mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			4948 lines
		
	
	
		
			165 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			4948 lines
		
	
	
		
			165 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the Apache License 2.0 (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <ctype.h>
 | |
| #include <openssl/objects.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/hmac.h>
 | |
| #include <openssl/core_names.h>
 | |
| #include <openssl/ocsp.h>
 | |
| #include <openssl/conf.h>
 | |
| #include <openssl/x509v3.h>
 | |
| #include <openssl/dh.h>
 | |
| #include <openssl/bn.h>
 | |
| #include <openssl/provider.h>
 | |
| #include <openssl/param_build.h>
 | |
| #include "internal/nelem.h"
 | |
| #include "internal/sizes.h"
 | |
| #include "internal/tlsgroups.h"
 | |
| #include "internal/ssl_unwrap.h"
 | |
| #include "ssl_local.h"
 | |
| #include "quic/quic_local.h"
 | |
| #include <openssl/ct.h>
 | |
| 
 | |
| static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
 | |
| static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
 | |
| 
 | |
| SSL3_ENC_METHOD const TLSv1_enc_data = {
 | |
|     tls1_setup_key_block,
 | |
|     tls1_generate_master_secret,
 | |
|     tls1_change_cipher_state,
 | |
|     tls1_final_finish_mac,
 | |
|     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
 | |
|     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
 | |
|     tls1_alert_code,
 | |
|     tls1_export_keying_material,
 | |
|     0,
 | |
|     ssl3_set_handshake_header,
 | |
|     tls_close_construct_packet,
 | |
|     ssl3_handshake_write
 | |
| };
 | |
| 
 | |
| SSL3_ENC_METHOD const TLSv1_1_enc_data = {
 | |
|     tls1_setup_key_block,
 | |
|     tls1_generate_master_secret,
 | |
|     tls1_change_cipher_state,
 | |
|     tls1_final_finish_mac,
 | |
|     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
 | |
|     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
 | |
|     tls1_alert_code,
 | |
|     tls1_export_keying_material,
 | |
|     0,
 | |
|     ssl3_set_handshake_header,
 | |
|     tls_close_construct_packet,
 | |
|     ssl3_handshake_write
 | |
| };
 | |
| 
 | |
| SSL3_ENC_METHOD const TLSv1_2_enc_data = {
 | |
|     tls1_setup_key_block,
 | |
|     tls1_generate_master_secret,
 | |
|     tls1_change_cipher_state,
 | |
|     tls1_final_finish_mac,
 | |
|     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
 | |
|     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
 | |
|     tls1_alert_code,
 | |
|     tls1_export_keying_material,
 | |
|     SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
 | |
|         | SSL_ENC_FLAG_TLS1_2_CIPHERS,
 | |
|     ssl3_set_handshake_header,
 | |
|     tls_close_construct_packet,
 | |
|     ssl3_handshake_write
 | |
| };
 | |
| 
 | |
| SSL3_ENC_METHOD const TLSv1_3_enc_data = {
 | |
|     tls13_setup_key_block,
 | |
|     tls13_generate_master_secret,
 | |
|     tls13_change_cipher_state,
 | |
|     tls13_final_finish_mac,
 | |
|     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
 | |
|     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
 | |
|     tls13_alert_code,
 | |
|     tls13_export_keying_material,
 | |
|     SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
 | |
|     ssl3_set_handshake_header,
 | |
|     tls_close_construct_packet,
 | |
|     ssl3_handshake_write
 | |
| };
 | |
| 
 | |
| OSSL_TIME tls1_default_timeout(void)
 | |
| {
 | |
|     /*
 | |
|      * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
 | |
|      * http, the cache would over fill
 | |
|      */
 | |
|     return ossl_seconds2time(60 * 60 * 2);
 | |
| }
 | |
| 
 | |
| int tls1_new(SSL *s)
 | |
| {
 | |
|     if (!ssl3_new(s))
 | |
|         return 0;
 | |
|     if (!s->method->ssl_clear(s))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void tls1_free(SSL *s)
 | |
| {
 | |
|     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
 | |
| 
 | |
|     if (sc == NULL)
 | |
|         return;
 | |
| 
 | |
|     OPENSSL_free(sc->ext.session_ticket);
 | |
|     ssl3_free(s);
 | |
| }
 | |
| 
 | |
| int tls1_clear(SSL *s)
 | |
| {
 | |
|     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
 | |
| 
 | |
|     if (sc == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (!ssl3_clear(s))
 | |
|         return 0;
 | |
| 
 | |
|     if (s->method->version == TLS_ANY_VERSION)
 | |
|         sc->version = TLS_MAX_VERSION_INTERNAL;
 | |
|     else
 | |
|         sc->version = s->method->version;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Legacy NID to group_id mapping. Only works for groups we know about */
 | |
| static const struct {
 | |
|     int nid;
 | |
|     uint16_t group_id;
 | |
| } nid_to_group[] = {
 | |
|     {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
 | |
|     {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
 | |
|     {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
 | |
|     {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
 | |
|     {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
 | |
|     {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
 | |
|     {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
 | |
|     {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
 | |
|     {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
 | |
|     {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
 | |
|     {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
 | |
|     {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
 | |
|     {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
 | |
|     {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
 | |
|     {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
 | |
|     {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
 | |
|     {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
 | |
|     {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
 | |
|     {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
 | |
|     {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
 | |
|     {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
 | |
|     {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
 | |
|     {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
 | |
|     {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
 | |
|     {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
 | |
|     {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
 | |
|     {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
 | |
|     {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
 | |
|     {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
 | |
|     {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
 | |
|     {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
 | |
|     {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
 | |
|     {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
 | |
|     {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
 | |
|     {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
 | |
|     {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
 | |
|     {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
 | |
|     {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
 | |
|     {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
 | |
|     {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
 | |
|     {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
 | |
|     {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
 | |
|     {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
 | |
|     {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
 | |
|     {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
 | |
| };
 | |
| 
 | |
| static const unsigned char ecformats_default[] = {
 | |
|     TLSEXT_ECPOINTFORMAT_uncompressed
 | |
| };
 | |
| 
 | |
| static const unsigned char ecformats_all[] = {
 | |
|     TLSEXT_ECPOINTFORMAT_uncompressed,
 | |
|     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
 | |
|     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
 | |
| };
 | |
| 
 | |
| /* Group list string of the built-in pseudo group DEFAULT */
 | |
| #define DEFAULT_GROUP_NAME "DEFAULT"
 | |
| #define TLS_DEFAULT_GROUP_LIST \
 | |
|     "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
 | |
| 
 | |
| static const uint16_t suiteb_curves[] = {
 | |
|     OSSL_TLS_GROUP_ID_secp256r1,
 | |
|     OSSL_TLS_GROUP_ID_secp384r1,
 | |
| };
 | |
| 
 | |
| /* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
 | |
| #define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
 | |
| #define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
 | |
| 
 | |
| struct provider_ctx_data_st {
 | |
|     SSL_CTX *ctx;
 | |
|     OSSL_PROVIDER *provider;
 | |
| };
 | |
| 
 | |
| #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
 | |
| static OSSL_CALLBACK add_provider_groups;
 | |
| static int add_provider_groups(const OSSL_PARAM params[], void *data)
 | |
| {
 | |
|     struct provider_ctx_data_st *pgd = data;
 | |
|     SSL_CTX *ctx = pgd->ctx;
 | |
|     const OSSL_PARAM *p;
 | |
|     TLS_GROUP_INFO *ginf = NULL;
 | |
|     EVP_KEYMGMT *keymgmt;
 | |
|     unsigned int gid;
 | |
|     unsigned int is_kem = 0;
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (ctx->group_list_max_len == ctx->group_list_len) {
 | |
|         TLS_GROUP_INFO *tmp = NULL;
 | |
| 
 | |
|         if (ctx->group_list_max_len == 0)
 | |
|             tmp = OPENSSL_malloc_array(TLS_GROUP_LIST_MALLOC_BLOCK_SIZE,
 | |
|                                        sizeof(TLS_GROUP_INFO));
 | |
|         else
 | |
|             tmp = OPENSSL_realloc_array(ctx->group_list,
 | |
|                                         ctx->group_list_max_len
 | |
|                                         + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE,
 | |
|                                         sizeof(TLS_GROUP_INFO));
 | |
|         if (tmp == NULL)
 | |
|             return 0;
 | |
|         ctx->group_list = tmp;
 | |
|         memset(tmp + ctx->group_list_max_len,
 | |
|                0,
 | |
|                sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
 | |
|         ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
 | |
|     }
 | |
| 
 | |
|     ginf = &ctx->group_list[ctx->group_list_len];
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
 | |
|     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     ginf->tlsname = OPENSSL_strdup(p->data);
 | |
|     if (ginf->tlsname == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
 | |
|     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     ginf->realname = OPENSSL_strdup(p->data);
 | |
|     if (ginf->realname == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
 | |
|     if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     ginf->group_id = (uint16_t)gid;
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
 | |
|     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     ginf->algorithm = OPENSSL_strdup(p->data);
 | |
|     if (ginf->algorithm == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
 | |
|     if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
 | |
|     if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     ginf->is_kem = 1 & is_kem;
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
 | |
|     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
 | |
|     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
 | |
|     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
 | |
|     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     /*
 | |
|      * Now check that the algorithm is actually usable for our property query
 | |
|      * string. Regardless of the result we still return success because we have
 | |
|      * successfully processed this group, even though we may decide not to use
 | |
|      * it.
 | |
|      */
 | |
|     ret = 1;
 | |
|     ERR_set_mark();
 | |
|     keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
 | |
|     if (keymgmt != NULL) {
 | |
|         /* We have successfully fetched the algorithm, we can use the group. */
 | |
|         ctx->group_list_len++;
 | |
|         ginf = NULL;
 | |
|         EVP_KEYMGMT_free(keymgmt);
 | |
|     }
 | |
|     ERR_pop_to_mark();
 | |
|  err:
 | |
|     if (ginf != NULL) {
 | |
|         OPENSSL_free(ginf->tlsname);
 | |
|         OPENSSL_free(ginf->realname);
 | |
|         OPENSSL_free(ginf->algorithm);
 | |
|         ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
 | |
| {
 | |
|     struct provider_ctx_data_st pgd;
 | |
| 
 | |
|     pgd.ctx = vctx;
 | |
|     pgd.provider = provider;
 | |
|     return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
 | |
|                                           add_provider_groups, &pgd);
 | |
| }
 | |
| 
 | |
| int ssl_load_groups(SSL_CTX *ctx)
 | |
| {
 | |
|     if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
 | |
|         return 0;
 | |
| 
 | |
|     return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
 | |
| }
 | |
| 
 | |
| #define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
 | |
| static OSSL_CALLBACK add_provider_sigalgs;
 | |
| static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
 | |
| {
 | |
|     struct provider_ctx_data_st *pgd = data;
 | |
|     SSL_CTX *ctx = pgd->ctx;
 | |
|     OSSL_PROVIDER *provider = pgd->provider;
 | |
|     const OSSL_PARAM *p;
 | |
|     TLS_SIGALG_INFO *sinf = NULL;
 | |
|     EVP_KEYMGMT *keymgmt;
 | |
|     const char *keytype;
 | |
|     unsigned int code_point = 0;
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
 | |
|         TLS_SIGALG_INFO *tmp = NULL;
 | |
| 
 | |
|         if (ctx->sigalg_list_max_len == 0)
 | |
|             tmp = OPENSSL_malloc_array(TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE,
 | |
|                                        sizeof(TLS_SIGALG_INFO));
 | |
|         else
 | |
|             tmp = OPENSSL_realloc_array(ctx->sigalg_list,
 | |
|                                         ctx->sigalg_list_max_len
 | |
|                                         + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE,
 | |
|                                         sizeof(TLS_SIGALG_INFO));
 | |
|         if (tmp == NULL)
 | |
|             return 0;
 | |
|         ctx->sigalg_list = tmp;
 | |
|         memset(tmp + ctx->sigalg_list_max_len, 0,
 | |
|                sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
 | |
|         ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
 | |
|     }
 | |
| 
 | |
|     sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
 | |
| 
 | |
|     /* First, mandatory parameters */
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
 | |
|     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     OPENSSL_free(sinf->sigalg_name);
 | |
|     sinf->sigalg_name = OPENSSL_strdup(p->data);
 | |
|     if (sinf->sigalg_name == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
 | |
|     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     OPENSSL_free(sinf->name);
 | |
|     sinf->name = OPENSSL_strdup(p->data);
 | |
|     if (sinf->name == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params,
 | |
|                                 OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
 | |
|     if (p == NULL
 | |
|         || !OSSL_PARAM_get_uint(p, &code_point)
 | |
|         || code_point > UINT16_MAX) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     sinf->code_point = (uint16_t)code_point;
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params,
 | |
|                                 OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
 | |
|     if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* Now, optional parameters */
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
 | |
|     if (p == NULL) {
 | |
|         sinf->sigalg_oid = NULL;
 | |
|     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
 | |
|         goto err;
 | |
|     } else {
 | |
|         OPENSSL_free(sinf->sigalg_oid);
 | |
|         sinf->sigalg_oid = OPENSSL_strdup(p->data);
 | |
|         if (sinf->sigalg_oid == NULL)
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
 | |
|     if (p == NULL) {
 | |
|         sinf->sig_name = NULL;
 | |
|     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
 | |
|         goto err;
 | |
|     } else {
 | |
|         OPENSSL_free(sinf->sig_name);
 | |
|         sinf->sig_name = OPENSSL_strdup(p->data);
 | |
|         if (sinf->sig_name == NULL)
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
 | |
|     if (p == NULL) {
 | |
|         sinf->sig_oid = NULL;
 | |
|     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
 | |
|         goto err;
 | |
|     } else {
 | |
|         OPENSSL_free(sinf->sig_oid);
 | |
|         sinf->sig_oid = OPENSSL_strdup(p->data);
 | |
|         if (sinf->sig_oid == NULL)
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
 | |
|     if (p == NULL) {
 | |
|         sinf->hash_name = NULL;
 | |
|     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
 | |
|         goto err;
 | |
|     } else {
 | |
|         OPENSSL_free(sinf->hash_name);
 | |
|         sinf->hash_name = OPENSSL_strdup(p->data);
 | |
|         if (sinf->hash_name == NULL)
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
 | |
|     if (p == NULL) {
 | |
|         sinf->hash_oid = NULL;
 | |
|     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
 | |
|         goto err;
 | |
|     } else {
 | |
|         OPENSSL_free(sinf->hash_oid);
 | |
|         sinf->hash_oid = OPENSSL_strdup(p->data);
 | |
|         if (sinf->hash_oid == NULL)
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
 | |
|     if (p == NULL) {
 | |
|         sinf->keytype = NULL;
 | |
|     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
 | |
|         goto err;
 | |
|     } else {
 | |
|         OPENSSL_free(sinf->keytype);
 | |
|         sinf->keytype = OPENSSL_strdup(p->data);
 | |
|         if (sinf->keytype == NULL)
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
 | |
|     if (p == NULL) {
 | |
|         sinf->keytype_oid = NULL;
 | |
|     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
 | |
|         goto err;
 | |
|     } else {
 | |
|         OPENSSL_free(sinf->keytype_oid);
 | |
|         sinf->keytype_oid = OPENSSL_strdup(p->data);
 | |
|         if (sinf->keytype_oid == NULL)
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     /* Optional, not documented prior to 3.5 */
 | |
|     sinf->mindtls = sinf->maxdtls = -1;
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
 | |
|     if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
 | |
|     if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     /* DTLS version numbers grow downward */
 | |
|     if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
 | |
|         ((sinf->maxdtls > sinf->mindtls))) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     /* No provider sigalgs are supported in DTLS, reset after checking. */
 | |
|     sinf->mindtls = sinf->maxdtls = -1;
 | |
| 
 | |
|     /* The remaining parameters below are mandatory again */
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
 | |
|     if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
 | |
|     if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
 | |
|         ((sinf->maxtls < sinf->mintls))) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto err;
 | |
|     }
 | |
|     if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
 | |
|         ((sinf->mintls > TLS1_3_VERSION)))
 | |
|         sinf->mintls = sinf->maxtls = -1;
 | |
|     if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
 | |
|         ((sinf->maxtls < TLS1_3_VERSION)))
 | |
|         sinf->mintls = sinf->maxtls = -1;
 | |
| 
 | |
|     /* Ignore unusable sigalgs */
 | |
|     if (sinf->mintls == -1 && sinf->mindtls == -1) {
 | |
|         ret = 1;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Now check that the algorithm is actually usable for our property query
 | |
|      * string. Regardless of the result we still return success because we have
 | |
|      * successfully processed this signature, even though we may decide not to
 | |
|      * use it.
 | |
|      */
 | |
|     ret = 1;
 | |
|     ERR_set_mark();
 | |
|     keytype = (sinf->keytype != NULL
 | |
|                ? sinf->keytype
 | |
|                : (sinf->sig_name != NULL
 | |
|                   ? sinf->sig_name
 | |
|                   : sinf->sigalg_name));
 | |
|     keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
 | |
|     if (keymgmt != NULL) {
 | |
|         /*
 | |
|          * We have successfully fetched the algorithm - however if the provider
 | |
|          * doesn't match this one then we ignore it.
 | |
|          *
 | |
|          * Note: We're cheating a little here. Technically if the same algorithm
 | |
|          * is available from more than one provider then it is undefined which
 | |
|          * implementation you will get back. Theoretically this could be
 | |
|          * different every time...we assume here that you'll always get the
 | |
|          * same one back if you repeat the exact same fetch. Is this a reasonable
 | |
|          * assumption to make (in which case perhaps we should document this
 | |
|          * behaviour)?
