mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			511 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			511 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the Apache License 2.0 (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <stdarg.h>
 | |
| #include <string.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/kdf.h>
 | |
| #include <openssl/err.h>
 | |
| #include <openssl/core_names.h>
 | |
| #include "crypto/evp.h"
 | |
| #include "internal/numbers.h"
 | |
| #include "prov/implementations.h"
 | |
| #include "prov/provider_ctx.h"
 | |
| #include "prov/providercommon.h"
 | |
| #include "prov/providercommonerr.h"
 | |
| #include "prov/implementations.h"
 | |
| 
 | |
| #ifndef OPENSSL_NO_SCRYPT
 | |
| 
 | |
| static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
 | |
| static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
 | |
| static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
 | |
| static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
 | |
| static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
 | |
| static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
 | |
| static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
 | |
| static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
 | |
| 
 | |
| static int scrypt_alg(const char *pass, size_t passlen,
 | |
|                       const unsigned char *salt, size_t saltlen,
 | |
|                       uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
 | |
|                       unsigned char *key, size_t keylen, EVP_MD *sha256,
 | |
|                       OPENSSL_CTX *libctx, const char *propq);
 | |
| 
 | |
| typedef struct {
 | |
|     OPENSSL_CTX *libctx;
 | |
|     char *propq;
 | |
|     unsigned char *pass;
 | |
|     size_t pass_len;
 | |
|     unsigned char *salt;
 | |
|     size_t salt_len;
 | |
|     uint64_t N;
 | |
|     uint64_t r, p;
 | |
|     uint64_t maxmem_bytes;
 | |
|     EVP_MD *sha256;
 | |
| } KDF_SCRYPT;
 | |
| 
 | |
| static void kdf_scrypt_init(KDF_SCRYPT *ctx);
 | |
| 
 | |
| static void *kdf_scrypt_new(void *provctx)
 | |
| {
 | |
|     KDF_SCRYPT *ctx;
 | |
| 
 | |
|     if (!ossl_prov_is_running())
 | |
|         return NULL;
 | |
| 
 | |
|     ctx = OPENSSL_zalloc(sizeof(*ctx));
 | |
|     if (ctx == NULL) {
 | |
|         ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
 | |
|         return NULL;
 | |
|     }
 | |
|     ctx->libctx = PROV_LIBRARY_CONTEXT_OF(provctx);
 | |
|     kdf_scrypt_init(ctx);
 | |
|     return ctx;
 | |
| }
 | |
| 
 | |
| static void kdf_scrypt_free(void *vctx)
 | |
| {
 | |
|     KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
 | |
| 
 | |
|     if (ctx != NULL) {
 | |
|         OPENSSL_free(ctx->propq);
 | |
|         EVP_MD_free(ctx->sha256);
 | |
|         kdf_scrypt_reset(ctx);
 | |
|         OPENSSL_free(ctx);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kdf_scrypt_reset(void *vctx)
 | |
| {
 | |
|     KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
 | |
| 
 | |
|     OPENSSL_free(ctx->salt);
 | |
|     OPENSSL_clear_free(ctx->pass, ctx->pass_len);
 | |
|     kdf_scrypt_init(ctx);
 | |
| }
 | |
| 
 | |
| static void kdf_scrypt_init(KDF_SCRYPT *ctx)
 | |
| {
 | |
|     /* Default values are the most conservative recommendation given in the
 | |
|      * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
 | |
|      * for this parameter choice (approx. 128 * r * N * p bytes).
