As a precaution, we assume only 2 bits of entropy per byte.
 | |
|  */
 | |
| size_t rand_pool_acquire_entropy(RAND_POOL *pool)
 | |
| {
 | |
|     short int code;
 | |
|     int i, k;
 | |
|     size_t bytes_needed;
 | |
|     struct timespec ts;
 | |
|     unsigned char v;
 | |
| #  ifdef OPENSSL_SYS_VOS_HPPA
 | |
|     long duration;
 | |
|     extern void s$sleep(long *_duration, short int *_code);
 | |
| #  else
 | |
|     long long duration;
 | |
|     extern void s$sleep2(long long *_duration, short int *_code);
 | |
| #  endif
 | |
| 
 | |
|     bytes_needed = rand_pool_bytes_needed(pool, 2 /*entropy_per_byte*/);
 | |
| 
 | |
|     for (i = 0; i < bytes_needed; i++) {
 | |
|         /*
 | |
|          * burn some cpu; hope for interrupts, cache collisions, bus
 | |
|          * interference, etc.
 | |
|          */
 | |
|         for (k = 0; k < 99; k++)
 | |
|             ts.tv_nsec = random();
 | |
| 
 | |
| #  ifdef OPENSSL_SYS_VOS_HPPA
 | |
|         /* sleep for 1/1024 of a second (976 us).  */
 | |
|         duration = 1;
 | |
|         s$sleep(&duration, &code);
 | |
| #  else
 | |
|         /* sleep for 1/65536 of a second (15 us).  */
 | |
|         duration = 1;
 | |
|         s$sleep2(&duration, &code);
 | |
| #  endif
 | |
| 
 | |
|         /* Get wall clock time, take 8 bits. */
 | |
|         clock_gettime(CLOCK_REALTIME, &ts);
 | |
|         v = (unsigned char)(ts.tv_nsec & 0xFF);
 | |
|         rand_pool_add(pool, arg, &v, sizeof(v) , 2);
 | |
|     }
 | |
|     return rand_pool_entropy_available(pool);
 | |
| }
 | |
| 
 | |
| # else
 | |
| 
 | |
| #  if defined(OPENSSL_RAND_SEED_EGD) && \
 | |
|         (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
 | |
| #   error "Seeding uses EGD but EGD is turned off or no device given"
 | |
| #  endif
 | |
| 
 | |
| #  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
 | |
| #   error "Seeding uses urandom but DEVRANDOM is not configured"
 | |
| #  endif
 | |
| 
 | |
| #  if defined(__GLIBC__) && defined(__GLIBC_PREREQ)
 | |
| #   if __GLIBC_PREREQ(2, 25)
 | |
| #    define OPENSSL_HAVE_GETRANDOM
 | |
| #   endif
 | |
| #  endif
 | |
| 
 | |
| #  if (defined(__FreeBSD__) && __FreeBSD_version >= 1200061)
 | |
| #   define OPENSSL_HAVE_GETRANDOM
 | |
| #  endif
 | |
| 
 | |
| #  if defined(OPENSSL_HAVE_GETRANDOM)
 | |
| #   include <sys/random.h>
 | |
| #  endif
 | |
| 
 | |
| #  if defined(OPENSSL_RAND_SEED_OS)
 | |
| #   if !defined(DEVRANDOM)
 | |
| #    error "OS seeding requires DEVRANDOM to be configured"
 | |
| #   endif
 | |
| #   define OPENSSL_RAND_SEED_GETRANDOM
 | |
| #   define OPENSSL_RAND_SEED_DEVRANDOM
 | |
| #  endif
 | |
| 
 | |
| #  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
 | |
| #   error "librandom not (yet) supported"
 | |
| #  endif
 | |
| 
 | |
| #  if defined(__FreeBSD__) && defined(KERN_ARND)
 | |
| /*
 | |
|  * sysctl_random(): Use sysctl() to read a random number from the kernel
 | |
|  * Returns the size on success, 0 on failure.