 | |
|          */
 | |
|         if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
 | |
|             /*
 | |
|              * We have a match - so we could use this signature;
 | |
|              * Check proper object registration first, though.
 | |
|              * Don't care about return value as this may have been
 | |
|              * done within providers or previous calls to
 | |
|              * add_provider_sigalgs.
 | |
|              */
 | |
|             OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
 | |
|             /* sanity check: Without successful registration don't use alg */
 | |
|             if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
 | |
|                 (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
 | |
|                     ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|                     goto err;
 | |
|             }
 | |
|             if (sinf->sig_name != NULL)
 | |
|                 OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
 | |
|             if (sinf->keytype != NULL)
 | |
|                 OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
 | |
|             if (sinf->hash_name != NULL)
 | |
|                 OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
 | |
|             OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
 | |
|                           (sinf->hash_name != NULL
 | |
|                            ? OBJ_txt2nid(sinf->hash_name)
 | |
|                            : NID_undef),
 | |
|                           OBJ_txt2nid(keytype));
 | |
|             ctx->sigalg_list_len++;
 | |
|             sinf = NULL;
 | |
|         }
 | |
|         EVP_KEYMGMT_free(keymgmt);
 | |
|     }
 | |
|     ERR_pop_to_mark();
 | |
|  err:
 | |
|     if (sinf != NULL) {
 | |
|         OPENSSL_free(sinf->name);
 | |
|         sinf->name = NULL;
 | |
|         OPENSSL_free(sinf->sigalg_name);
 | |
|         sinf->sigalg_name = NULL;
 | |
|         OPENSSL_free(sinf->sigalg_oid);
 | |
|         sinf->sigalg_oid = NULL;
 | |
|         OPENSSL_free(sinf->sig_name);
 | |
|         sinf->sig_name = NULL;
 | |
|         OPENSSL_free(sinf->sig_oid);
 | |
|         sinf->sig_oid = NULL;
 | |
|         OPENSSL_free(sinf->hash_name);
 | |
|         sinf->hash_name = NULL;
 | |
|         OPENSSL_free(sinf->hash_oid);
 | |
|         sinf->hash_oid = NULL;
 | |
|         OPENSSL_free(sinf->keytype);
 | |
|         sinf->keytype = NULL;
 | |
|         OPENSSL_free(sinf->keytype_oid);
 | |
|         sinf->keytype_oid = NULL;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
 | |
| {
 | |
|     struct provider_ctx_data_st pgd;
 | |
| 
 | |
|     pgd.ctx = vctx;
 | |
|     pgd.provider = provider;
 | |
|     OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
 | |
|                                    add_provider_sigalgs, &pgd);
 | |
|     /*
 | |
|      * Always OK, even if provider doesn't support the capability:
 | |
|      * Reconsider testing retval when legacy sigalgs are also loaded this way.
 | |
|      */
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int ssl_load_sigalgs(SSL_CTX *ctx)
 | |
| {
 | |
|     size_t i;
 | |
|     SSL_CERT_LOOKUP lu;
 | |
| 
 | |
|     if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
 | |
|         return 0;
 | |
| 
 | |
|     /* now populate ctx->ssl_cert_info */
 | |
|     if (ctx->sigalg_list_len > 0) {
 | |
|         OPENSSL_free(ctx->ssl_cert_info);
 | |
|         ctx->ssl_cert_info = OPENSSL_calloc(ctx->sigalg_list_len, sizeof(lu));
 | |
|         if (ctx->ssl_cert_info == NULL)
 | |
|             return 0;
 | |
|         for(i = 0; i < ctx->sigalg_list_len; i++) {
 | |
|             ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
 | |
|             ctx->ssl_cert_info[i].amask = SSL_aANY;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * For now, leave it at this: legacy sigalgs stay in their own
 | |
|      * data structures until "legacy cleanup" occurs.
 | |
|      */
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     for (i = 0; i < ctx->group_list_len; i++) {
 | |
|         if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
 | |
|                 || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
 | |
|             return ctx->group_list[i].group_id;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     for (i = 0; i < ctx->group_list_len; i++) {
 | |
|         if (ctx->group_list[i].group_id == group_id)
 | |
|             return &ctx->group_list[i];
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
 | |
| {
 | |
|     const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
 | |
| 
 | |
|     if (tls_group_info == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     return tls_group_info->tlsname;
 | |
| }
 | |
| 
 | |
| int tls1_group_id2nid(uint16_t group_id, int include_unknown)
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     if (group_id == 0)
 | |
|         return NID_undef;
 | |
| 
 | |
|     /*
 | |
|      * Return well known Group NIDs - for backwards compatibility. This won't
 | |
|      * work for groups we don't know about.
 | |
|      */
 | |
|     for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
 | |
|     {
 | |
|         if (nid_to_group[i].group_id == group_id)
 | |
|             return nid_to_group[i].nid;
 | |
|     }
 | |
|     if (!include_unknown)
 | |
|         return NID_undef;
 | |
|     return TLSEXT_nid_unknown | (int)group_id;
 | |
| }
 | |
| 
 | |
| uint16_t tls1_nid2group_id(int nid)
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     /*
 | |
|      * Return well known Group ids - for backwards compatibility. This won't
 | |
|      * work for groups we don't know about.
 | |
|      */
 | |
|     for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
 | |
|     {
 | |
|         if (nid_to_group[i].nid == nid)
 | |
|             return nid_to_group[i].group_id;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set *pgroups to the supported groups list and *pgroupslen to
 | |
|  * the number of groups supported.
 | |
|  */
 | |
| void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
 | |
|                                size_t *pgroupslen)
 | |
| {
 | |
|     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
 | |
| 
 | |
|     /* For Suite B mode only include P-256, P-384 */
 | |
|     switch (tls1_suiteb(s)) {
 | |
|     case SSL_CERT_FLAG_SUITEB_128_LOS:
 | |
|         *pgroups = suiteb_curves;
 | |
|         *pgroupslen = OSSL_NELEM(suiteb_curves);
 | |
|         break;
 | |
| 
 | |
|     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
 | |
|         *pgroups = suiteb_curves;
 | |
|         *pgroupslen = 1;
 | |
|         break;
 | |
| 
 | |
|     case SSL_CERT_FLAG_SUITEB_192_LOS:
 | |
|         *pgroups = suiteb_curves + 1;
 | |
|         *pgroupslen = 1;
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         if (s->ext.supportedgroups == NULL) {
 | |
|             *pgroups = sctx->ext.supportedgroups;
 | |
|             *pgroupslen = sctx->ext.supportedgroups_len;
 | |
|         } else {
 | |
|             *pgroups = s->ext.supportedgroups;
 | |
|             *pgroupslen = s->ext.supportedgroups_len;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some comments for the function below:
 | |
|  * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
 | |
|  * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
 | |
|  * eligible group from the legacy list. Therefore, we provide the entire list of supported
 | |
|  * groups in this case.
 | |
|  *
 | |
|  * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
 | |
|  * but the groupID to 0.
 | |
|  * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
 | |
|  * the "list of requested key share groups" is used, or the "list of supported groups" in
 | |
|  * combination with setting add_only_one = 1 is applied.
 | |
|  */
 | |
| void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
 | |
|                                         size_t *pgroupslen)
 | |
| {
 | |
|     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
 | |
| 
 | |
|     if (s->ext.supportedgroups == NULL) {
 | |
|         *pgroups = sctx->ext.supportedgroups;
 | |
|         *pgroupslen = sctx->ext.supportedgroups_len;
 | |
|     } else {
 | |
|         *pgroups = s->ext.keyshares;
 | |
|         *pgroupslen = s->ext.keyshares_len;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
 | |
|                            size_t *ptupleslen)
 | |
| {
 | |
|     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
 | |
| 
 | |
|     if (s->ext.supportedgroups == NULL) {
 | |
|         *ptuples = sctx->ext.tuples;
 | |
|         *ptupleslen = sctx->ext.tuples_len;
 | |
|     } else {
 | |
|         *ptuples = s->ext.tuples;
 | |
|         *ptupleslen = s->ext.tuples_len;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
 | |
|                     int minversion, int maxversion,
 | |
|                     int isec, int *okfortls13)
 | |
| {
 | |
|     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
 | |
|                                                        group_id);
 | |
|     int ret;
 | |
|     int group_minversion, group_maxversion;
 | |
| 
 | |
|     if (okfortls13 != NULL)
 | |
|         *okfortls13 = 0;
 | |
| 
 | |
|     if (ginfo == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
 | |
|     group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
 | |
| 
 | |
|     if (group_minversion < 0 || group_maxversion < 0)
 | |
|         return 0;
 | |
|     if (group_maxversion == 0)
 | |
|         ret = 1;
 | |
|     else
 | |
|         ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
 | |
|     if (group_minversion > 0)
 | |
|         ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
 | |
| 
 | |
|     if (!SSL_CONNECTION_IS_DTLS(s)) {
 | |
|         if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
 | |
|             *okfortls13 = (group_maxversion == 0)
 | |
|                           || (group_maxversion >= TLS1_3_VERSION);
 | |
|     }
 | |
|     ret &= !isec
 | |
|            || strcmp(ginfo->algorithm, "EC") == 0
 | |
|            || strcmp(ginfo->algorithm, "X25519") == 0
 | |
|            || strcmp(ginfo->algorithm, "X448") == 0;
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* See if group is allowed by security callback */
 | |
| int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
 | |
| {
 | |
|     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
 | |
|                                                        group);
 | |
|     unsigned char gtmp[2];
 | |
| 
 | |
|     if (ginfo == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     gtmp[0] = group >> 8;
 | |
|     gtmp[1] = group & 0xff;
 | |
|     return ssl_security(s, op, ginfo->secbits,
 | |
|                         tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
 | |
| }
 | |
| 
 | |
| /* Return 1 if "id" is in "list" */
 | |
| static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
 | |
| {
 | |
|     size_t i;
 | |
|     for (i = 0; i < listlen; i++)
 | |
|         if (list[i] == id)
 | |
|             return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     TLS_GROUP_INFO *grp;
 | |
|     size_t ix;
 | |
| } TLS_GROUP_IX;
 | |
| 
 | |
| DEFINE_STACK_OF(TLS_GROUP_IX)
 | |
| 
 | |
| static void free_wrapper(TLS_GROUP_IX *a)
 | |
| {
 | |
|     OPENSSL_free(a);
 | |
| }
 | |
| 
 | |
| static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
 | |
|                             const TLS_GROUP_IX *const *b)
 | |
| {
 | |
|     int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
 | |
|     int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
 | |
|     int ixcmpab = (*a)->ix < (*b)->ix;
 | |
|     int ixcmpba = (*b)->ix < (*a)->ix;
 | |
| 
 | |
|     /* Ascending by group id */
 | |
|     if (idcmpab != idcmpba)
 | |
|         return (idcmpba - idcmpab);
 | |
|     /* Ascending by original appearance index */
 | |
|     return ixcmpba - ixcmpab;
 | |
| }
 | |
| 
 | |
| int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
 | |
|                                  TLS_GROUP_INFO *grps, size_t num, long all,
 | |
|                                  STACK_OF(OPENSSL_CSTRING) *out)
 | |
| {
 | |
|     STACK_OF(TLS_GROUP_IX) *collect = NULL;
 | |
|     TLS_GROUP_IX *gix;
 | |
|     uint16_t id = 0;
 | |
|     int ret = 0;
 | |
|     int ix;
 | |
| 
 | |
|     if (grps == NULL || out == NULL || num > INT_MAX)
 | |
|         return 0;
 | |
|     if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
 | |
|         return 0;
 | |
|     for (ix = 0; ix < (int)num; ++ix, ++grps) {
 | |
|         if (grps->mintls > 0 && max_proto_version > 0
 | |
|              && grps->mintls > max_proto_version)
 | |
|             continue;
 | |
|         if (grps->maxtls > 0 && min_proto_version > 0
 | |
|             && grps->maxtls < min_proto_version)
 | |
|             continue;
 | |
| 
 | |
|         if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
 | |
|             goto end;
 | |
|         gix->grp = grps;
 | |
|         gix->ix = ix;
 | |
|         if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
 | |
|             OPENSSL_free(gix);
 | |
|             goto end;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sk_TLS_GROUP_IX_sort(collect);
 | |
|     num = sk_TLS_GROUP_IX_num(collect);
 | |
|     for (ix = 0; ix < (int)num; ++ix) {
 | |
|         gix = sk_TLS_GROUP_IX_value(collect, ix);
 | |
|         if (!all && gix->grp->group_id == id)
 | |
|             continue;
 | |
|         id = gix->grp->group_id;
 | |
|         if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
 | |
|             goto end;
 | |
|     }
 | |
|     ret = 1;
 | |
| 
 | |
|  end:
 | |
|     sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
 | |
|  * if there is no match.
 | |
|  * For nmatch == -1, return number of matches
 | |
|  * For nmatch == -2, return the id of the group to use for
 | |
|  * a tmp key, or 0 if there is no match.
 | |
|  */
 | |
| uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
 | |
| {
 | |
|     const uint16_t *pref, *supp;
 | |
|     size_t num_pref, num_supp, i;
 | |
|     int k;
 | |
|     SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
 | |
| 
 | |
|     /* Can't do anything on client side */
 | |
|     if (s->server == 0)
 | |
|         return 0;
 | |
|     if (nmatch == -2) {
 | |
|         if (tls1_suiteb(s)) {
 | |
|             /*
 | |
|              * For Suite B ciphersuite determines curve: we already know
 | |
|              * these are acceptable due to previous checks.
 | |
|              */
 | |
|             unsigned long cid = s->s3.tmp.new_cipher->id;
 | |
| 
 | |
|             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
 | |
|                 return OSSL_TLS_GROUP_ID_secp256r1;
 | |
|             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
 | |
|                 return OSSL_TLS_GROUP_ID_secp384r1;
 | |
|             /* Should never happen */
 | |
|             return 0;
 | |
|         }
 | |
|         /* If not Suite B just return first preference shared curve */
 | |
|         nmatch = 0;
 | |
|     }
 | |
|     /*
 | |
|      * If server preference set, our groups are the preference order
 | |
|      * otherwise peer decides.
 | |
|      */
 | |
|     if (s->options & SSL_OP_SERVER_PREFERENCE) {
 | |
|         tls1_get_supported_groups(s, &pref, &num_pref);
 | |
|         tls1_get_peer_groups(s, &supp, &num_supp);
 | |
|     } else {
 | |
|         tls1_get_peer_groups(s, &pref, &num_pref);
 | |
|         tls1_get_supported_groups(s, &supp, &num_supp);
 | |
|     }
 | |
| 
 | |
|     for (k = 0, i = 0; i < num_pref; i++) {
 | |
|         uint16_t id = pref[i];
 | |
|         const TLS_GROUP_INFO *inf;
 | |
|         int minversion, maxversion;
 | |
| 
 | |
|         if (!tls1_in_list(id, supp, num_supp)
 | |
|                 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
 | |
|             continue;
 | |
|         inf = tls1_group_id_lookup(ctx, id);
 | |
|         if (!ossl_assert(inf != NULL))
 | |
|             return 0;
 | |
| 
 | |
|         minversion = SSL_CONNECTION_IS_DTLS(s)
 | |
|                          ? inf->mindtls : inf->mintls;
 | |
|         maxversion = SSL_CONNECTION_IS_DTLS(s)
 | |
|                          ? inf->maxdtls : inf->maxtls;
 | |
|         if (maxversion == -1)
 | |
|             continue;
 | |
|         if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
 | |
|             || (maxversion != 0
 | |
|                 && ssl_version_cmp(s, s->version, maxversion) > 0))
 | |
|             continue;
 | |
| 
 | |
|         if (nmatch == k)
 | |
|             return id;
 | |
|          k++;
 | |
|     }
 | |
|     if (nmatch == -1)
 | |
|         return k;
 | |
|     /* Out of range (nmatch > k). */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
 | |
|                     uint16_t **ksext, size_t *ksextlen,
 | |
|                     size_t **tplext, size_t *tplextlen,
 | |
|                     int *groups, size_t ngroups)
 | |
| {
 | |
|     uint16_t *glist = NULL, *kslist = NULL;
 | |
|     size_t *tpllist = NULL;
 | |
|     size_t i;
 | |
|     /*
 | |
|      * Bitmap of groups included to detect duplicates: two variables are added
 | |
|      * to detect duplicates as some values are more than 32.