 | |
|      */
 | |
|     ctx->N = 1 << 20;
 | |
|     ctx->r = 8;
 | |
|     ctx->p = 1;
 | |
|     ctx->maxmem_bytes = 1025 * 1024 * 1024;
 | |
| }
 | |
| 
 | |
| static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
 | |
|                              const OSSL_PARAM *p)
 | |
| {
 | |
|     OPENSSL_clear_free(*buffer, *buflen);
 | |
|     if (p->data_size == 0) {
 | |
|         if ((*buffer = OPENSSL_malloc(1)) == NULL) {
 | |
|             ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
 | |
|             return 0;
 | |
|         }
 | |
|     } else if (p->data != NULL) {
 | |
|         *buffer = NULL;
 | |
|         if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
 | |
|             return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int set_digest(KDF_SCRYPT *ctx)
 | |
| {
 | |
|     EVP_MD_free(ctx->sha256);
 | |
|     ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
 | |
|     if (ctx->sha256 == NULL) {
 | |
|         OPENSSL_free(ctx);
 | |
|         ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
 | |
|         return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
 | |
| {
 | |
|     OPENSSL_free(ctx->propq);
 | |
|     ctx->propq = NULL;
 | |
|     if (propq != NULL) {
 | |
|         ctx->propq = OPENSSL_strdup(propq);
 | |
|         if (ctx->propq == NULL) {
 | |
|             ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int kdf_scrypt_derive(void *vctx, unsigned char *key,
 | |
|                              size_t keylen)
 | |
| {
 | |
|     KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
 | |
| 
 | |
|     if (!ossl_prov_is_running())
 | |
|         return 0;
 | |
| 
 | |
|     if (ctx->pass == NULL) {
 | |
|         ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (ctx->salt == NULL) {
 | |
|         ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (ctx->sha256 == NULL && !set_digest(ctx))
 | |
|         return 0;
 | |
| 
 | |
|     return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
 | |
|                       ctx->salt_len, ctx->N, ctx->r, ctx->p,
 | |
|                       ctx->maxmem_bytes, key, keylen, ctx->sha256,
 | |
|                       ctx->libctx, ctx->propq);
 | |
| }
 | |
| 
 | |
| static int is_power_of_two(uint64_t value)
 | |
| {
 | |
|     return (value != 0) && ((value & (value - 1)) == 0);
 | |
| }
 | |
| 
 | |
| static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
 | |
| {
 | |
|     const OSSL_PARAM *p;
 | |
|     KDF_SCRYPT *ctx = vctx;
 | |
|     uint64_t u64_value;
 | |
| 
 | |
|     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
 | |
|         if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p))
 | |
|             return 0;
 | |
| 
 | |
|     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
 | |
|         if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p))
 | |
|             return 0;
 | |
| 
 | |
|     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
 | |
|         != NULL) {
 | |
|         if (!OSSL_PARAM_get_uint64(p, &u64_value)
 | |
|             || u64_value <= 1
 | |
|             || !is_power_of_two(u64_value))
 | |
|             return 0;
 | |
|         ctx->N = u64_value;
 | |
|     }
 | |
| 
 | |
|     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R))
 | |
|         != NULL) {
 | |
|         if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
 | |
|             return 0;
 | |
|         ctx->r = u64_value;
 | |
|     }
 | |
| 
 | |
|     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P))
 | |
|         != NULL) {
 | |
|         if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
 | |
|             return 0;
 | |
|         ctx->p = u64_value;
 | |
|     }
 | |
| 
 | |
|     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM))
 | |
|         != NULL) {
 | |
|         if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
 | |
|             return 0;
 | |
|         ctx->maxmem_bytes = u64_value;
 | |
|     }
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES);
 | |
|     if (p != NULL) {
 | |
|         if (p->data_type != OSSL_PARAM_UTF8_STRING
 | |
|             || !set_property_query(ctx, p->data)
 | |
|             || !set_digest(ctx))
 | |
|             return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *p_ctx)
 | |
| {
 | |
|     static const OSSL_PARAM known_settable_ctx_params[] = {
 | |
|         OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
 | |
|         OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
 | |
|         OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
 | |
|         OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
 | |
|         OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
 | |
|         OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
 | |
|         OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
 | |
|         OSSL_PARAM_END
 | |
|     };
 | |
|     return known_settable_ctx_params;
 | |
| }
 | |
| 
 | |
| static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
 | |
| {
 | |
|     OSSL_PARAM *p;
 | |
| 
 | |