 | |
|  */
 | |
| static size_t sysctl_random(char *buf, size_t buflen)
 | |
| {
 | |
|     int mib[2];
 | |
|     size_t done = 0;
 | |
|     size_t len;
 | |
| 
 | |
|     /*
 | |
|      * Old implementations returned longs, newer versions support variable
 | |
|      * sizes up to 256 byte. The code below would not work properly when
 | |
|      * the sysctl returns long and we want to request something not a multiple
 | |
|      * of longs, which should never be the case.
 | |
|      */
 | |
|     if (!ossl_assert(buflen % sizeof(long) == 0))
 | |
|         return 0;
 | |
| 
 | |
|     mib[0] = CTL_KERN;
 | |
|     mib[1] = KERN_ARND;
 | |
| 
 | |
|     do {
 | |
|         len = buflen;
 | |
|         if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
 | |
|             return done;
 | |
|         done += len;
 | |
|         buf += len;
 | |
|         buflen -= len;
 | |
|     } while (buflen > 0);
 | |
| 
 | |
|     return done;
 | |
| }
 | |
| #  endif
 | |
| 
 | |
| /*
 | |
|  * syscall_random(): Try to get random data using a system call
 | |
|  * returns the number of bytes returned in buf, or <= 0 on error.
 | |
|  */
 | |
| int syscall_random(void *buf, size_t buflen)
 | |
| {
 | |
| #  if defined(OPENSSL_HAVE_GETRANDOM)
 | |
|     return (int)getrandom(buf, buflen, 0);
 | |
| #  endif
 | |
| 
 | |
| #  if defined(__linux) && defined(SYS_getrandom)
 | |
|     return (int)syscall(SYS_getrandom, buf, buflen, 0);
 | |
| #  endif
 | |
| 
 | |
| #  if defined(__FreeBSD__) && defined(KERN_ARND)
 | |
|     return (int)sysctl_random(buf, buflen);
 | |
| #  endif
 | |
| 
 | |
|    /* Supported since OpenBSD 5.6 */
 | |
| #  if defined(__OpenBSD__) && OpenBSD >= 201411
 | |
|     return getentropy(buf, buflen);
 | |
| #  endif
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try the various seeding methods in turn, exit when successful.
 | |
|  *
 | |
|  * TODO(DRBG): If more than one entropy source is available, is it
 | |
|  * preferable to stop as soon as enough entropy has been collected
 | |
|  * (as favored by @rsalz) or should one rather be defensive and add
 | |
|  * more entropy than requested and/or from different sources?
 | |
|  *
 | |
|  * Currently, the user can select multiple entropy sources in the
 | |
|  * configure step, yet in practice only the first available source
 | |
|  * will be used. A more flexible solution has been requested, but
 | |
|  * currently it is not clear how this can be achieved without
 | |
|  * overengineering the problem. There are many parameters which
 | |
|  * could be taken into account when selecting the order and amount
 | |
|  * of input from the different entropy sources (trust, quality,
 | |
|  * possibility of blocking).