 | |
|      */
 | |
|     unsigned long *dup_list = NULL;
 | |
|     unsigned long dup_list_egrp = 0;
 | |
|     unsigned long dup_list_dhgrp = 0;
 | |
| 
 | |
|     if (ngroups == 0) {
 | |
|         ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
 | |
|         return 0;
 | |
|     }
 | |
|     if ((glist = OPENSSL_malloc_array(ngroups, sizeof(*glist))) == NULL)
 | |
|         goto err;
 | |
|     if ((kslist = OPENSSL_malloc_array(1, sizeof(*kslist))) == NULL)
 | |
|         goto err;
 | |
|     if ((tpllist = OPENSSL_malloc_array(1, sizeof(*tpllist))) == NULL)
 | |
|         goto err;
 | |
|     for (i = 0; i < ngroups; i++) {
 | |
|         unsigned long idmask;
 | |
|         uint16_t id;
 | |
|         id = tls1_nid2group_id(groups[i]);
 | |
|         if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
 | |
|             goto err;
 | |
|         idmask = 1L << (id & 0x00FF);
 | |
|         dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
 | |
|         if (!id || ((*dup_list) & idmask))
 | |
|             goto err;
 | |
|         *dup_list |= idmask;
 | |
|         glist[i] = id;
 | |
|     }
 | |
|     OPENSSL_free(*grpext);
 | |
|     OPENSSL_free(*ksext);
 | |
|     OPENSSL_free(*tplext);
 | |
|     *grpext = glist;
 | |
|     *grpextlen = ngroups;
 | |
|     kslist[0] = glist[0];
 | |
|     *ksext = kslist;
 | |
|     *ksextlen = 1;
 | |
|     tpllist[0] = ngroups;
 | |
|     *tplext = tpllist;
 | |
|     *tplextlen = 1;
 | |
|     return 1;
 | |
| err:
 | |
|     OPENSSL_free(glist);
 | |
|     OPENSSL_free(kslist);
 | |
|     OPENSSL_free(tpllist);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Definition of DEFAULT[_XYZ] pseudo group names.
 | |
|  * A pseudo group name is actually a full list of groups, including prefixes
 | |
|  * and or tuple delimiters. It can be hierarchically defined (for potential future use).
 | |
|  * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
 | |
|  * groups not backed by a provider will always silently be ignored, even without '?' prefix
 | |
|  */
 | |
| typedef struct {
 | |
|     const char *list_name; /* The name of this pseudo group */
 | |
|     const char *group_string; /* The group string of this pseudo group */
 | |
| } default_group_string_st;    /* (can include '?', '*'. '-', '/' as needed) */
 | |
| 
 | |
| /* Built-in pseudo group-names must start with a (D or d) */
 | |
| static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
 | |
| 
 | |
| /* The list of all built-in pseudo-group-name structures */
 | |
| static const default_group_string_st default_group_strings[] = {
 | |
|     {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
 | |
|     {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Some GOST names are not resolved by tls1_group_name2id,
 | |
|  * hence we'll check for those manually
 | |
|  */
 | |
| typedef struct {
 | |
|     const char *group_name;
 | |
|     uint16_t groupID;
 | |
| } name2id_st;
 | |
| static const name2id_st name2id_arr[] = {
 | |
|     {"GC256A", OSSL_TLS_GROUP_ID_gc256A },
 | |
|     {"GC256B", OSSL_TLS_GROUP_ID_gc256B },
 | |
|     {"GC256C", OSSL_TLS_GROUP_ID_gc256C },
 | |
|     {"GC256D", OSSL_TLS_GROUP_ID_gc256D },
 | |
|     {"GC512A", OSSL_TLS_GROUP_ID_gc512A },
 | |
|     {"GC512B", OSSL_TLS_GROUP_ID_gc512B },
 | |
|     {"GC512C", OSSL_TLS_GROUP_ID_gc512C },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Group list management:
 | |
|  * We establish three lists along with their related size counters:
 | |
|  * 1) List of (unique) groups
 | |
|  * 2) List of number of groups per group-priority-tuple
 | |
|  * 3) List of (unique) key share groups
 | |
|  */
 | |
| #define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
 | |
| #define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
 | |
| 
 | |
| /*
 | |
|  * Preparation of the prefix used to indicate the desire to send a key share,
 | |
|  * the characters used as separators between groups or tuples of groups, the
 | |
|  * character to indicate that an unknown group should be ignored, and the
 | |
|  * character to indicate that a group should be deleted from a list
 | |
|  */
 | |
| #ifndef TUPLE_DELIMITER_CHARACTER
 | |
| /* The prefix characters to indicate group tuple boundaries */
 | |
| # define TUPLE_DELIMITER_CHARACTER '/'
 | |
| #endif
 | |
| #ifndef GROUP_DELIMITER_CHARACTER
 | |
| /* The prefix characters to indicate group tuple boundaries */
 | |
| # define GROUP_DELIMITER_CHARACTER ':'
 | |
| #endif
 | |
| #ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
 | |
| /* The prefix character to ignore unknown groups */
 | |
| # define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
 | |
| #endif
 | |
| #ifndef KEY_SHARE_INDICATOR_CHARACTER
 | |
| /* The prefix character to trigger a key share addition */
 | |
| # define KEY_SHARE_INDICATOR_CHARACTER '*'
 | |
| #endif
 | |
| #ifndef REMOVE_GROUP_INDICATOR_CHARACTER
 | |
| /* The prefix character to trigger a key share removal */
 | |
| # define REMOVE_GROUP_INDICATOR_CHARACTER '-'
 | |
| #endif
 | |
| static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
 | |
|                                 GROUP_DELIMITER_CHARACTER,
 | |
|                                 IGNORE_UNKNOWN_GROUP_CHARACTER,
 | |
|                                 KEY_SHARE_INDICATOR_CHARACTER,
 | |
|                                 REMOVE_GROUP_INDICATOR_CHARACTER,
 | |
|                                 '\0'};
 | |
| 
 | |
| /*
 | |
|  * High-level description of how group strings are analyzed:
 | |
|  * A first call back function (tuple_cb) is used to process group tuples, and a
 | |
|  * second callback function (gid_cb) is used to process the groups inside a tuple.
 | |
|  * Those callback functions are (indirectly) called by CONF_parse_list with
 | |
|  * different separators (nominally ':' or '/'), a variable based on gid_cb_st
 | |
|  * is used to keep track of the parsing results between the various calls
 | |
|  */
 | |
| 
 | |
| typedef struct {
 | |
|     SSL_CTX *ctx;
 | |
|     /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
 | |
|     size_t gidmax; /* The memory allocation chunk size for the group IDs */
 | |
|     size_t gidcnt; /* Number of groups */
 | |
|     uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
 | |
|     size_t tplmax; /* The memory allocation chunk size for the tuple counters */
 | |
|     size_t tplcnt; /* Number of tuples */
 | |
|     size_t *tuplcnt_arr; /* The number of groups inside a tuple */
 | |
|     size_t ksidmax; /* The memory allocation chunk size */
 | |
|     size_t ksidcnt; /* Number of key shares */
 | |
|     uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
 | |
|     /* Variable to keep state between execution of callback or helper functions */
 | |
|     size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
 | |
|     int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
 | |
| } gid_cb_st;
 | |
| 
 | |
| /* Forward declaration of tuple callback function */
 | |
| static int tuple_cb(const char *tuple, int len, void *arg);
 | |
| 
 | |
| /*
 | |
|  * Extract and process the individual groups (and their prefixes if present)
 | |
|  * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
 | |
|  * and must be appended by a \0 if used as \0-terminated string
 | |
|  */
 | |
| static int gid_cb(const char *elem, int len, void *arg)
 | |
| {
 | |
|     gid_cb_st *garg = arg;
 | |
|     size_t i, j, k;
 | |
|     uint16_t gid = 0;
 | |
|     int found_group = 0;
 | |
|     char etmp[GROUP_NAME_BUFFER_LENGTH];
 | |
|     int retval = 1; /* We assume success */
 | |
|     char *current_prefix;
 | |
|     int ignore_unknown = 0;
 | |
|     int add_keyshare = 0;
 | |
|     int remove_group = 0;
 | |
|     size_t restored_prefix_index = 0;
 | |
|     char *restored_default_group_string;
 | |
|     int continue_while_loop = 1;
 | |
| 
 | |
|     /* Sanity checks */
 | |
|     if (garg == NULL || elem == NULL || len <= 0) {
 | |
|         ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
 | |
|     while (continue_while_loop && len > 0
 | |
|            && ((current_prefix = strchr(prefixes, elem[0])) != NULL
 | |
|                || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
 | |
| 
 | |
|         switch (*current_prefix) {
 | |
|         case TUPLE_DELIMITER_CHARACTER:
 | |
|             /* tuple delimiter not allowed here -> syntax error */
 | |
|             return -1;
 | |
|             break;
 | |
|         case GROUP_DELIMITER_CHARACTER:
 | |
|             return -1; /* Not a valid prefix for a single group name-> syntax error */
 | |
|             break;
 | |
|         case KEY_SHARE_INDICATOR_CHARACTER:
 | |
|             if (add_keyshare)
 | |
|                 return -1; /* Only single key share prefix allowed -> syntax error */
 | |
|             add_keyshare = 1;
 | |
|             ++elem;
 | |
|             --len;
 | |
|             break;
 | |
|         case REMOVE_GROUP_INDICATOR_CHARACTER:
 | |
|             if (remove_group)
 | |
|                 return -1; /* Only single remove group prefix allowed -> syntax error */
 | |
|             remove_group = 1;
 | |
|             ++elem;
 | |
|             --len;
 | |
|             break;
 | |
|         case IGNORE_UNKNOWN_GROUP_CHARACTER:
 | |
|             if (ignore_unknown)
 | |
|                 return -1; /* Only single ? allowed -> syntax error */
 | |
|             ignore_unknown = 1;
 | |
|             ++elem;
 | |
|             --len;
 | |
|             break;
 | |
|         default:
 | |
|             /*
 | |
|              * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
 | |
|              * list of groups) should be added
 | |
|              */
 | |
|             for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
 | |
|                 if ((size_t)len == (strlen(default_group_strings[i].list_name))
 | |
|                     && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
 | |
|                     /*
 | |
|                      * We're asked to insert an entire list of groups from a
 | |
|                      * DEFAULT[_XYZ] 'pseudo group' which we do by
 | |
|                      * recursively calling this function (indirectly via
 | |
|                      * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
 | |
|                      * group string like a tuple which is appended to the current tuple
 | |
|                      * rather then starting a new tuple. Variable tuple_mode is the flag which
 | |
|                      * controls append tuple vs start new tuple.
 | |
|                      */
 | |
| 
 | |
|                     if (ignore_unknown || remove_group)
 | |
|                         return -1; /* removal or ignore not allowed here -> syntax error */
 | |
| 
 | |
|                     /*
 | |
|                      * First, we restore any keyshare prefix in a new zero-terminated string
 | |
|                      * (if not already present)
 | |
|                      */
 | |
|                     restored_default_group_string =
 | |
|                         OPENSSL_malloc(1 /* max prefix length */ +
 | |
|                                        strlen(default_group_strings[i].group_string) +
 | |
|                                        1 /* \0 */);
 | |
|                     if (restored_default_group_string == NULL)
 | |
|                         return 0;
 | |
|                     if (add_keyshare
 | |
|                         /* Remark: we tolerate a duplicated keyshare indicator here */
 | |
|                         && default_group_strings[i].group_string[0]
 | |
|                         != KEY_SHARE_INDICATOR_CHARACTER)
 | |
|                         restored_default_group_string[restored_prefix_index++] =
 | |
|                             KEY_SHARE_INDICATOR_CHARACTER;
 | |
| 
 | |
|                     memcpy(restored_default_group_string + restored_prefix_index,
 | |
|                            default_group_strings[i].group_string,
 | |
|                            strlen(default_group_strings[i].group_string));
 | |
|                     restored_default_group_string[strlen(default_group_strings[i].group_string) +
 | |
|                                                   restored_prefix_index] = '\0';
 | |
|                     /* We execute the recursive call */
 | |
|                     garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
 | |
|                     /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
 | |
|                     garg->tuple_mode = 0;
 | |
|                     /* We use the tuple_cb callback to process the pseudo group tuple */
 | |
|                     retval = CONF_parse_list(restored_default_group_string,
 | |
|                                              TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
 | |
|                     garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
 | |
|                     garg->ignore_unknown_default = 0; /* reset to original value */
 | |
|                     /* We don't need the \0-terminated string anymore */
 | |
|                     OPENSSL_free(restored_default_group_string);
 | |
| 
 | |
|                     return retval;
 | |
|                 }
 | |
|             }
 | |
|             /*
 | |
|              * If we reached this point, a group name started with a 'd' or 'D', but no request
 | |
|              * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
 | |
|              * name can continue as usual (= the while loop checking prefixes can end)
 | |
|              */
 | |
|             continue_while_loop = 0;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (len == 0)
 | |
|         return -1; /* Seems we have prefxes without a group name -> syntax error */
 | |
| 
 | |
|     if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
 | |
|         ignore_unknown = 1;
 | |
| 
 | |
|     /* Memory management in case more groups are present compared to initial allocation */
 | |
|     if (garg->gidcnt == garg->gidmax) {
 | |
|         uint16_t *tmp =
 | |
|             OPENSSL_realloc_array(garg->gid_arr,
 | |
|                                   garg->gidmax + GROUPLIST_INCREMENT,
 | |
|                                   sizeof(*garg->gid_arr));
 | |
| 
 | |
|         if (tmp == NULL)
 | |
|             return 0;
 | |
| 
 | |
|         garg->gidmax += GROUPLIST_INCREMENT;
 | |
|         garg->gid_arr = tmp;
 | |
|     }
 | |
|     /* Memory management for key share groups */
 | |
|     if (garg->ksidcnt == garg->ksidmax) {
 | |
|         uint16_t *tmp =
 | |
|             OPENSSL_realloc_array(garg->ksid_arr,
 | |
|                                   garg->ksidmax + GROUPLIST_INCREMENT,
 | |
|                                   sizeof(*garg->ksid_arr));
 | |
| 
 | |
|         if (tmp == NULL)
 | |
|             return 0;
 | |
|         garg->ksidmax += GROUPLIST_INCREMENT;
 | |
|         garg->ksid_arr = tmp;
 | |
|     }
 | |
| 
 | |
|     if (len > (int)(sizeof(etmp) - 1))
 | |
|         return -1; /* group name to long  -> syntax error */
 | |
| 
 | |
|     /*
 | |
|      * Prepare addition or removal of a single group by converting
 | |
|      * a group name into its groupID equivalent
 | |
|      */
 | |
| 
 | |
|     /* Create a \0-terminated string and get the gid for this group if possible */
 | |
|     memcpy(etmp, elem, len);
 | |
|     etmp[len] = 0;
 | |
| 
 | |
|     /* Get the groupID */
 | |
|     gid = tls1_group_name2id(garg->ctx, etmp);
 | |
|     /*
 | |
|      * Handle the case where no valid groupID was returned
 | |
|      * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
 | |
|      */
 | |
|     if (gid == 0) {
 | |
|         /* Is it one of the GOST groups ? */
 | |
|         for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
 | |
|             if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
 | |
|                 gid = name2id_arr[i].groupID;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (gid == 0) { /* still not found */
 | |
|             /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
 | |
|             retval = ignore_unknown;
 | |
|             goto done;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Make sure that at least one provider is supporting this groupID */
 | |
|     found_group = 0;
 | |
|     for (j = 0; j < garg->ctx->group_list_len; j++)
 | |
|         if (garg->ctx->group_list[j].group_id == gid) {
 | |
|             found_group = 1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     /*
 | |
|      * No provider supports this group - ignore if
 | |
|      * ignore_unknown; trigger error otherwise
 | |
|      */
 | |
|     if (found_group == 0) {
 | |
|         retval = ignore_unknown;
 | |
|         goto done;
 | |
|     }
 | |
|     /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
 | |
|     if (remove_group) {
 | |
|         /* Is the current group specified anywhere in the entire list so far? */
 | |
|         found_group = 0;
 | |
|         for (i = 0; i < garg->gidcnt; i++)
 | |
|             if (garg->gid_arr[i] == gid) {
 | |
|                 found_group = 1;
 | |
|                 break;
 | |
|             }
 | |
|         /* The group to remove is at position i in the list of (zero indexed) groups */
 | |
|         if (found_group) {
 | |
|             /* We remove that group from its position (which is at i)... */
 | |
|             for (j = i; j < (garg->gidcnt - 1); j++)
 | |
|                 garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
 | |
|             garg->gidcnt--; /* ..and update the book keeping for the number of groups */
 | |
| 
 | |
|             /*
 | |
|              * We also must update the number of groups either in a previous tuple (which we
 | |
|              * must identify and check whether it becomes empty due to the deletion) or in
 | |
|              * the current tuple, pending where the deleted group resides
 | |
|              */
 | |
|             k = 0;
 | |
|             for (j = 0; j < garg->tplcnt; j++) {
 | |
|                 k += garg->tuplcnt_arr[j];
 | |
|                 /* Remark: i is zero-indexed, k is one-indexed */
 | |
|                 if (k > i) { /* remove from one of the previous tuples */
 | |
|                     garg->tuplcnt_arr[j]--;
 | |
|                     break; /* We took care not to have group duplicates, hence we can stop here */
 | |
|                 }
 | |
|             }
 | |
|             if (k <= i) /* remove from current tuple */
 | |
|                 garg->tuplcnt_arr[j]--;
 | |
| 
 | |
|             /* We also remove the group from the list of keyshares (if present) */
 | |
|             found_group = 0;
 | |
|             for (i = 0; i < garg->ksidcnt; i++)
 | |
|                 if (garg->ksid_arr[i] == gid) {
 | |
|                     found_group = 1;
 | |
|                     break;
 | |
|                 }
 | |
|             if (found_group) {
 | |
|                 /* Found, hence we remove that keyshare from its position (which is at i)... */
 | |
|                 for (j = i; j < (garg->ksidcnt - 1); j++)
 | |
|                     garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
 | |
|                 /* ... and update the book keeping */
 | |
|                 garg->ksidcnt--;
 | |
|             }
 | |
|         }
 | |
|     } else { /* Processing addition of a single new group */
 | |
| 
 | |
|         /* Check for duplicates */
 | |
|         for (i = 0; i < garg->gidcnt; i++)
 | |
|             if (garg->gid_arr[i] == gid) {
 | |
|                 /* Duplicate group anywhere in the list of groups - ignore */
 | |
|                 goto done;
 | |
|             }
 | |
| 
 | |
|         /* Add the current group to the 'flat' list of groups */
 | |
|         garg->gid_arr[garg->gidcnt++] = gid;
 | |
|         /* and update the book keeping for the number of groups in current tuple */
 | |
|         garg->tuplcnt_arr[garg->tplcnt]++;
 | |
| 
 | |
|         /* We memorize if needed that we want to add a key share for the current group */
 | |
|         if (add_keyshare)
 | |
|             garg->ksid_arr[garg->ksidcnt++] = gid;
 | |
|     }
 | |
| 
 | |
| done:
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| /* Extract and process a tuple of groups */
 | |
| static int tuple_cb(const char *tuple, int len, void *arg)
 | |
| {
 | |
|     gid_cb_st *garg = arg;
 | |
|     int retval = 1; /* We assume success */
 | |
|     char *restored_tuple_string;
 | |
| 
 | |
|     /* Sanity checks */
 | |
|     if (garg == NULL || tuple == NULL || len <= 0) {
 | |
|         ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Memory management for tuples */
 | |
|     if (garg->tplcnt == garg->tplmax) {
 | |
|         size_t *tmp =
 | |
|             OPENSSL_realloc_array(garg->tuplcnt_arr,
 | |
|                                   garg->tplmax + GROUPLIST_INCREMENT,
 | |
|                                   sizeof(*garg->tuplcnt_arr));
 | |
| 
 | |
|         if (tmp == NULL)
 | |
|             return 0;
 | |
|         garg->tplmax += GROUPLIST_INCREMENT;
 | |
|         garg->tuplcnt_arr = tmp;
 | |
|     }
 | |
| 
 | |
|     /* Convert to \0-terminated string */
 | |
|     restored_tuple_string = OPENSSL_malloc(len + 1 /* \0 */);
 | |
|     if (restored_tuple_string == NULL)
 | |
|         return 0;
 | |
|     memcpy(restored_tuple_string, tuple, len);
 | |
|     restored_tuple_string[len] = '\0';
 | |
| 
 | |
|     /* Analyze group list of this tuple */
 | |
|     retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
 | |
| 
 | |
|     /* We don't need the \o-terminated string anymore */
 | |
|     OPENSSL_free(restored_tuple_string);
 | |
| 
 | |
|     if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
 | |
|         if (garg->tuple_mode) {
 | |
|             /* We 'close' the tuple */
 | |
|             garg->tplcnt++;
 | |
|             garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
 | |
|             garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set groups and prepare generation of keyshares based on a string of groupnames,
 | |
|  * names separated by the group or the tuple delimiter, with per-group prefixes to
 | |
|  * (1) add a key share for this group, (2) ignore the group if unknown to the current
 | |
|  * context, (3) delete a previous occurrence of the group in the current tuple.