|     if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
 | |
|         return OSSL_PARAM_set_size_t(p, SIZE_MAX);
 | |
|     return -2;
 | |
| }
 | |
| 
 | |
| static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *p_ctx)
 | |
| {
 | |
|     static const OSSL_PARAM known_gettable_ctx_params[] = {
 | |
|         OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
 | |
|         OSSL_PARAM_END
 | |
|     };
 | |
|     return known_gettable_ctx_params;
 | |
| }
 | |
| 
 | |
| const OSSL_DISPATCH kdf_scrypt_functions[] = {
 | |
|     { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
 | |
|     { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
 | |
|     { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
 | |
|     { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
 | |
|     { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
 | |
|       (void(*)(void))kdf_scrypt_settable_ctx_params },
 | |
|     { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
 | |
|     { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
 | |
|       (void(*)(void))kdf_scrypt_gettable_ctx_params },
 | |
|     { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
 | |
|     { 0, NULL }
 | |
| };
 | |
| 
 | |
| #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
 | |
| static void salsa208_word_specification(uint32_t inout[16])
 | |
| {
 | |
|     int i;
 | |
|     uint32_t x[16];
 | |
| 
 | |
|     memcpy(x, inout, sizeof(x));
 | |
|     for (i = 8; i > 0; i -= 2) {
 | |
|         x[4] ^= R(x[0] + x[12], 7);
 | |
|         x[8] ^= R(x[4] + x[0], 9);
 | |
|         x[12] ^= R(x[8] + x[4], 13);
 | |
|         x[0] ^= R(x[12] + x[8], 18);
 | |
|         x[9] ^= R(x[5] + x[1], 7);
 | |
|         x[13] ^= R(x[9] + x[5], 9);
 | |
|         x[1] ^= R(x[13] + x[9], 13);
 | |
|         x[5] ^= R(x[1] + x[13], 18);
 | |
|         x[14] ^= R(x[10] + x[6], 7);
 | |
|         x[2] ^= R(x[14] + x[10], 9);
 | |
|         x[6] ^= R(x[2] + x[14], 13);
 | |
|         x[10] ^= R(x[6] + x[2], 18);
 | |
|         x[3] ^= R(x[15] + x[11], 7);
 | |
|         x[7] ^= R(x[3] + x[15], 9);
 | |
|         x[11] ^= R(x[7] + x[3], 13);
 | |
|         x[15] ^= R(x[11] + x[7], 18);
 | |
|         x[1] ^= R(x[0] + x[3], 7);
 | |
|         x[2] ^= R(x[1] + x[0], 9);
 | |
|         x[3] ^= R(x[2] + x[1], 13);
 | |
|         x[0] ^= R(x[3] + x[2], 18);
 | |
|         x[6] ^= R(x[5] + x[4], 7);
 | |
|         x[7] ^= R(x[6] + x[5], 9);
 | |
|         x[4] ^= R(x[7] + x[6], 13);
 | |
|         x[5] ^= R(x[4] + x[7], 18);
 | |
|         x[11] ^= R(x[10] + x[9], 7);
 | |
|         x[8] ^= R(x[11] + x[10], 9);
 | |
|         x[9] ^= R(x[8] + x[11], 13);
 | |
|         x[10] ^= R(x[9] + x[8], 18);
 | |
|         x[12] ^= R(x[15] + x[14], 7);
 | |
|         x[13] ^= R(x[12] + x[15], 9);
 | |
|         x[14] ^= R(x[13] + x[12], 13);
 | |
|         x[15] ^= R(x[14] + x[13], 18);
 | |
|     }
 | |
|     for (i = 0; i < 16; ++i)
 | |
|         inout[i] += x[i];
 | |
|     OPENSSL_cleanse(x, sizeof(x));
 | |
| }
 | |
| 
 | |
| static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
 | |
| {
 | |
|     uint64_t i, j;
 | |
|     uint32_t X[16], *pB;
 | |
| 
 | |
|     memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
 | |
|     pB = B;
 | |
|     for (i = 0; i < r * 2; i++) {
 | |
|         for (j = 0; j < 16; j++)
 | |
|             X[j] ^= *pB++;
 | |
|         salsa208_word_specification(X);
 | |
|         memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
 | |
|     }
 | |
|     OPENSSL_cleanse(X, sizeof(X));
 | |
| }
 | |
| 
 | |
| static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
 | |
|                         uint32_t *X, uint32_t *T, uint32_t *V)
 | |
| {
 | |
|     unsigned char *pB;
 | |
|     uint32_t *pV;
 | |
|     uint64_t i, k;
 | |
| 
 | |
|     /* Convert from little endian input */
 | |
|     for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
 | |
|         *pV = *pB++;
 | |
|         *pV |= *pB++ << 8;
 | |
|         *pV |= *pB++ << 16;
 | |
|         *pV |= (uint32_t)*pB++ << 24;
 | |
|     }
 | |
| 
 | |
|     for (i = 1; i < N; i++, pV += 32 * r)
 | |
|         scryptBlockMix(pV, pV - 32 * r, r);
 | |
| 
 | |
|     scryptBlockMix(X, V + (N - 1) * 32 * r, r);
 | |
| 
 | |
|     for (i = 0; i < N; i++) {
 | |
|         uint32_t j;
 | |
|         j = X[16 * (2 * r - 1)] % N;
 | |
|         pV = V + 32 * r * j;
 | |
|         for (k = 0; k < 32 * r; k++)
 | |
|             T[k] = X[k] ^ *pV++;
 | |
|         scryptBlockMix(X, T, r);
 | |
|     }
 | |
|     /* Convert output to little endian */
 | |
|     for (i = 0, pB = B; i < 32 * r; i++) {
 | |
|         uint32_t xtmp = X[i];
 | |
|         *pB++ = xtmp & 0xff;
 | |
|         *pB++ = (xtmp >> 8) & 0xff;
 | |
|         *pB++ = (xtmp >> 16) & 0xff;
 | |
|         *pB++ = (xtmp >> 24) & 0xff;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef SIZE_MAX
 | |
| # define SIZE_MAX    ((size_t)-1)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Maximum power of two that will fit in uint64_t: this should work on
 | |
|  * most (all?) platforms.