 | |
|  */
 | |
| size_t rand_pool_acquire_entropy(RAND_POOL *pool)
 | |
| {
 | |
| #  ifdef OPENSSL_RAND_SEED_NONE
 | |
|     return rand_pool_entropy_available(pool);
 | |
| #  else
 | |
|     size_t bytes_needed;
 | |
|     size_t entropy_available = 0;
 | |
|     unsigned char *buffer;
 | |
| 
 | |
| #   ifdef OPENSSL_RAND_SEED_GETRANDOM
 | |
|     bytes_needed = rand_pool_bytes_needed(pool, 8 /*entropy_per_byte*/);
 | |
|     buffer = rand_pool_add_begin(pool, bytes_needed);
 | |
|     if (buffer != NULL) {
 | |
|         size_t bytes = 0;
 | |
| 
 | |
|         if (syscall_random(buffer, bytes_needed) == (int)bytes_needed)
 | |
|             bytes = bytes_needed;
 | |
| 
 | |
|         rand_pool_add_end(pool, bytes, 8 * bytes);
 | |
|         entropy_available = rand_pool_entropy_available(pool);
 | |
|     }
 | |
|     if (entropy_available > 0)
 | |
|         return entropy_available;
 | |
| #   endif
 | |
| 
 | |
| #   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
 | |
|     {
 | |
|         /* Not yet implemented. */
 | |
|     }
 | |
| #   endif
 | |
| 
 | |
| #   ifdef OPENSSL_RAND_SEED_DEVRANDOM
 | |
|     bytes_needed = rand_pool_bytes_needed(pool, 8 /*entropy_per_byte*/);
 | |
|     if (bytes_needed > 0) {
 | |
|         static const char *paths[] = { DEVRANDOM, NULL };
 | |
|         FILE *fp;
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0; paths[i] != NULL; i++) {
 | |
|             if ((fp = fopen(paths[i], "rb")) == NULL)
 | |
|                 continue;
 | |
|             setbuf(fp, NULL);
 | |
|             buffer = rand_pool_add_begin(pool, bytes_needed);
 | |
|             if (buffer != NULL) {
 | |
|                 size_t bytes = 0;
 | |
|                 if (fread(buffer, 1, bytes_needed, fp) == bytes_needed)
 | |
|                     bytes = bytes_needed;
 | |
| 
 | |
|                 rand_pool_add_end(pool, bytes, 8 * bytes);
 | |
|                 entropy_available = rand_pool_entropy_available(pool);
 | |
|             }
 | |
|             fclose(fp);
 | |
|             if (entropy_available > 0)
 | |
|                 return entropy_available;
 | |
| 
 | |
|             bytes_needed = rand_pool_bytes_needed(pool, 8 /*entropy_per_byte*/);
 | |
|         }
 | |
|     }
 | |
| #   endif
 | |
| 
 | |
| #   ifdef OPENSSL_RAND_SEED_RDTSC
 | |
|     entropy_available = rand_acquire_entropy_from_tsc(pool);
 | |
|     if (entropy_available > 0)
 | |
|         return entropy_available;
 | |
| #   endif
 | |
| 
 | |
| #   ifdef OPENSSL_RAND_SEED_RDCPU
 | |
|     entropy_available = rand_acquire_entropy_from_cpu(pool);
 | |
|     if (entropy_available > 0)
 | |
|         return entropy_available;
 | |
| #   endif
 | |
| 
 | |
| #   ifdef OPENSSL_RAND_SEED_EGD
 | |
|     bytes_needed = rand_pool_bytes_needed(pool, 8 /*entropy_per_byte*/);
 | |
|     if (bytes_needed > 0) {
 | |
|         static const char *paths[] = { DEVRANDOM_EGD, NULL };
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0; paths[i] != NULL; i++) {
 | |
|             buffer = rand_pool_add_begin(pool, bytes_needed);
 | |
|             if (buffer != NULL) {
 | |
|                 size_t bytes = 0;
 | |
|                 int num = RAND_query_egd_bytes(paths[i],
 | |
|                                                buffer, (int)bytes_needed);
 | |
|                 if (num == (int)bytes_needed)
 | |
|                     bytes = bytes_needed;
 | |
| 
 | |
|                 rand_pool_add_end(pool, bytes, 8 * bytes);
 | |
|                 entropy_available = rand_pool_entropy_available(pool);
 | |
|             }
 | |
|             if (entropy_available > 0)
 | |
|                 return entropy_available;
 | |
|         }
 | |
|     }
 | |
| #   endif
 | |
| 
 | |
|     return rand_pool_entropy_available(pool);
 | |
| #  endif
 | |
| }
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #ifdef OPENSSL_SYS_UNIX
 | |
| int rand_pool_add_nonce_data(RAND_POOL *pool)
 | |
| {
 | |
|     struct {
 | |
|         pid_t pid;
 | |
|         CRYPTO_THREAD_ID tid;
 | |
|         uint64_t time;
 | |
|     } data = { 0 };
 | |
| 
 | |
|     /*
 | |
|      * Add process id, thread id, and a high resolution timestamp to
 | |
|      * ensure that the nonce is unique whith high probability for
 | |
|      * different process instances.