 | |
|  *
 | |
|  * The list parsing is done in two hierarchical steps: The top-level step extracts the
 | |
|  * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
 | |
|  * parse and process the groups inside a tuple
 | |
|  */
 | |
| int tls1_set_groups_list(SSL_CTX *ctx,
 | |
|                          uint16_t **grpext, size_t *grpextlen,
 | |
|                          uint16_t **ksext, size_t *ksextlen,
 | |
|                          size_t **tplext, size_t *tplextlen,
 | |
|                          const char *str)
 | |
| {
 | |
|     size_t i = 0, j;
 | |
|     int ret = 0, parse_ret = 0;
 | |
|     gid_cb_st gcb;
 | |
| 
 | |
|     /* Sanity check */
 | |
|     if (ctx == NULL) {
 | |
|         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     memset(&gcb, 0, sizeof(gcb));
 | |
|     gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
 | |
|     gcb.ignore_unknown_default = 0;
 | |
|     gcb.gidmax = GROUPLIST_INCREMENT;
 | |
|     gcb.tplmax = GROUPLIST_INCREMENT;
 | |
|     gcb.ksidmax = GROUPLIST_INCREMENT;
 | |
|     gcb.ctx = ctx;
 | |
| 
 | |
|     /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
 | |
|     gcb.gid_arr = OPENSSL_malloc_array(gcb.gidmax, sizeof(*gcb.gid_arr));
 | |
|     if (gcb.gid_arr == NULL)
 | |
|         goto end;
 | |
|     gcb.tuplcnt_arr = OPENSSL_malloc_array(gcb.tplmax, sizeof(*gcb.tuplcnt_arr));
 | |
|     if (gcb.tuplcnt_arr == NULL)
 | |
|         goto end;
 | |
|     gcb.tuplcnt_arr[0] = 0;
 | |
|     gcb.ksid_arr = OPENSSL_malloc_array(gcb.ksidmax, sizeof(*gcb.ksid_arr));
 | |
|     if (gcb.ksid_arr == NULL)
 | |
|         goto end;
 | |
| 
 | |
|     while (str[0] != '\0' && isspace((unsigned char)*str))
 | |
|         str++;
 | |
|     if (str[0] == '\0')
 | |
|         goto empty_list;
 | |
| 
 | |
|     /*
 | |
|      * Start the (potentially recursive) tuple processing by calling CONF_parse_list
 | |
|      * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
 | |
|      */
 | |
|     parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
 | |
| 
 | |
|     if (parse_ret == 0)
 | |
|         goto end;
 | |
|     if (parse_ret == -1) {
 | |
|         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
 | |
|                        "Syntax error in '%s'", str);
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We check whether a tuple was completely emptied by using "-" prefix
 | |
|      * excessively, in which case we remove the tuple
 | |
|      */
 | |
|     for (i = j = 0; j < gcb.tplcnt; j++) {
 | |
|         if (gcb.tuplcnt_arr[j] == 0)
 | |
|             continue;
 | |
|         /* If there's a gap, move to first unfilled slot */
 | |
|         if (j == i)
 | |
|             ++i;
 | |
|         else
 | |
|             gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
 | |
|     }
 | |
|     gcb.tplcnt = i;
 | |
| 
 | |
|     if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
 | |
|         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
 | |
|                        "To many keyshares requested in '%s' (max = %d)",
 | |
|                        str, OPENSSL_CLIENT_MAX_KEY_SHARES);
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * For backward compatibility we let the rest of the code know that a key share
 | |
|      * for the first valid group should be added if no "*" prefix was used anywhere
 | |
|      */
 | |
|     if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
 | |
|         /*
 | |
|          * No key share group prefix character was used, hence we indicate that a single
 | |
|          * key share should be sent and flag that it should come from the supported_groups list
 | |
|          */
 | |
|         gcb.ksidcnt = 1;
 | |
|         gcb.ksid_arr[0] = 0;
 | |
|     }
 | |
| 
 | |
|  empty_list:
 | |
|     /*
 | |
|      * A call to tls1_set_groups_list with any of the args (other than ctx) set
 | |
|      * to NULL only does a syntax check, hence we're done here and report success
 | |
|      */
 | |
|     if (grpext == NULL || ksext == NULL || tplext == NULL ||
 | |
|         grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
 | |
|         ret = 1;
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
 | |
|      * can just go ahead and set the results (after disposing the existing)
 | |
|      */
 | |
|     OPENSSL_free(*grpext);
 | |
|     *grpext = gcb.gid_arr;
 | |
|     *grpextlen = gcb.gidcnt;
 | |
|     OPENSSL_free(*ksext);
 | |
|     *ksext = gcb.ksid_arr;
 | |
|     *ksextlen = gcb.ksidcnt;
 | |
|     OPENSSL_free(*tplext);
 | |
|     *tplext = gcb.tuplcnt_arr;
 | |
|     *tplextlen = gcb.tplcnt;
 | |
| 
 | |
|     return 1;
 | |
| 
 | |
|  end:
 | |
|     OPENSSL_free(gcb.gid_arr);
 | |
|     OPENSSL_free(gcb.tuplcnt_arr);
 | |
|     OPENSSL_free(gcb.ksid_arr);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Check a group id matches preferences */
 | |
| int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
 | |
|                         int check_own_groups)
 | |
|     {
 | |
|     const uint16_t *groups;
 | |
|     size_t groups_len;
 | |
| 
 | |
|     if (group_id == 0)
 | |
|         return 0;
 | |
| 
 | |
|     /* Check for Suite B compliance */
 | |
|     if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
 | |
|         unsigned long cid = s->s3.tmp.new_cipher->id;
 | |
| 
 | |
|         if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
 | |
|             if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
 | |
|                 return 0;
 | |
|         } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
 | |
|             if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
 | |
|                 return 0;
 | |
|         } else {
 | |
|             /* Should never happen */
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (check_own_groups) {
 | |
|         /* Check group is one of our preferences */
 | |
|         tls1_get_supported_groups(s, &groups, &groups_len);
 | |
|         if (!tls1_in_list(group_id, groups, groups_len))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
 | |
|         return 0;
 | |
| 
 | |
|     /* For clients, nothing more to check */
 | |
|     if (!s->server)
 | |
|         return 1;
 | |
| 
 | |
|     /* Check group is one of peers preferences */
 | |
|     tls1_get_peer_groups(s, &groups, &groups_len);
 | |
| 
 | |
|     /*
 | |
|      * RFC 4492 does not require the supported elliptic curves extension
 | |
|      * so if it is not sent we can just choose any curve.
 | |
|      * It is invalid to send an empty list in the supported groups
 | |
|      * extension, so groups_len == 0 always means no extension.
 | |
|      */
 | |
|     if (groups_len == 0)
 | |
|             return 1;
 | |
|     return tls1_in_list(group_id, groups, groups_len);
 | |
| }
 | |
| 
 | |
| void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
 | |
|                          size_t *num_formats)
 | |
| {
 | |
|     /*
 | |
|      * If we have a custom point format list use it otherwise use default
 | |
|      */
 | |
|     if (s->ext.ecpointformats) {
 | |
|         *pformats = s->ext.ecpointformats;
 | |
|         *num_formats = s->ext.ecpointformats_len;
 | |
|     } else if ((s->options & SSL_OP_LEGACY_EC_POINT_FORMATS) != 0) {
 | |
|         *pformats = ecformats_all;
 | |
|         /* For Suite B we don't support char2 fields */
 | |
|         if (tls1_suiteb(s))
 | |
|             *num_formats = sizeof(ecformats_all) - 1;
 | |
|         else
 | |
|             *num_formats = sizeof(ecformats_all);
 | |
|     } else {
 | |
|         *pformats = ecformats_default;
 | |
|         *num_formats = sizeof(ecformats_default);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Check a key is compatible with compression extension */
 | |
| static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
 | |
| {
 | |
|     unsigned char comp_id;
 | |
|     size_t i;
 | |
|     int point_conv;
 | |
| 
 | |
|     /* If not an EC key nothing to check */
 | |
|     if (!EVP_PKEY_is_a(pkey, "EC"))
 | |
|         return 1;
 | |
| 
 | |
| 
 | |
|     /* Get required compression id */
 | |
|     point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
 | |
|     if (point_conv == 0)
 | |
|         return 0;
 | |
|     if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
 | |
|             comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
 | |
|     } else if (SSL_CONNECTION_IS_TLS13(s)) {
 | |
|         /*
 | |
|          * ec_point_formats extension is not used in TLSv1.3 so we ignore
 | |
|          * this check.
 | |
|          */
 | |
|         return 1;
 | |
|     } else {
 | |
|         int field_type = EVP_PKEY_get_field_type(pkey);
 | |
| 
 | |
|         if (field_type == NID_X9_62_prime_field)
 | |
|             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
 | |
|         else if (field_type == NID_X9_62_characteristic_two_field)
 | |
|             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
 | |
|         else
 | |
|             return 0;
 | |
|     }
 | |
|     /*
 | |
|      * If point formats extension present check it, otherwise everything is
 | |
|      * supported (see RFC4492).
 | |
|      */
 | |
|     if (s->ext.peer_ecpointformats == NULL)
 | |
|         return 1;
 | |
| 
 | |
|     for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
 | |
|         if (s->ext.peer_ecpointformats[i] == comp_id)
 | |
|             return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Return group id of a key */
 | |
| static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
 | |
| {
 | |
|     int curve_nid = ssl_get_EC_curve_nid(pkey);
 | |
| 
 | |
|     if (curve_nid == NID_undef)
 | |
|         return 0;
 | |
|     return tls1_nid2group_id(curve_nid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check cert parameters compatible with extensions: currently just checks EC
 | |
|  * certificates have compatible curves and compression.
 | |
|  */
 | |
| static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
 | |
| {
 | |
|     uint16_t group_id;
 | |
|     EVP_PKEY *pkey;
 | |
|     pkey = X509_get0_pubkey(x);
 | |
|     if (pkey == NULL)
 | |
|         return 0;
 | |
|     /* If not EC nothing to do */
 | |
|     if (!EVP_PKEY_is_a(pkey, "EC"))
 | |
|         return 1;
 | |
|     /* Check compression */
 | |
|     if (!tls1_check_pkey_comp(s, pkey))
 | |
|         return 0;
 | |
|     group_id = tls1_get_group_id(pkey);
 | |
|     /*
 | |
|      * For a server we allow the certificate to not be in our list of supported
 | |
|      * groups.
 | |
|      */
 | |
|     if (!tls1_check_group_id(s, group_id, !s->server))
 | |
|         return 0;
 | |
|     /*
 | |
|      * Special case for suite B. We *MUST* sign using SHA256+P-256 or
 | |
|      * SHA384+P-384.
 | |
|      */
 | |
|     if (check_ee_md && tls1_suiteb(s)) {
 | |
|         int check_md;
 | |
|         size_t i;
 | |
| 
 | |
|         /* Check to see we have necessary signing algorithm */
 | |
|         if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
 | |
|             check_md = NID_ecdsa_with_SHA256;
 | |
|         else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
 | |
|             check_md = NID_ecdsa_with_SHA384;
 | |
|         else
 | |
|             return 0;           /* Should never happen */
 | |
|         for (i = 0; i < s->shared_sigalgslen; i++) {
 | |
|             if (check_md == s->shared_sigalgs[i]->sigandhash)
 | |
|                 return 1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * tls1_check_ec_tmp_key - Check EC temporary key compatibility
 | |
|  * @s: SSL connection
 | |
|  * @cid: Cipher ID we're considering using
 | |
|  *
 | |
|  * Checks that the kECDHE cipher suite we're considering using
 | |
|  * is compatible with the client extensions.
 | |
|  *
 | |
|  * Returns 0 when the cipher can't be used or 1 when it can.
 | |
|  */
 | |
| int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
 | |
| {
 | |
|     /* If not Suite B just need a shared group */
 | |
|     if (!tls1_suiteb(s))
 | |
|         return tls1_shared_group(s, 0) != 0;
 | |
|     /*
 | |
|      * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
 | |
|      * curves permitted.