 | |
|  */
 | |
| 
 | |
| #define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1)
 | |
| 
 | |
| /*
 | |
|  * Maximum value of p * r:
 | |
|  * p <= ((2^32-1) * hLen) / MFLen =>
 | |
|  * p <= ((2^32-1) * 32) / (128 * r) =>
 | |
|  * p * r <= (2^30-1)
 | |
|  */
 | |
| 
 | |
| #define SCRYPT_PR_MAX   ((1 << 30) - 1)
 | |
| 
 | |
| static int scrypt_alg(const char *pass, size_t passlen,
 | |
|                       const unsigned char *salt, size_t saltlen,
 | |
|                       uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
 | |
|                       unsigned char *key, size_t keylen, EVP_MD *sha256,
 | |
|                       OPENSSL_CTX *libctx, const char *propq)
 | |
| {
 | |
|     int rv = 0;
 | |
|     unsigned char *B;
 | |
|     uint32_t *X, *V, *T;
 | |
|     uint64_t i, Blen, Vlen;
 | |
| 
 | |
|     /* Sanity check parameters */
 | |
|     /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
 | |
|     if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
 | |
|         return 0;
 | |
|     /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
 | |
|     if (p > SCRYPT_PR_MAX / r) {
 | |
|         EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Need to check N: if 2^(128 * r / 8) overflows limit this is
 | |
|      * automatically satisfied since N <= UINT64_MAX.
 | |
|      */
 | |
| 
 | |
|     if (16 * r <= LOG2_UINT64_MAX) {
 | |
|         if (N >= (((uint64_t)1) << (16 * r))) {
 | |
|             EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Memory checks: check total allocated buffer size fits in uint64_t */
 | |
| 
 | |
|     /*
 | |
|      * B size in section 5 step 1.S
 | |
|      * Note: we know p * 128 * r < UINT64_MAX because we already checked
 | |
|      * p * r < SCRYPT_PR_MAX
 | |
|      */
 | |
|     Blen = p * 128 * r;
 | |
|     /*
 | |
|      * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
 | |
|      * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
 | |
|      */
 | |
|     if (Blen > INT_MAX) {
 | |
|         EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
 | |
|      * This is combined size V, X and T (section 4)
 | |
|      */
 | |
|     i = UINT64_MAX / (32 * sizeof(uint32_t));
 | |
|     if (N + 2 > i / r) {
 | |
|         EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
 | |
|         return 0;
 | |
|     }
 | |
|     Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
 | |
| 
 | |
|     /* check total allocated size fits in uint64_t */
 | |
|     if (Blen > UINT64_MAX - Vlen) {
 | |
|         EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Check that the maximum memory doesn't exceed a size_t limits */
 | |
|     if (maxmem > SIZE_MAX)
 | |
|         maxmem = SIZE_MAX;
 | |
| 
 | |
|     if (Blen + Vlen > maxmem) {
 | |
|         EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* If no key return to indicate parameters are OK */
 | |
|     if (key == NULL)
 | |
|         return 1;
 | |
| 
 | |
|     B = OPENSSL_malloc((size_t)(Blen + Vlen));
 | |
|     if (B == NULL) {
 | |
|         EVPerr(EVP_F_SCRYPT_ALG, ERR_R_MALLOC_FAILURE);
 | |
|         return 0;
 | |
|     }
 | |
|     X = (uint32_t *)(B + Blen);
 | |
|     T = X + 32 * r;
 | |
|     V = T + 32 * r;
 | |
|     if (pkcs5_pbkdf2_hmac_with_libctx(pass, passlen, salt, saltlen, 1, sha256,
 | |
|                                       (int)Blen, B, libctx, propq) == 0)
 | |
|         goto err;
 | |
| 
 | |
|     for (i = 0; i < p; i++)
 | |
|         scryptROMix(B + 128 * r * i, r, N, X, T, V);
 | |
| 
 | |
|     if (pkcs5_pbkdf2_hmac_with_libctx(pass, passlen, B, (int)Blen, 1, sha256,
 | |
|                                       keylen, key, libctx, propq) == 0)
 | |
|         goto err;
 | |
|     rv = 1;
 | |
|  err:
 | |
|     if (rv == 0)
 | |
|         EVPerr(EVP_F_SCRYPT_ALG, EVP_R_PBKDF2_ERROR);
 | |
| 
 | |
|     OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| #endif
 |