 | |
|      */
 | |
|     data.pid = getpid();
 | |
|     data.tid = CRYPTO_THREAD_get_current_id();
 | |
|     data.time = get_time_stamp();
 | |
| 
 | |
|     return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
 | |
| }
 | |
| 
 | |
| int rand_pool_add_additional_data(RAND_POOL *pool)
 | |
| {
 | |
|     struct {
 | |
|         CRYPTO_THREAD_ID tid;
 | |
|         uint64_t time;
 | |
|     } data = { 0 };
 | |
| 
 | |
|     /*
 | |
|      * Add some noise from the thread id and a high resolution timer.
 | |
|      * The thread id adds a little randomness if the drbg is accessed
 | |
|      * concurrently (which is the case for the <master> drbg).
 | |
|      */
 | |
|     data.tid = CRYPTO_THREAD_get_current_id();
 | |
|     data.time = get_timer_bits();
 | |
| 
 | |
|     return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Get the current time with the highest possible resolution
 | |
|  *
 | |
|  * The time stamp is added to the nonce, so it is optimized for not repeating.
 | |
|  * The current time is ideal for this purpose, provided the computer's clock
 | |
|  * is synchronized.
 | |
|  */
 | |
| static uint64_t get_time_stamp(void)
 | |
| {
 | |
| # if defined(OSSL_POSIX_TIMER_OKAY)
 | |
|     {
 | |
|         struct timespec ts;
 | |
| 
 | |
|         if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
 | |
|             return TWO32TO64(ts.tv_sec, ts.tv_nsec);
 | |
|     }
 | |
| # endif
 | |
| # if defined(__unix__) \
 | |
|      || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
 | |
|     {
 | |
|         struct timeval tv;
 | |
| 
 | |
|         if (gettimeofday(&tv, NULL) == 0)
 | |
|             return TWO32TO64(tv.tv_sec, tv.tv_usec);
 | |
|     }
 | |
| # endif
 | |
|     return time(NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get an arbitrary timer value of the highest possible resolution
 | |
|  *
 | |
|  * The timer value is added as random noise to the additional data,
 | |
|  * which is not considered a trusted entropy sourec, so any result
 | |
|  * is acceptable.
 | |
|  */
 | |
| static uint64_t get_timer_bits(void)
 | |
| {
 | |
|     uint64_t res = OPENSSL_rdtsc();
 | |
| 
 | |
|     if (res != 0)
 | |
|         return res;
 | |
| 
 | |
| # if defined(__sun) || defined(__hpux)
 | |
|     return gethrtime();
 | |
| # elif defined(_AIX)
 | |
|     {
 | |
|         timebasestruct_t t;
 | |
| 
 | |
|         read_wall_time(&t, TIMEBASE_SZ);
 | |
|         return TWO32TO64(t.tb_high, t.tb_low);
 | |
|     }
 | |
| # elif defined(OSSL_POSIX_TIMER_OKAY)
 | |
|     {
 | |
|         struct timespec ts;
 | |
| 
 | |
| #  ifdef CLOCK_BOOTTIME
 | |
| #   define CLOCK_TYPE CLOCK_BOOTTIME
 | |
| #  elif defined(_POSIX_MONOTONIC_CLOCK)
 | |
| #   define CLOCK_TYPE CLOCK_MONOTONIC
 | |
| #  else
 | |
| #   define CLOCK_TYPE CLOCK_REALTIME
 | |
| #  endif
 | |
| 
 | |
|         if (clock_gettime(CLOCK_TYPE, &ts) == 0)
 | |
|             return TWO32TO64(ts.tv_sec, ts.tv_nsec);
 | |
|     }
 | |
| # endif
 | |
| # if defined(__unix__) \
 | |
|      || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
 | |
|     {
 | |
|         struct timeval tv;
 | |
| 
 | |
|         if (gettimeofday(&tv, NULL) == 0)
 | |
|             return TWO32TO64(tv.tv_sec, tv.tv_usec);
 | |
|     }
 | |
| # endif
 | |
|     return time(NULL);
 | |
| }
 | |
| #endif
 |