 | |
|      */
 | |
|     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
 | |
|         return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
 | |
|     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
 | |
|         return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Default sigalg schemes */
 | |
| static const uint16_t tls12_sigalgs[] = {
 | |
|     TLSEXT_SIGALG_mldsa65,
 | |
|     TLSEXT_SIGALG_mldsa87,
 | |
|     TLSEXT_SIGALG_mldsa44,
 | |
|     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
 | |
|     TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
 | |
|     TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
 | |
|     TLSEXT_SIGALG_ed25519,
 | |
|     TLSEXT_SIGALG_ed448,
 | |
|     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
 | |
|     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
 | |
|     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
 | |
| 
 | |
|     TLSEXT_SIGALG_rsa_pss_pss_sha256,
 | |
|     TLSEXT_SIGALG_rsa_pss_pss_sha384,
 | |
|     TLSEXT_SIGALG_rsa_pss_pss_sha512,
 | |
|     TLSEXT_SIGALG_rsa_pss_rsae_sha256,
 | |
|     TLSEXT_SIGALG_rsa_pss_rsae_sha384,
 | |
|     TLSEXT_SIGALG_rsa_pss_rsae_sha512,
 | |
| 
 | |
|     TLSEXT_SIGALG_rsa_pkcs1_sha256,
 | |
|     TLSEXT_SIGALG_rsa_pkcs1_sha384,
 | |
|     TLSEXT_SIGALG_rsa_pkcs1_sha512,
 | |
| 
 | |
|     TLSEXT_SIGALG_ecdsa_sha224,
 | |
|     TLSEXT_SIGALG_ecdsa_sha1,
 | |
| 
 | |
|     TLSEXT_SIGALG_rsa_pkcs1_sha224,
 | |
|     TLSEXT_SIGALG_rsa_pkcs1_sha1,
 | |
| 
 | |
|     TLSEXT_SIGALG_dsa_sha224,
 | |
|     TLSEXT_SIGALG_dsa_sha1,
 | |
| 
 | |
|     TLSEXT_SIGALG_dsa_sha256,
 | |
|     TLSEXT_SIGALG_dsa_sha384,
 | |
|     TLSEXT_SIGALG_dsa_sha512,
 | |
| 
 | |
| #ifndef OPENSSL_NO_GOST
 | |
|     TLSEXT_SIGALG_gostr34102012_256_intrinsic,
 | |
|     TLSEXT_SIGALG_gostr34102012_512_intrinsic,
 | |
|     TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
 | |
|     TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
 | |
|     TLSEXT_SIGALG_gostr34102001_gostr3411,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| 
 | |
| static const uint16_t suiteb_sigalgs[] = {
 | |
|     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
 | |
|     TLSEXT_SIGALG_ecdsa_secp384r1_sha384
 | |
| };
 | |
| 
 | |
| static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
 | |
|     {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
 | |
|      "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
 | |
|      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
 | |
|      NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
|     {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
 | |
|      "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
 | |
|      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
 | |
|      NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
|     {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
 | |
|      "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
 | |
|      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
 | |
|      NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
| 
 | |
|     {TLSEXT_SIGALG_ed25519_name,
 | |
|      NULL, TLSEXT_SIGALG_ed25519,
 | |
|      NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
|     {TLSEXT_SIGALG_ed448_name,
 | |
|      NULL, TLSEXT_SIGALG_ed448,
 | |
|      NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
| 
 | |
|     {TLSEXT_SIGALG_ecdsa_sha224_name,
 | |
|      "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
 | |
|      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
 | |
|      NID_ecdsa_with_SHA224, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
|     {TLSEXT_SIGALG_ecdsa_sha1_name,
 | |
|      "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
 | |
|      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
 | |
|      NID_ecdsa_with_SHA1, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
| 
 | |
|     {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
 | |
|      TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
 | |
|      TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
 | |
|      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
 | |
|      NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
 | |
|      TLS1_3_VERSION, 0, -1, -1},
 | |
|     {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
 | |
|      TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
 | |
|      TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
 | |
|      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
 | |
|      NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
 | |
|      TLS1_3_VERSION, 0, -1, -1},
 | |
|     {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
 | |
|      TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
 | |
|      TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
 | |
|      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
 | |
|      NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
 | |
|      TLS1_3_VERSION, 0, -1, -1},
 | |
| 
 | |
|     {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
 | |
|      "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
 | |
|      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
|     {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
 | |
|      "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
 | |
|      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
|     {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
 | |
|      "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
 | |
|      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
| 
 | |
|     {TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
 | |
|      NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
 | |
|      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
|     {TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
 | |
|      NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
 | |
|      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
|     {TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
 | |
|      NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
 | |
|      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
| 
 | |
|     {TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
 | |
|      "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
 | |
|      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
 | |
|      NID_sha256WithRSAEncryption, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
|     {TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
 | |
|      "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
 | |
|      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
 | |
|      NID_sha384WithRSAEncryption, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
|     {TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
 | |
|      "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
 | |
|      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
 | |
|      NID_sha512WithRSAEncryption, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
 | |
| 
 | |
|     {TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
 | |
|      "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
 | |
|      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
 | |
|      NID_sha224WithRSAEncryption, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
|     {TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
 | |
|      "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
 | |
|      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
 | |
|      NID_sha1WithRSAEncryption, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
| 
 | |
|     {TLSEXT_SIGALG_dsa_sha256_name,
 | |
|      "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
 | |
|      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
 | |
|      NID_dsa_with_SHA256, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
|     {TLSEXT_SIGALG_dsa_sha384_name,
 | |
|      "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
 | |
|      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
|     {TLSEXT_SIGALG_dsa_sha512_name,
 | |
|      "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
 | |
|      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
|     {TLSEXT_SIGALG_dsa_sha224_name,
 | |
|      "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
 | |
|      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
|     {TLSEXT_SIGALG_dsa_sha1_name,
 | |
|      "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
 | |
|      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
 | |
|      NID_dsaWithSHA1, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
| 
 | |
| #ifndef OPENSSL_NO_GOST
 | |
|     {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
 | |
|      TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
 | |
|      TLSEXT_SIGALG_gostr34102012_256_intrinsic,
 | |
|      NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
 | |
|      NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
|     {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
 | |
|      TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
 | |
|      TLSEXT_SIGALG_gostr34102012_512_intrinsic,
 | |
|      NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
 | |
|      NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
| 
 | |
|     {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
 | |
|      NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
 | |
|      NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
 | |
|      NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
|     {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
 | |
|      NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
 | |
|      NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
 | |
|      NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
|     {TLSEXT_SIGALG_gostr34102001_gostr3411_name,
 | |
|      NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
 | |
|      NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
 | |
|      NID_id_GostR3410_2001, SSL_PKEY_GOST01,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
 | |
| #endif
 | |
| };
 | |
| /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
 | |
| static const SIGALG_LOOKUP legacy_rsa_sigalg = {
 | |
|     "rsa_pkcs1_md5_sha1", NULL, 0,
 | |
|      NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
 | |
|      EVP_PKEY_RSA, SSL_PKEY_RSA,
 | |
|      NID_undef, NID_undef, 1, 0,
 | |
|      TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Default signature algorithm values used if signature algorithms not present.
 | |
|  * From RFC5246. Note: order must match certificate index order.
 | |
|  */
 | |
| static const uint16_t tls_default_sigalg[] = {
 | |
|     TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
 | |
|     0, /* SSL_PKEY_RSA_PSS_SIGN */
 | |
|     TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
 | |
|     TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
 | |
|     TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
 | |
|     TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
 | |
|     TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
 | |
|     0, /* SSL_PKEY_ED25519 */
 | |
|     0, /* SSL_PKEY_ED448 */
 | |
| };
 | |
| 
 | |
| int ssl_setup_sigalgs(SSL_CTX *ctx)
 | |
| {
 | |
|     size_t i, cache_idx, sigalgs_len, enabled;
 | |
|     const SIGALG_LOOKUP *lu;
 | |
|     SIGALG_LOOKUP *cache = NULL;
 | |
|     uint16_t *tls12_sigalgs_list = NULL;
 | |
|     EVP_PKEY *tmpkey = EVP_PKEY_new();
 | |
|     int istls;
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (ctx == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     istls = !SSL_CTX_IS_DTLS(ctx);
 | |
| 
 | |
|     sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
 | |
| 
 | |
|     cache = OPENSSL_calloc(sigalgs_len, sizeof(const SIGALG_LOOKUP));
 | |
|     if (cache == NULL || tmpkey == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     tls12_sigalgs_list = OPENSSL_calloc(sigalgs_len, sizeof(uint16_t));
 | |
|     if (tls12_sigalgs_list == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     ERR_set_mark();
 | |
|     /* First fill cache and tls12_sigalgs list from legacy algorithm list */
 | |
|     for (i = 0, lu = sigalg_lookup_tbl;
 | |
|          i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
 | |
|         EVP_PKEY_CTX *pctx;
 | |
| 
 | |
|         cache[i] = *lu;
 | |
| 
 | |
|         /*
 | |
|          * Check hash is available.
 | |
|          * This test is not perfect. A provider could have support
 | |
|          * for a signature scheme, but not a particular hash. However the hash
 | |
|          * could be available from some other loaded provider. In that case it
 | |
|          * could be that the signature is available, and the hash is available
 | |
|          * independently - but not as a combination. We ignore this for now.
 | |
|          */
 | |
|         if (lu->hash != NID_undef
 | |
|                 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
 | |
|             cache[i].available = 0;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
 | |
|             cache[i].available = 0;
 | |
|             continue;
 | |
|         }
 | |
|         pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
 | |
|         /* If unable to create pctx we assume the sig algorithm is unavailable */
 | |
|         if (pctx == NULL)
 | |
|             cache[i].available = 0;
 | |
|         EVP_PKEY_CTX_free(pctx);
 | |
|     }
 | |
| 
 | |
|     /* Now complete cache and tls12_sigalgs list with provider sig information */
 | |
|     cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
 | |
|     for (i = 0; i < ctx->sigalg_list_len; i++) {
 | |
|         TLS_SIGALG_INFO si = ctx->sigalg_list[i];
 | |
|         cache[cache_idx].name = si.name;
 | |
|         cache[cache_idx].name12 = si.sigalg_name;
 | |
|         cache[cache_idx].sigalg = si.code_point;
 | |
|         tls12_sigalgs_list[cache_idx] = si.code_point;
 | |
|         cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
 | |
|         cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
 | |
|         cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
 | |
|         cache[cache_idx].sig_idx = (int)(i + SSL_PKEY_NUM);
 | |
|         cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
 | |
|         cache[cache_idx].curve = NID_undef;
 | |
|         cache[cache_idx].mintls = TLS1_3_VERSION;
 | |
|         cache[cache_idx].maxtls = TLS1_3_VERSION;
 | |
|         cache[cache_idx].mindtls = -1;
 | |
|         cache[cache_idx].maxdtls = -1;
 | |
|         /* Compatibility with TLS 1.3 is checked on load */
 | |
|         cache[cache_idx].available = istls;
 | |
|         cache[cache_idx].advertise = 0;
 | |
|         cache_idx++;
 | |
|     }
 | |
|     ERR_pop_to_mark();
 | |
| 
 | |
|     enabled = 0;
 | |
|     for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
 | |
|         SIGALG_LOOKUP *ent = cache;
 | |
|         size_t j;
 | |
| 
 | |
|         for (j = 0; j < sigalgs_len; ent++, j++) {
 | |
|             if (ent->sigalg != tls12_sigalgs[i])
 | |
|                 continue;
 | |
|             /* Dedup by marking cache entry as default enabled. */
 | |
|             if (ent->available && !ent->advertise) {
 | |
|                 ent->advertise = 1;
 | |
|                 tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Append any provider sigalgs not yet handled */
 | |
|     for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
 | |
|         SIGALG_LOOKUP *ent = &cache[i];
 | |
| 
 | |
|         if (ent->available && !ent->advertise)
 | |
|             tls12_sigalgs_list[enabled++] = ent->sigalg;
 | |
|     }
 | |
| 
 | |
|     ctx->sigalg_lookup_cache = cache;
 | |
|     ctx->sigalg_lookup_cache_len = sigalgs_len;
 | |
|     ctx->tls12_sigalgs = tls12_sigalgs_list;
 | |
|     ctx->tls12_sigalgs_len = enabled;
 | |
|     cache = NULL;
 | |
|     tls12_sigalgs_list = NULL;
 | |
| 
 | |
|     ret = 1;
 | |
|  err:
 | |
|     OPENSSL_free(cache);
 | |
|     OPENSSL_free(tls12_sigalgs_list);
 | |
|     EVP_PKEY_free(tmpkey);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #define SIGLEN_BUF_INCREMENT 100
 | |
| 
 | |
| char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
 | |
| {
 | |
|     size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
 | |
|     const SIGALG_LOOKUP *lu;
 | |
|     EVP_PKEY *tmpkey = EVP_PKEY_new();
 | |
|     char *retval = OPENSSL_malloc(maxretlen);
 | |
| 
 | |
|     if (retval == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     /* ensure retval string is NUL terminated */
 | |
|     retval[0] = (char)0;
 | |
| 
 | |
|     for (i = 0, lu = sigalg_lookup_tbl;
 | |
|          i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
 | |
|         EVP_PKEY_CTX *pctx;
 | |
|         int enabled = 1;
 | |
| 
 | |
|         ERR_set_mark();
 | |
|         /* Check hash is available in some provider. */
 | |
|         if (lu->hash != NID_undef) {
 | |
|             EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
 | |
| 
 | |
|             /* If unable to create we assume the hash algorithm is unavailable */
 | |
|             if (hash == NULL) {
 | |
|                 enabled = 0;
 | |
|                 ERR_pop_to_mark();
 | |
|                 continue;
 | |
|             }
 | |
|             EVP_MD_free(hash);
 | |
|         }
 | |
| 
 | |
|         if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
 | |
|             enabled = 0;
 | |
|             ERR_pop_to_mark();
 | |
|             continue;
 | |
|         }
 | |
|         pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
 | |
|         /* If unable to create pctx we assume the sig algorithm is unavailable */
 | |
|         if (pctx == NULL)
 | |
|             enabled = 0;
 | |
|         ERR_pop_to_mark();
 | |
|         EVP_PKEY_CTX_free(pctx);
 | |
| 
 | |
|         if (enabled) {
 | |
|             const char *sa = lu->name;
 | |
| 
 | |
|             if (sa != NULL) {
 | |
|                 if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
 | |
|                     char *tmp;
 | |
| 
 | |
|                     maxretlen += SIGLEN_BUF_INCREMENT;
 | |
|                     tmp = OPENSSL_realloc(retval, maxretlen);
 | |
|                     if (tmp == NULL) {
 | |
|                         OPENSSL_free(retval);
 | |
|                         return NULL;
 | |
|                     }
 | |
|                     retval = tmp;
 | |
|                 }
 | |
|                 if (strlen(retval) > 0)
 | |
|                     OPENSSL_strlcat(retval, ":", maxretlen);
 | |
|                 OPENSSL_strlcat(retval, sa, maxretlen);
 | |
|             } else {
 | |
|                 /* lu->name must not be NULL */
 | |
|                 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     EVP_PKEY_free(tmpkey);
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| /* Lookup TLS signature algorithm */
 | |
| static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
 | |
|                                                uint16_t sigalg)
 | |
| {
 | |
|     size_t i;
 | |
|     const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
 | |
| 
 | |
|     for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
 | |
|         if (lu->sigalg == sigalg) {
 | |
|             if (!lu->available)
 | |
|                 return NULL;
 | |
|             return lu;
 | |
|         }
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* Lookup hash: return 0 if invalid or not enabled */
 | |
| int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
 | |
| {
 | |
|     const EVP_MD *md;
 | |
| 
 | |
|     if (lu == NULL)
 | |
|         return 0;
 | |
|     /* lu->hash == NID_undef means no associated digest */
 | |
|     if (lu->hash == NID_undef) {
 | |
|         md = NULL;
 | |
|     } else {
 | |
|         md = ssl_md(ctx, lu->hash_idx);
 | |
|         if (md == NULL)
 | |
|             return 0;
 | |
|     }
 | |
|     if (pmd)
 | |
|         *pmd = md;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if key is large enough to generate RSA-PSS signature.
 | |
|  *
 | |
|  * The key must greater than or equal to 2 * hash length + 2.
 | |
|  * SHA512 has a hash length of 64 bytes, which is incompatible
 | |
|  * with a 128 byte (1024 bit) key.
 | |
|  */
 | |
| #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
 | |
| static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
 | |
|                                       const SIGALG_LOOKUP *lu)
 | |
| {
 | |
|     const EVP_MD *md;
 | |
| 
 | |
|     if (pkey == NULL)
 | |
|         return 0;
 | |
|     if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
 | |
|         return 0;
 | |
|     if (EVP_MD_get_size(md) <= 0)
 | |
|         return 0;
 | |
|     if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
 | |
|         return 0;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns a signature algorithm when the peer did not send a list of supported
 | |
|  * signature algorithms. The signature algorithm is fixed for the certificate
 | |
|  * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
 | |
|  * certificate type from |s| will be used.
 | |
|  * Returns the signature algorithm to use, or NULL on error.
 | |
|  */
 | |
| static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
 | |
|                                                    int idx)
 | |
| {
 | |
|     if (idx == -1) {
 | |
|         if (s->server) {
 | |
|             size_t i;
 | |
| 
 | |
|             /* Work out index corresponding to ciphersuite */
 | |
|             for (i = 0; i < s->ssl_pkey_num; i++) {
 | |
|                 const SSL_CERT_LOOKUP *clu
 | |
|                     = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
 | |
| 
 | |
|                 if (clu == NULL)
 | |
|                     continue;
 | |
|                 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
 | |
|                     idx = (int)i;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * Some GOST ciphersuites allow more than one signature algorithms
 | |
|              * */
 | |
|             if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
 | |
|                 int real_idx;
 | |
| 
 | |
|                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
 | |
|                      real_idx--) {
 | |
|                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
 | |
|                         idx = real_idx;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             /*
 | |
|              * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
 | |
|              * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
 | |
|              */
 | |
|             else if (idx == SSL_PKEY_GOST12_256) {
 | |
|                 int real_idx;
 | |
| 
 | |
|                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
 | |
|                      real_idx--) {
 | |
|                      if (s->cert->pkeys[real_idx].privatekey != NULL) {
 | |
|                          idx = real_idx;
 | |
|                          break;
 | |
|                      }
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             idx = (int)(s->cert->key - s->cert->pkeys);
 | |
|         }
 | |
|     }
 | |
|     if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
 | |
|         return NULL;
 | |
| 
 | |
|     if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
 | |
|         const SIGALG_LOOKUP *lu =
 | |
|             tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
 | |
|                                tls_default_sigalg[idx]);
 | |
| 
 | |
|         if (lu == NULL)
 | |
|             return NULL;
 | |
|         if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
 | |
|             return NULL;
 | |
|         if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
 | |
|             return NULL;
 | |
|         return lu;
 | |
|     }
 | |
|     if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
 | |
|         return NULL;
 | |
|     return &legacy_rsa_sigalg;
 | |
| }
 | |
| /* Set peer sigalg based key type */
 | |
| int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
 | |
| {
 | |
|     size_t idx;
 | |
|     const SIGALG_LOOKUP *lu;
 | |
| 
 | |
|     if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
 | |
|         return 0;
 | |
|     lu = tls1_get_legacy_sigalg(s, (int)idx);
 | |
|     if (lu == NULL)
 | |
|         return 0;
 | |
|     s->s3.tmp.peer_sigalg = lu;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
 | |
| {
 | |
|     /*
 | |
|      * If Suite B mode use Suite B sigalgs only, ignore any other
 | |
|      * preferences.
 | |
|      */
 | |
|     switch (tls1_suiteb(s)) {
 | |
|     case SSL_CERT_FLAG_SUITEB_128_LOS:
 | |
|         *psigs = suiteb_sigalgs;
 | |
|         return OSSL_NELEM(suiteb_sigalgs);
 | |
| 
 | |
|     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
 | |
|         *psigs = suiteb_sigalgs;
 | |
|         return 1;
 | |
| 
 | |
|     case SSL_CERT_FLAG_SUITEB_192_LOS:
 | |
|         *psigs = suiteb_sigalgs + 1;
 | |
|         return 1;
 | |
|     }
 | |
|     /*
 | |
|      *  We use client_sigalgs (if not NULL) if we're a server
 | |
|      *  and sending a certificate request or if we're a client and
 | |
|      *  determining which shared algorithm to use.
 | |
|      */
 | |
|     if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
 | |
|         *psigs = s->cert->client_sigalgs;
 | |
|         return s->cert->client_sigalgslen;
 | |
|     } else if (s->cert->conf_sigalgs) {
 | |
|         *psigs = s->cert->conf_sigalgs;
 | |
|         return s->cert->conf_sigalgslen;
 | |
|     } else {
 | |
|         *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
 | |
|         return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called by servers only. Checks that we have a sig alg that supports the
 | |
|  * specified EC curve.
 | |
|  */
 | |
| int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
 | |
| {
 | |
|    const uint16_t *sigs;
 | |
|    size_t siglen, i;
 | |
| 
 | |
|     if (s->cert->conf_sigalgs) {
 | |
|         sigs = s->cert->conf_sigalgs;
 | |
|         siglen = s->cert->conf_sigalgslen;
 | |
|     } else {
 | |
|         sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
 | |
|         siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < siglen; i++) {
 | |
|         const SIGALG_LOOKUP *lu =
 | |
|             tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
 | |
| 
 | |
|         if (lu == NULL)
 | |
|             continue;
 | |
|         if (lu->sig == EVP_PKEY_EC
 | |
|                 && lu->curve != NID_undef
 | |
|                 && curve == lu->curve)
 | |
|             return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of security bits for the signature algorithm, or 0 on
 | |
|  * error.
 | |
|  */
 | |
| static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
 | |
| {
 | |
|     const EVP_MD *md = NULL;
 | |
|     int secbits = 0;
 | |
| 
 | |
|     if (!tls1_lookup_md(ctx, lu, &md))
 | |
|         return 0;
 | |
|     if (md != NULL)
 | |
|     {
 | |
|         int md_type = EVP_MD_get_type(md);
 | |
| 
 | |
|         /* Security bits: half digest bits */
 | |
|         secbits = EVP_MD_get_size(md) * 4;
 | |
|         if (secbits <= 0)
 | |
|             return 0;
 | |
|         /*
 | |
|          * SHA1 and MD5 are known to be broken. Reduce security bits so that
 | |
|          * they're no longer accepted at security level 1. The real values don't
 | |
|          * really matter as long as they're lower than 80, which is our
 | |
|          * security level 1.
 | |
|          * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
 | |
|          * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
 | |
|          * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
 | |
|          * puts a chosen-prefix attack for MD5 at 2^39.
 | |
|          */
 | |
|         if (md_type == NID_sha1)
 | |
|             secbits = 64;
 | |
|         else if (md_type == NID_md5_sha1)
 | |
|             secbits = 67;
 | |
|         else if (md_type == NID_md5)
 | |
|             secbits = 39;
 | |
|     } else {
 | |
|         /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
 | |
|         if (lu->sigalg == TLSEXT_SIGALG_ed25519)
 | |
|             secbits = 128;
 | |
|         else if (lu->sigalg == TLSEXT_SIGALG_ed448)
 | |
|             secbits = 224;
 | |
|     }
 | |
|     /*
 | |
|      * For provider-based sigalgs we have secbits information available
 | |
|      * in the (provider-loaded) sigalg_list structure
 | |
|      */
 | |
|     if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
 | |
|                && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
 | |
|         secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
 | |
|     }
 | |
|     return secbits;
 | |
| }
 | |
| 
 | |
| static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
 | |
| {
 | |
|     int minversion, maxversion;
 | |
|     int minproto, maxproto;
 | |
| 
 | |
|     if (!lu->available)
 | |
|         return 0;
 | |
| 
 | |
|     if (SSL_CONNECTION_IS_DTLS(sc)) {
 | |
|         if (sc->ssl.method->version == DTLS_ANY_VERSION) {
 | |
|             minproto = sc->min_proto_version;
 | |
|             maxproto = sc->max_proto_version;
 | |
|         } else {
 | |
|             maxproto = minproto = sc->version;
 | |
|         }
 | |
|         minversion = lu->mindtls;
 | |
|         maxversion = lu->maxdtls;
 | |
|     } else {
 | |
|         if (sc->ssl.method->version == TLS_ANY_VERSION) {
 | |
|             minproto = sc->min_proto_version;
 | |
|             maxproto = sc->max_proto_version;
 | |
|         } else {
 | |
|             maxproto = minproto = sc->version;
 | |
|         }
 | |
|         minversion = lu->mintls;
 | |
|         maxversion = lu->maxtls;
 | |
|     }
 | |
|     if (minversion == -1 || maxversion == -1
 | |
|         || (minversion != 0 && maxproto != 0
 | |
|             && ssl_version_cmp(sc, minversion, maxproto) > 0)
 | |
|         || (maxversion != 0 && minproto != 0
 | |
|             && ssl_version_cmp(sc, maxversion, minproto) < 0)
 | |
|         || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
 | |
|         return 0;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check signature algorithm is consistent with sent supported signature
 | |
|  * algorithms and if so set relevant digest and signature scheme in
 | |
|  * s.
 | |
|  */
 | |
| int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
 | |
| {
 | |
|     const uint16_t *sent_sigs;
 | |
|     const EVP_MD *md = NULL;
 | |
|     char sigalgstr[2];
 | |
|     size_t sent_sigslen, i, cidx;
 | |
|     int pkeyid = -1;
 | |
|     const SIGALG_LOOKUP *lu;
 | |
|     int secbits = 0;
 | |
| 
 | |
|     pkeyid = EVP_PKEY_get_id(pkey);
 | |
| 
 | |
|     if (SSL_CONNECTION_IS_TLS13(s)) {
 | |
|         /* Disallow DSA for TLS 1.3 */
 | |
|         if (pkeyid == EVP_PKEY_DSA) {
 | |
|             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
 | |
|             return 0;
 | |
|         }
 | |
|         /* Only allow PSS for TLS 1.3 */
 | |
|         if (pkeyid == EVP_PKEY_RSA)
 | |
|             pkeyid = EVP_PKEY_RSA_PSS;
 | |
|     }
 | |
| 
 | |
|     /* Is this code point available and compatible with the protocol */
 | |
|     lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
 | |
|     if (lu == NULL || !tls_sigalg_compat(s, lu)) {
 | |
|         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
 | |
|     if (pkeyid == EVP_PKEY_KEYMGMT)
 | |
|         pkeyid = lu->sig;
 | |
| 
 | |
|     /* Should never happen */
 | |
|     if (pkeyid == -1) {
 | |
|         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
 | |
|      * is consistent with signature: RSA keys can be used for RSA-PSS
 | |
|      */
 | |
|     if ((SSL_CONNECTION_IS_TLS13(s)
 | |
|             && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
 | |
|         || (pkeyid != lu->sig
 | |
|         && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
 | |
|         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
 | |
|         return 0;
 | |
|     }
 | |
|     /* Check the sigalg is consistent with the key OID */
 | |
|     if (!ssl_cert_lookup_by_nid(
 | |
|                  (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
 | |
|                  &cidx, SSL_CONNECTION_GET_CTX(s))
 | |
|             || lu->sig_idx != (int)cidx) {
 | |
|         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (pkeyid == EVP_PKEY_EC) {
 | |
| 
 | |
|         /* Check point compression is permitted */
 | |
|         if (!tls1_check_pkey_comp(s, pkey)) {
 | |
|             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
 | |
|                      SSL_R_ILLEGAL_POINT_COMPRESSION);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         /* For TLS 1.3 or Suite B check curve matches signature algorithm */
 | |
|         if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
 | |
|             int curve = ssl_get_EC_curve_nid(pkey);
 | |
| 
 | |
|             if (lu->curve != NID_undef && curve != lu->curve) {
 | |
|                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
|         if (!SSL_CONNECTION_IS_TLS13(s)) {
 | |
|             /* Check curve matches extensions */
 | |
|             if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
 | |
|                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
 | |
|                 return 0;
 | |
|             }
 | |
|             if (tls1_suiteb(s)) {
 | |
|                 /* Check sigalg matches a permissible Suite B value */
 | |
|                 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
 | |
|                     && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
 | |
|                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
 | |
|                              SSL_R_WRONG_SIGNATURE_TYPE);
 | |
|                     return 0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else if (tls1_suiteb(s)) {
 | |
|         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Check signature matches a type we sent */
 | |
|     sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
 | |
|     for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
 | |
|         if (sig == *sent_sigs)
 | |
|             break;
 | |
|     }
 | |
|     /* Allow fallback to SHA1 if not strict mode */
 | |
|     if (i == sent_sigslen && (lu->hash != NID_sha1
 | |
|         || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
 | |
|         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
 | |
|         return 0;
 | |
|     }
 | |
|     if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
 | |
|         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
 | |
|         return 0;
 | |
|     }
 | |
|     /*
 | |
|      * Make sure security callback allows algorithm. For historical
 | |
|      * reasons we have to pass the sigalg as a two byte char array.
 | |
|      */
 | |
|     sigalgstr[0] = (sig >> 8) & 0xff;
 | |
|     sigalgstr[1] = sig & 0xff;
 | |
|     secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
 | |
|     if (secbits == 0 ||
 | |
|         !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
 | |
|                       md != NULL ? EVP_MD_get_type(md) : NID_undef,
 | |
|                       (void *)sigalgstr)) {
 | |
|         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
 | |
|         return 0;
 | |
|     }
 | |
|     /* Store the sigalg the peer uses */
 | |
|     s->s3.tmp.peer_sigalg = lu;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
 | |
| {
 | |
|     const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
 | |
| 
 | |
|     if (sc == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (sc->s3.tmp.peer_sigalg == NULL)
 | |
|         return 0;
 | |
|     *pnid = sc->s3.tmp.peer_sigalg->sig;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int SSL_get_signature_type_nid(const SSL *s, int *pnid)
 | |
| {
 | |
|     const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
 | |
| 
 | |
|     if (sc == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (sc->s3.tmp.sigalg == NULL)
 | |
|         return 0;
 | |
|     *pnid = sc->s3.tmp.sigalg->sig;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
 | |
|  * supported, doesn't appear in supported signature algorithms, isn't supported
 | |
|  * by the enabled protocol versions or by the security level.
 | |
|  *
 | |
|  * This function should only be used for checking which ciphers are supported
 | |
|  * by the client.
 | |
|  *
 | |
|  * Call ssl_cipher_disabled() to check that it's enabled or not.
 | |
|  */
 | |
| int ssl_set_client_disabled(SSL_CONNECTION *s)
 | |
| {
 | |
|     s->s3.tmp.mask_a = 0;
 | |
|     s->s3.tmp.mask_k = 0;
 | |
|     ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
 | |
|     if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
 | |
|                                 &s->s3.tmp.max_ver, NULL) != 0)
 | |
|         return 0;
 | |
| #ifndef OPENSSL_NO_PSK
 | |
|     /* with PSK there must be client callback set */
 | |
|     if (!s->psk_client_callback) {
 | |
|         s->s3.tmp.mask_a |= SSL_aPSK;
 | |
|         s->s3.tmp.mask_k |= SSL_PSK;
 | |
|     }
 | |
| #endif                          /* OPENSSL_NO_PSK */
 | |
| #ifndef OPENSSL_NO_SRP
 | |
|     if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
 | |
|         s->s3.tmp.mask_a |= SSL_aSRP;
 | |
|         s->s3.tmp.mask_k |= SSL_kSRP;
 | |
|     }
 | |
| #endif
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ssl_cipher_disabled - check that a cipher is disabled or not
 | |
|  * @s: SSL connection that you want to use the cipher on
 | |
|  * @c: cipher to check
 | |
|  * @op: Security check that you want to do
 | |
|  * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
 | |
|  *
 | |
|  * Returns 1 when it's disabled, 0 when enabled.
 | |
|  */
 | |
| int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
 | |
|                         int op, int ecdhe)
 | |
| {
 | |
|     int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
 | |
|     int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
 | |
| 
 | |
|     if (c->algorithm_mkey & s->s3.tmp.mask_k
 | |
|         || c->algorithm_auth & s->s3.tmp.mask_a)
 | |
|         return 1;
 | |
|     if (s->s3.tmp.max_ver == 0)
 | |
|         return 1;
 | |
| 
 | |
|     if (SSL_IS_QUIC_INT_HANDSHAKE(s))
 | |
|         /* For QUIC, only allow these ciphersuites. */
 | |
|         switch (SSL_CIPHER_get_id(c)) {
 | |
|         case TLS1_3_CK_AES_128_GCM_SHA256:
 | |
|         case TLS1_3_CK_AES_256_GCM_SHA384:
 | |
|         case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
 | |
|             break;
 | |
|         default:
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|     /*
 | |
|      * For historical reasons we will allow ECHDE to be selected by a server
 | |
|      * in SSLv3 if we are a client
 | |
|      */
 | |
|     if (minversion == TLS1_VERSION
 | |
|             && ecdhe
 | |
|             && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
 | |
|         minversion = SSL3_VERSION;
 | |
| 
 | |
|     if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
 | |
|         || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
 | |
|         return 1;
 | |
| 
 | |
|     return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
 | |
| }
 | |
| 
 | |
| int tls_use_ticket(SSL_CONNECTION *s)
 | |
| {
 | |
|     if ((s->options & SSL_OP_NO_TICKET))
 | |
|         return 0;
 | |
|     return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
 | |
| }
 | |
| 
 | |
| int tls1_set_server_sigalgs(SSL_CONNECTION *s)
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     /* Clear any shared signature algorithms */
 | |
|     OPENSSL_free(s->shared_sigalgs);
 | |
|     s->shared_sigalgs = NULL;
 | |
|     s->shared_sigalgslen = 0;
 | |
| 
 | |
|     /* Clear certificate validity flags */
 | |
|     if (s->s3.tmp.valid_flags)
 | |
|         memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
 | |
|     else
 | |
|         s->s3.tmp.valid_flags = OPENSSL_calloc(s->ssl_pkey_num, sizeof(uint32_t));
 | |
|     if (s->s3.tmp.valid_flags == NULL) {
 | |
|         SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
 | |
|         return 0;
 | |
|     }
 | |
|     /*
 | |
|      * If peer sent no signature algorithms check to see if we support
 | |
|      * the default algorithm for each certificate type
 | |
|      */
 | |
|     if (s->s3.tmp.peer_cert_sigalgs == NULL
 | |
|             && s->s3.tmp.peer_sigalgs == NULL) {
 | |
|         const uint16_t *sent_sigs;
 | |
|         size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
 | |
| 
 | |
|         for (i = 0; i < s->ssl_pkey_num; i++) {
 | |
|             const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, (int)i);
 | |
|             size_t j;
 | |
| 
 | |
|             if (lu == NULL)
 | |
|                 continue;
 | |
|             /* Check default matches a type we sent */
 | |
|             for (j = 0; j < sent_sigslen; j++) {
 | |
|                 if (lu->sigalg == sent_sigs[j]) {
 | |
|                         s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
 | |
|                         break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (!tls1_process_sigalgs(s)) {
 | |
|         SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
 | |
|         return 0;
 | |
|     }
 | |
|     if (s->shared_sigalgs != NULL)
 | |
|         return 1;
 | |
| 
 | |
|     /* Fatal error if no shared signature algorithms */
 | |
|     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
 | |
|              SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Gets the ticket information supplied by the client if any.
 | |
|  *
 | |
|  *   hello: The parsed ClientHello data
 | |
|  *   ret: (output) on return, if a ticket was decrypted, then this is set to
 | |
|  *       point to the resulting session.
 | |
|  */
 | |
| SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
 | |
|                                              CLIENTHELLO_MSG *hello,
 | |
|                                              SSL_SESSION **ret)
 | |
| {
 | |
|     size_t size;
 | |
|     RAW_EXTENSION *ticketext;
 | |
| 
 | |
|     *ret = NULL;
 | |
|     s->ext.ticket_expected = 0;
 | |
| 
 | |
|     /*
 | |
|      * If tickets disabled or not supported by the protocol version
 | |
|      * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
 | |
|      * resumption.
 | |
|      */
 | |
|     if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
 | |
|         return SSL_TICKET_NONE;
 | |
| 
 | |
|     ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
 | |
|     if (!ticketext->present)
 | |
|         return SSL_TICKET_NONE;
 | |
| 
 | |
|     size = PACKET_remaining(&ticketext->data);
 | |
| 
 | |
|     return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
 | |
|                               hello->session_id, hello->session_id_len, ret);
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * tls_decrypt_ticket attempts to decrypt a session ticket.
 | |
|  *
 | |
|  * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
 | |
|  * expecting a pre-shared key ciphersuite, in which case we have no use for
 | |
|  * session tickets and one will never be decrypted, nor will
 | |
|  * s->ext.ticket_expected be set to 1.
 | |
|  *
 | |
|  * Side effects:
 | |
|  *   Sets s->ext.ticket_expected to 1 if the server will have to issue
 | |
|  *   a new session ticket to the client because the client indicated support
 | |
|  *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
 | |
|  *   a session ticket or we couldn't use the one it gave us, or if
 | |
|  *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
 | |
|  *   Otherwise, s->ext.ticket_expected is set to 0.
 | |
|  *
 | |
|  *   etick: points to the body of the session ticket extension.
 | |
|  *   eticklen: the length of the session tickets extension.
 | |
|  *   sess_id: points at the session ID.
 | |
|  *   sesslen: the length of the session ID.
 | |
|  *   psess: (output) on return, if a ticket was decrypted, then this is set to
 | |
|  *       point to the resulting session.
 | |
|  */
 | |
| SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
 | |
|                                      const unsigned char *etick,
 | |
|                                      size_t eticklen,
 | |
|                                      const unsigned char *sess_id,
 | |
|                                      size_t sesslen, SSL_SESSION **psess)
 | |
| {
 | |
|     SSL_SESSION *sess = NULL;
 | |
|     unsigned char *sdec;
 | |
|     const unsigned char *p;
 | |
|     int slen, ivlen, renew_ticket = 0, declen;
 | |
|     SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
 | |
|     size_t mlen;
 | |
|     unsigned char tick_hmac[EVP_MAX_MD_SIZE];
 | |
|     SSL_HMAC *hctx = NULL;
 | |
|     EVP_CIPHER_CTX *ctx = NULL;
 | |
|     SSL_CTX *tctx = s->session_ctx;
 | |
|     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
 | |
| 
 | |
|     if (eticklen == 0) {
 | |
|         /*
 | |
|          * The client will accept a ticket but doesn't currently have
 | |
|          * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
 | |
|          */
 | |
|         ret = SSL_TICKET_EMPTY;
 | |
|         goto end;
 | |
|     }
 | |
|     if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
 | |
|         /*
 | |
|          * Indicate that the ticket couldn't be decrypted rather than
 | |
|          * generating the session from ticket now, trigger
 | |
|          * abbreviated handshake based on external mechanism to
 | |
|          * calculate the master secret later.
 | |
|          */
 | |
|         ret = SSL_TICKET_NO_DECRYPT;
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     /* Need at least keyname + iv */
 | |
|     if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
 | |
|         ret = SSL_TICKET_NO_DECRYPT;
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     /* Initialize session ticket encryption and HMAC contexts */
 | |
|     hctx = ssl_hmac_new(tctx);
 | |
|     if (hctx == NULL) {
 | |
|         ret = SSL_TICKET_FATAL_ERR_MALLOC;
 | |
|         goto end;
 | |
|     }
 | |
|     ctx = EVP_CIPHER_CTX_new();
 | |
|     if (ctx == NULL) {
 | |
|         ret = SSL_TICKET_FATAL_ERR_MALLOC;
 | |
|         goto end;
 | |
|     }
 | |
| #ifndef OPENSSL_NO_DEPRECATED_3_0
 | |
|     if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
 | |
| #else
 | |
|     if (tctx->ext.ticket_key_evp_cb != NULL)
 | |
| #endif
 | |
|     {
 | |
|         unsigned char *nctick = (unsigned char *)etick;
 | |
|         int rv = 0;
 | |
| 
 | |
|         if (tctx->ext.ticket_key_evp_cb != NULL)
 | |
|             rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
 | |
|                                              nctick,
 | |
|                                              nctick + TLSEXT_KEYNAME_LENGTH,
 | |
|                                              ctx,
 | |
|                                              ssl_hmac_get0_EVP_MAC_CTX(hctx),
 | |
|                                              0);
 | |
| #ifndef OPENSSL_NO_DEPRECATED_3_0
 | |
|         else if (tctx->ext.ticket_key_cb != NULL)
 | |
|             /* if 0 is returned, write an empty ticket */
 | |
|             rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
 | |
|                                          nctick + TLSEXT_KEYNAME_LENGTH,
 | |
|                                          ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
 | |
| #endif
 | |
|         if (rv < 0) {
 | |
|             ret = SSL_TICKET_FATAL_ERR_OTHER;
 | |
|             goto end;
 | |
|         }
 | |
|         if (rv == 0) {
 | |
|             ret = SSL_TICKET_NO_DECRYPT;
 | |
|             goto end;
 | |
|         }
 | |
|         if (rv == 2)
 | |
|             renew_ticket = 1;
 | |
|     } else {
 | |
|         EVP_CIPHER *aes256cbc = NULL;
 | |
| 
 | |
|         /* Check key name matches */
 | |
|         if (memcmp(etick, tctx->ext.tick_key_name,
 | |
|                    TLSEXT_KEYNAME_LENGTH) != 0) {
 | |
|             ret = SSL_TICKET_NO_DECRYPT;
 | |
|             goto end;
 | |
|         }
 | |
| 
 | |
|         aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
 | |
|                                      sctx->propq);
 | |
|         if (aes256cbc == NULL
 | |
|             || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
 | |
|                              sizeof(tctx->ext.secure->tick_hmac_key),
 | |
|                              "SHA256") <= 0
 | |
|             || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
 | |
|                                   tctx->ext.secure->tick_aes_key,
 | |
|                                   etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
 | |
|             EVP_CIPHER_free(aes256cbc);
 | |
|             ret = SSL_TICKET_FATAL_ERR_OTHER;
 | |
|             goto end;
 | |
|         }
 | |
|         EVP_CIPHER_free(aes256cbc);
 | |
|         if (SSL_CONNECTION_IS_TLS13(s))
 | |
|             renew_ticket = 1;
 | |
|     }
 | |
|     /*
 | |
|      * Attempt to process session ticket, first conduct sanity and integrity
 | |
|      * checks on ticket.
 | |
|      */
 | |
|     mlen = ssl_hmac_size(hctx);
 | |
|     if (mlen == 0) {
 | |
|         ret = SSL_TICKET_FATAL_ERR_OTHER;
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
 | |
|     if (ivlen < 0) {
 | |
|         ret = SSL_TICKET_FATAL_ERR_OTHER;
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     /* Sanity check ticket length: must exceed keyname + IV + HMAC */
 | |
|     if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
 | |
|         ret = SSL_TICKET_NO_DECRYPT;
 | |
|         goto end;
 | |
|     }
 | |
|     eticklen -= mlen;
 | |
|     /* Check HMAC of encrypted ticket */
 | |
|     if (ssl_hmac_update(hctx, etick, eticklen) <= 0
 | |
|         || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
 | |
|         ret = SSL_TICKET_FATAL_ERR_OTHER;
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
 | |
|         ret = SSL_TICKET_NO_DECRYPT;
 | |
|         goto end;
 | |
|     }
 | |
|     /* Attempt to decrypt session data */
 | |
|     /* Move p after IV to start of encrypted ticket, update length */
 | |
|     p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
 | |
|     eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
 | |
|     sdec = OPENSSL_malloc(eticklen);
 | |
|     if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
 | |
|                                           (int)eticklen) <= 0) {
 | |
|         OPENSSL_free(sdec);
 | |
|         ret = SSL_TICKET_FATAL_ERR_OTHER;
 | |
|         goto end;
 | |
|     }
 | |
|     if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
 | |
|         OPENSSL_free(sdec);
 | |
|         ret = SSL_TICKET_NO_DECRYPT;
 | |
|         goto end;
 | |
|     }
 | |
|     slen += declen;
 | |
|     p = sdec;
 | |
| 
 | |
|     sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
 | |
|     slen -= (int)(p - sdec);
 | |
|     OPENSSL_free(sdec);
 | |
|     if (sess) {
 | |
|         /* Some additional consistency checks */
 | |
|         if (slen != 0) {
 | |
|             SSL_SESSION_free(sess);
 | |
|             sess = NULL;
 | |
|             ret = SSL_TICKET_NO_DECRYPT;
 | |
|             goto end;
 | |
|         }
 | |
|         /*
 | |
|          * The session ID, if non-empty, is used by some clients to detect
 | |
|          * that the ticket has been accepted. So we copy it to the session
 | |
|          * structure. If it is empty set length to zero as required by
 | |
|          * standard.
 | |
|          */
 | |
|         if (sesslen) {
 | |
|             memcpy(sess->session_id, sess_id, sesslen);
 | |
|             sess->session_id_length = sesslen;
 | |
|         }
 | |
|         if (renew_ticket)
 | |
|             ret = SSL_TICKET_SUCCESS_RENEW;
 | |
|         else
 | |
|             ret = SSL_TICKET_SUCCESS;
 | |
|         goto end;
 | |
|     }
 | |
|     ERR_clear_error();
 | |
|     /*
 | |
|      * For session parse failure, indicate that we need to send a new ticket.
 | |
|      */
 | |
|     ret = SSL_TICKET_NO_DECRYPT;
 | |
| 
 | |
|  end:
 | |
|     EVP_CIPHER_CTX_free(ctx);
 | |
|     ssl_hmac_free(hctx);
 | |
| 
 | |
|     /*
 | |
|      * If set, the decrypt_ticket_cb() is called unless a fatal error was
 | |
|      * detected above. The callback is responsible for checking |ret| before it
 | |
|      * performs any action
 | |
|      */
 | |
|     if (s->session_ctx->decrypt_ticket_cb != NULL
 | |
|             && (ret == SSL_TICKET_EMPTY
 | |
|                 || ret == SSL_TICKET_NO_DECRYPT
 | |
|                 || ret == SSL_TICKET_SUCCESS
 | |
|                 || ret == SSL_TICKET_SUCCESS_RENEW)) {
 | |
|         size_t keyname_len = eticklen;
 | |
|         int retcb;
 | |
| 
 | |
|         if (keyname_len > TLSEXT_KEYNAME_LENGTH)
 | |
|             keyname_len = TLSEXT_KEYNAME_LENGTH;
 | |
|         retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
 | |
|                                                   sess, etick, keyname_len,
 | |
|                                                   ret,
 | |
|                                                   s->session_ctx->ticket_cb_data);
 | |
|         switch (retcb) {
 | |
|         case SSL_TICKET_RETURN_ABORT:
 | |
|             ret = SSL_TICKET_FATAL_ERR_OTHER;
 | |
|             break;
 | |
| 
 | |
|         case SSL_TICKET_RETURN_IGNORE:
 | |
|             ret = SSL_TICKET_NONE;
 | |
|             SSL_SESSION_free(sess);
 | |
|             sess = NULL;
 | |
|             break;
 | |
| 
 | |
|         case SSL_TICKET_RETURN_IGNORE_RENEW:
 | |
|             if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
 | |
|                 ret = SSL_TICKET_NO_DECRYPT;
 | |
|             /* else the value of |ret| will already do the right thing */
 | |
|             SSL_SESSION_free(sess);
 | |
|             sess = NULL;
 | |
|             break;
 | |
| 
 | |
|         case SSL_TICKET_RETURN_USE:
 | |
|         case SSL_TICKET_RETURN_USE_RENEW:
 | |
|             if (ret != SSL_TICKET_SUCCESS
 | |
|                     && ret != SSL_TICKET_SUCCESS_RENEW)
 | |
|                 ret = SSL_TICKET_FATAL_ERR_OTHER;
 | |
|             else if (retcb == SSL_TICKET_RETURN_USE)
 | |
|                 ret = SSL_TICKET_SUCCESS;
 | |
|             else
 | |
|                 ret = SSL_TICKET_SUCCESS_RENEW;
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             ret = SSL_TICKET_FATAL_ERR_OTHER;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
 | |
|         switch (ret) {
 | |
|         case SSL_TICKET_NO_DECRYPT:
 | |
|         case SSL_TICKET_SUCCESS_RENEW:
 | |
|         case SSL_TICKET_EMPTY:
 | |
|             s->ext.ticket_expected = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *psess = sess;
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Check to see if a signature algorithm is allowed */
 | |
| static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
 | |
|                                 const SIGALG_LOOKUP *lu)
 | |
| {
 | |
|     unsigned char sigalgstr[2];
 | |
|     int secbits;
 | |
| 
 | |
|     if (lu == NULL || !lu->available)
 | |
|         return 0;
 | |
|     /* DSA is not allowed in TLS 1.3 */
 | |
|     if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
 | |
|         return 0;
 | |
|     /*
 | |
|      * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
 | |
|      * spec
 | |
|      */
 | |
|     if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
 | |
|         && s->s3.tmp.min_ver >= TLS1_3_VERSION
 | |
|         && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
 | |
|             || lu->hash_idx == SSL_MD_MD5_IDX
 | |
|             || lu->hash_idx == SSL_MD_SHA224_IDX))
 | |
|         return 0;
 | |
| 
 | |
|     /* See if public key algorithm allowed */
 | |
|     if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
 | |
|         return 0;
 | |
| 
 | |
|     if (lu->sig == NID_id_GostR3410_2012_256
 | |
|             || lu->sig == NID_id_GostR3410_2012_512
 | |
|             || lu->sig == NID_id_GostR3410_2001) {
 | |
|         /* We never allow GOST sig algs on the server with TLSv1.3 */
 | |
|         if (s->server && SSL_CONNECTION_IS_TLS13(s))
 | |
|             return 0;
 | |
|         if (!s->server
 | |
|                 && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
 | |
|                 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
 | |
|             int i, num;
 | |
|             STACK_OF(SSL_CIPHER) *sk;
 | |
| 
 | |
|             /*
 | |
|              * We're a client that could negotiate TLSv1.3. We only allow GOST
 | |
|              * sig algs if we could negotiate TLSv1.2 or below and we have GOST
 | |
|              * ciphersuites enabled.
 | |
|              */
 | |
| 
 | |
|             if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
 | |
|                 return 0;
 | |
| 
 | |
|             sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
 | |
|             num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
 | |
|             for (i = 0; i < num; i++) {
 | |
|                 const SSL_CIPHER *c;
 | |
| 
 | |
|                 c = sk_SSL_CIPHER_value(sk, i);
 | |
|                 /* Skip disabled ciphers */
 | |
|                 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
 | |
|                     continue;
 | |
| 
 | |
|                 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
 | |
|                     break;
 | |
|             }
 | |
|             if (i == num)
 | |
|                 return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Finally see if security callback allows it */
 | |
|     secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
 | |
|     sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
 | |
|     sigalgstr[1] = lu->sigalg & 0xff;
 | |
|     return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a mask of disabled public key algorithms based on supported signature
 | |
|  * algorithms. For example if no signature algorithm supports RSA then RSA is
 | |
|  * disabled.
 | |
|  */
 | |
| 
 | |
| void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
 | |
| {
 | |
|     const uint16_t *sigalgs;
 | |
|     size_t i, sigalgslen;
 | |
|     uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
 | |
|     /*
 | |
|      * Go through all signature algorithms seeing if we support any
 | |
|      * in disabled_mask.
 | |
|      */
 | |
|     sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
 | |
|     for (i = 0; i < sigalgslen; i++, sigalgs++) {
 | |
|         const SIGALG_LOOKUP *lu =
 | |
|             tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
 | |
|         const SSL_CERT_LOOKUP *clu;
 | |
| 
 | |
|         if (lu == NULL)
 | |
|             continue;
 | |
| 
 | |
|         clu = ssl_cert_lookup_by_idx(lu->sig_idx,
 | |
|                                      SSL_CONNECTION_GET_CTX(s));
 | |
|         if (clu == NULL)
 | |
|                 continue;
 | |
| 
 | |
|         /* If algorithm is disabled see if we can enable it */
 | |
|         if ((clu->amask & disabled_mask) != 0
 | |
|                 && tls12_sigalg_allowed(s, op, lu))
 | |
|             disabled_mask &= ~clu->amask;
 | |
|     }
 | |
|     *pmask_a |= disabled_mask;
 | |
| }
 | |
| 
 | |
| int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
 | |
|                        const uint16_t *psig, size_t psiglen)
 | |
| {
 | |
|     size_t i;
 | |
|     int rv = 0;
 | |
| 
 | |
|     for (i = 0; i < psiglen; i++, psig++) {
 | |
|         const SIGALG_LOOKUP *lu =
 | |
|             tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
 | |
| 
 | |
|         if (lu == NULL || !tls_sigalg_compat(s, lu))
 | |
|             continue;
 | |
|         if (!WPACKET_put_bytes_u16(pkt, *psig))
 | |
|             return 0;
 | |
|         /*
 | |
|          * If TLS 1.3 must have at least one valid TLS 1.3 message
 | |
|          * signing algorithm: i.e. neither RSA nor SHA1/SHA224
 | |
|          */
 | |
|         if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
 | |
|             || (lu->sig != EVP_PKEY_RSA
 | |
|                 && lu->hash != NID_sha1
 | |
|                 && lu->hash != NID_sha224)))
 | |
|             rv = 1;
 | |
|     }
 | |
|     if (rv == 0)
 | |
|         ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| /* Given preference and allowed sigalgs set shared sigalgs */
 | |
| static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
 | |
|                                    const SIGALG_LOOKUP **shsig,
 | |
|                                    const uint16_t *pref, size_t preflen,
 | |
|                                    const uint16_t *allow, size_t allowlen)
 | |
| {
 | |
|     const uint16_t *ptmp, *atmp;
 | |
|     size_t i, j, nmatch = 0;
 | |
|     for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
 | |
|         const SIGALG_LOOKUP *lu =
 | |
|             tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
 | |
| 
 | |
|         /* Skip disabled hashes or signature algorithms */
 | |
|         if (lu == NULL
 | |
|                 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
 | |
|             continue;
 | |
|         for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
 | |
|             if (*ptmp == *atmp) {
 | |
|                 nmatch++;
 | |
|                 if (shsig)
 | |
|                     *shsig++ = lu;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return nmatch;
 | |
| }
 | |
| 
 | |
| /* Set shared signature algorithms for SSL structures */
 | |
| static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
 | |
| {
 | |
|     const uint16_t *pref, *allow, *conf;
 | |
|     size_t preflen, allowlen, conflen;
 | |
|     size_t nmatch;
 | |
|     const SIGALG_LOOKUP **salgs = NULL;
 | |
|     CERT *c = s->cert;
 | |
|     unsigned int is_suiteb = tls1_suiteb(s);
 | |
| 
 | |
|     OPENSSL_free(s->shared_sigalgs);
 | |
|     s->shared_sigalgs = NULL;
 | |
|     s->shared_sigalgslen = 0;
 | |
|     /* If client use client signature algorithms if not NULL */
 | |
|     if (!s->server && c->client_sigalgs && !is_suiteb) {
 | |
|         conf = c->client_sigalgs;
 | |
|         conflen = c->client_sigalgslen;
 | |
|     } else if (c->conf_sigalgs && !is_suiteb) {
 | |
|         conf = c->conf_sigalgs;
 | |
|         conflen = c->conf_sigalgslen;
 | |
|     } else
 | |
|         conflen = tls12_get_psigalgs(s, 0, &conf);
 | |
|     if (s->options & SSL_OP_SERVER_PREFERENCE || is_suiteb) {
 | |
|         pref = conf;
 | |
|         preflen = conflen;
 | |
|         allow = s->s3.tmp.peer_sigalgs;
 | |
|         allowlen = s->s3.tmp.peer_sigalgslen;
 | |
|     } else {
 | |
|         allow = conf;
 | |
|         allowlen = conflen;
 | |
|         pref = s->s3.tmp.peer_sigalgs;
 | |
|         preflen = s->s3.tmp.peer_sigalgslen;
 | |
|     }
 | |
|     nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
 | |
|     if (nmatch) {
 | |
|         if ((salgs = OPENSSL_malloc_array(nmatch, sizeof(*salgs))) == NULL)
 | |
|             return 0;
 | |
|         nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
 | |
|     } else {
 | |
|         salgs = NULL;
 | |
|     }
 | |
|     s->shared_sigalgs = salgs;
 | |
|     s->shared_sigalgslen = nmatch;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
 | |
| {
 | |
|     unsigned int stmp;
 | |
|     size_t size, i;
 | |
|     uint16_t *buf;
 | |
| 
 | |
|     size = PACKET_remaining(pkt);
 | |
| 
 | |
|     /* Invalid data length */
 | |
|     if (size == 0 || (size & 1) != 0)
 | |
|         return 0;
 | |
| 
 | |
|     size >>= 1;
 | |
| 
 | |
|     if ((buf = OPENSSL_malloc_array(size, sizeof(*buf))) == NULL)
 | |
|         return 0;
 | |
|     for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
 | |
|         buf[i] = stmp;
 | |
| 
 | |
|     if (i != size) {
 | |
|         OPENSSL_free(buf);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     OPENSSL_free(*pdest);
 | |
|     *pdest = buf;
 | |
|     *pdestlen = size;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
 | |
| {
 | |
|     /* Extension ignored for inappropriate versions */
 | |
|     if (!SSL_USE_SIGALGS(s))
 | |
|         return 1;
 | |
|     /* Should never happen */
 | |
|     if (s->cert == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (cert)
 | |
|         return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
 | |
|                              &s->s3.tmp.peer_cert_sigalgslen);
 | |
|     else
 | |
|         return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
 | |
|                              &s->s3.tmp.peer_sigalgslen);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Set preferred digest for each key type */
 | |
| 
 | |
| int tls1_process_sigalgs(SSL_CONNECTION *s)
 | |
| {
 | |
|     size_t i;
 | |
|     uint32_t *pvalid = s->s3.tmp.valid_flags;
 | |
| 
 | |
|     if (!tls1_set_shared_sigalgs(s))
 | |
|         return 0;
 | |
| 
 | |
|     for (i = 0; i < s->ssl_pkey_num; i++)
 | |
|         pvalid[i] = 0;
 | |
| 
 | |
|     for (i = 0; i < s->shared_sigalgslen; i++) {
 | |
|         const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
 | |
|         int idx = sigptr->sig_idx;
 | |
| 
 | |
|         /* Ignore PKCS1 based sig algs in TLSv1.3 */
 | |
|         if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
 | |
|             continue;
 | |
|         /* If not disabled indicate we can explicitly sign */
 | |
|         if (pvalid[idx] == 0
 | |
|             && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
 | |
|             pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int SSL_get_sigalgs(SSL *s, int idx,
 | |
|                     int *psign, int *phash, int *psignhash,
 | |
|                     unsigned char *rsig, unsigned char *rhash)
 | |
| {
 | |
|     uint16_t *psig;
 | |
|     size_t numsigalgs;
 | |
|     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
 | |
| 
 | |
|     if (sc == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     psig = sc->s3.tmp.peer_sigalgs;
 | |
|     numsigalgs = sc->s3.tmp.peer_sigalgslen;
 | |
| 
 | |
|     if (psig == NULL || numsigalgs > INT_MAX)
 | |
|         return 0;
 | |
|     if (idx >= 0) {
 | |
|         const SIGALG_LOOKUP *lu;
 | |
| 
 | |
|         if (idx >= (int)numsigalgs)
 | |
|             return 0;
 | |
|         psig += idx;
 | |
|         if (rhash != NULL)
 | |
|             *rhash = (unsigned char)((*psig >> 8) & 0xff);
 | |
|         if (rsig != NULL)
 | |
|             *rsig = (unsigned char)(*psig & 0xff);
 | |
|         lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
 | |
|         if (psign != NULL)
 | |
|             *psign = lu != NULL ? lu->sig : NID_undef;
 | |
|         if (phash != NULL)
 | |
|             *phash = lu != NULL ? lu->hash : NID_undef;
 | |
|         if (psignhash != NULL)
 | |
|             *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
 | |
|     }
 | |
|     return (int)numsigalgs;
 | |
| }
 | |
| 
 | |
| int SSL_get_shared_sigalgs(SSL *s, int idx,
 | |
|                            int *psign, int *phash, int *psignhash,
 | |
|                            unsigned char *rsig, unsigned char *rhash)
 | |
| {
 | |
|     const SIGALG_LOOKUP *shsigalgs;
 | |
|     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
 | |
| 
 | |
|     if (sc == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (sc->shared_sigalgs == NULL
 | |
|         || idx < 0
 | |
|         || idx >= (int)sc->shared_sigalgslen
 | |
|         || sc->shared_sigalgslen > INT_MAX)
 | |
|         return 0;
 | |
|     shsigalgs = sc->shared_sigalgs[idx];
 | |
|     if (phash != NULL)
 | |
|         *phash = shsigalgs->hash;
 | |
|     if (psign != NULL)
 | |
|         *psign = shsigalgs->sig;
 | |
|     if (psignhash != NULL)
 | |
|         *psignhash = shsigalgs->sigandhash;
 | |
|     if (rsig != NULL)
 | |
|         *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
 | |
|     if (rhash != NULL)
 | |
|         *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
 | |
|     return (int)sc->shared_sigalgslen;
 | |
| }
 | |
| 
 | |
| /* Maximum possible number of unique entries in sigalgs array */
 | |
| #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
 | |
| 
 | |
| typedef struct {
 | |
|     size_t sigalgcnt;
 | |
|     /* TLSEXT_SIGALG_XXX values */
 | |
|     uint16_t sigalgs[TLS_MAX_SIGALGCNT];
 | |
|     SSL_CTX *ctx;
 | |
| } sig_cb_st;
 | |
| 
 | |
| static void get_sigorhash(int *psig, int *phash, const char *str)
 | |
| {
 | |
|     if (OPENSSL_strcasecmp(str, "RSA") == 0) {
 | |
|         *psig = EVP_PKEY_RSA;
 | |
|     } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
 | |
|                || OPENSSL_strcasecmp(str, "PSS") == 0) {
 | |
|         *psig = EVP_PKEY_RSA_PSS;
 | |
|     } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
 | |
|         *psig = EVP_PKEY_DSA;
 | |
|     } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
 | |
|         *psig = EVP_PKEY_EC;
 | |
|     } else {
 | |
|         *phash = OBJ_sn2nid(str);
 | |
|         if (*phash == NID_undef)
 | |
|             *phash = OBJ_ln2nid(str);
 | |
|     }
 | |
| }
 | |
| /* Maximum length of a signature algorithm string component */
 | |
| #define TLS_MAX_SIGSTRING_LEN   40
 | |
| 
 | |
| static int sig_cb(const char *elem, int len, void *arg)
 | |
| {
 | |
|     sig_cb_st *sarg = arg;
 | |
|     size_t i = 0;
 | |
|     const SIGALG_LOOKUP *s;
 | |
|     char etmp[TLS_MAX_SIGSTRING_LEN], *p;
 | |
|     const char *iana, *alias;
 | |
|     int sig_alg = NID_undef, hash_alg = NID_undef;
 | |
|     int ignore_unknown = 0;
 | |
| 
 | |
|     if (elem == NULL)
 | |
|         return 0;
 | |
|     if (elem[0] == '?') {
 | |
|         ignore_unknown = 1;
 | |
|         ++elem;
 | |
|         --len;
 | |
|     }
 | |
|     if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
 | |
|         return 0;
 | |
|     if (len > (int)(sizeof(etmp) - 1))
 | |
|         return 0;
 | |
|     memcpy(etmp, elem, len);
 | |
|     etmp[len] = 0;
 | |
|     p = strchr(etmp, '+');
 | |
|     /*
 | |
|      * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
 | |
|      * if there's no '+' in the provided name, look for the new-style combined
 | |
|      * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
 | |
|      * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
 | |
|      * rsa_pss_rsae_* that differ only by public key OID; in such cases
 | |
|      * we will pick the _rsae_ variant, by virtue of them appearing earlier
 | |
|      * in the table.
 | |
|      */
 | |
|     if (p == NULL) {
 | |
|         if (sarg->ctx != NULL) {
 | |
|             for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
 | |
|                 iana = sarg->ctx->sigalg_lookup_cache[i].name;
 | |
|                 alias = sarg->ctx->sigalg_lookup_cache[i].name12;
 | |
|                 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
 | |
|                     || OPENSSL_strcasecmp(etmp, iana) == 0) {
 | |
|                     /* Ignore known, but unavailable sigalgs. */
 | |
|                     if (!sarg->ctx->sigalg_lookup_cache[i].available)
 | |
|                         return 1;
 | |
|                     sarg->sigalgs[sarg->sigalgcnt++] =
 | |
|                         sarg->ctx->sigalg_lookup_cache[i].sigalg;
 | |
|                     goto found;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             /* Syntax checks use the built-in sigalgs */
 | |
|             for (i = 0, s = sigalg_lookup_tbl;
 | |
|                  i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
 | |
|                 iana = s->name;
 | |
|                 alias = s->name12;
 | |
|                 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
 | |
|                     || OPENSSL_strcasecmp(etmp, iana) == 0) {
 | |
|                     sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
 | |
|                     goto found;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         *p = 0;
 | |
|         p++;
 | |
|         if (*p == 0)
 | |
|             return 0;
 | |
|         get_sigorhash(&sig_alg, &hash_alg, etmp);
 | |
|         get_sigorhash(&sig_alg, &hash_alg, p);
 | |
|         if (sig_alg != NID_undef && hash_alg != NID_undef) {
 | |
|             if (sarg->ctx != NULL) {
 | |
|                 for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
 | |
|                     s = &sarg->ctx->sigalg_lookup_cache[i];
 | |
|                     if (s->hash == hash_alg && s->sig == sig_alg) {
 | |
|                         /* Ignore known, but unavailable sigalgs. */
 | |
|                         if (!sarg->ctx->sigalg_lookup_cache[i].available)
 | |
|                             return 1;
 | |
|                         sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
 | |
|                         goto found;
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
 | |
|                     s = &sigalg_lookup_tbl[i];
 | |
|                     if (s->hash == hash_alg && s->sig == sig_alg) {
 | |
|                         sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
 | |
|                         goto found;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* Ignore unknown algorithms if ignore_unknown */
 | |
|     return ignore_unknown;
 | |
| 
 | |
|  found:
 | |
|     /* Ignore duplicates */
 | |
|     for (i = 0; i < sarg->sigalgcnt - 1; i++) {
 | |
|         if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
 | |
|             sarg->sigalgcnt--;
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set supported signature algorithms based on a colon separated list of the
 | |
|  * form sig+hash e.g. RSA+SHA512:DSA+SHA512
 | |
|  */
 | |
| int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
 | |
| {
 | |
|     sig_cb_st sig;
 | |
|     sig.sigalgcnt = 0;
 | |
| 
 | |
|     if (ctx != NULL)
 | |
|         sig.ctx = ctx;
 | |
|     if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
 | |
|         return 0;
 | |
|     if (sig.sigalgcnt == 0) {
 | |
|         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
 | |
|                        "No valid signature algorithms in '%s'", str);
 | |
|         return 0;
 | |
|     }
 | |
|     if (c == NULL)
 | |
|         return 1;
 | |
|     return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
 | |
| }
 | |
| 
 | |
| int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
 | |
|                      int client)
 | |
| {
 | |
|     uint16_t *sigalgs;
 | |
| 
 | |
|     if ((sigalgs = OPENSSL_malloc_array(salglen, sizeof(*sigalgs))) == NULL)
 | |
|         return 0;
 | |
|     memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
 | |
| 
 | |
|     if (client) {
 | |
|         OPENSSL_free(c->client_sigalgs);
 | |
|         c->client_sigalgs = sigalgs;
 | |
|         c->client_sigalgslen = salglen;
 | |
|     } else {
 | |
|         OPENSSL_free(c->conf_sigalgs);
 | |
|         c->conf_sigalgs = sigalgs;
 | |
|         c->conf_sigalgslen = salglen;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
 | |
| {
 | |
|     uint16_t *sigalgs, *sptr;
 | |
|     size_t i;
 | |
| 
 | |
|     if (salglen & 1)
 | |
|         return 0;
 | |
|     if ((sigalgs = OPENSSL_malloc_array(salglen / 2, sizeof(*sigalgs))) == NULL)
 | |
|         return 0;
 | |
|     for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
 | |
|         size_t j;
 | |
|         const SIGALG_LOOKUP *curr;
 | |
|         int md_id = *psig_nids++;
 | |
|         int sig_id = *psig_nids++;
 | |
| 
 | |
|         for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
 | |
|              j++, curr++) {
 | |
|             if (curr->hash == md_id && curr->sig == sig_id) {
 | |
|                 *sptr++ = curr->sigalg;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (j == OSSL_NELEM(sigalg_lookup_tbl))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (client) {
 | |
|         OPENSSL_free(c->client_sigalgs);
 | |
|         c->client_sigalgs = sigalgs;
 | |
|         c->client_sigalgslen = salglen / 2;
 | |
|     } else {
 | |
|         OPENSSL_free(c->conf_sigalgs);
 | |
|         c->conf_sigalgs = sigalgs;
 | |
|         c->conf_sigalgslen = salglen / 2;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| 
 | |
|  err:
 | |
|     OPENSSL_free(sigalgs);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
 | |
| {
 | |
|     int sig_nid, use_pc_sigalgs = 0;
 | |
|     size_t i;
 | |
|     const SIGALG_LOOKUP *sigalg;
 | |
|     size_t sigalgslen;
 | |
| 
 | |
|     /*-
 | |
|      * RFC 8446, section 4.2.3:
 | |
|      *
 | |
|      * The signatures on certificates that are self-signed or certificates
 | |
|      * that are trust anchors are not validated, since they begin a
 | |
|      * certification path (see [RFC5280], Section 3.2).  A certificate that
 | |
|      * begins a certification path MAY use a signature algorithm that is not
 | |
|      * advertised as being supported in the "signature_algorithms"
 | |
|      * extension.
 | |
|      */
 | |
|     if (default_nid == -1 || X509_self_signed(x, 0))
 | |
|         return 1;
 | |
|     sig_nid = X509_get_signature_nid(x);
 | |
|     if (default_nid)
 | |
|         return sig_nid == default_nid ? 1 : 0;
 | |
| 
 | |
|     if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
 | |
|         /*
 | |
|          * If we're in TLSv1.3 then we only get here if we're checking the
 | |
|          * chain. If the peer has specified peer_cert_sigalgs then we use them
 | |
|          * otherwise we default to normal sigalgs.
 | |
|          */
 | |
|         sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
 | |
|         use_pc_sigalgs = 1;
 | |
|     } else {
 | |
|         sigalgslen = s->shared_sigalgslen;
 | |
|     }
 | |
|     for (i = 0; i < sigalgslen; i++) {
 | |
|         int mdnid, pknid;
 | |
| 
 | |
|         sigalg = use_pc_sigalgs
 | |
|                  ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
 | |
|                                       s->s3.tmp.peer_cert_sigalgs[i])
 | |
|                  : s->shared_sigalgs[i];
 | |
|         if (sigalg == NULL)
 | |
|             continue;
 | |
|         if (sig_nid == sigalg->sigandhash)
 | |
|             return 1;
 | |
|         if (sigalg->sig != EVP_PKEY_RSA_PSS)
 | |
|             continue;
 | |
|         /*
 | |
|          * Accept RSA PKCS#1 signatures in certificates when the signature
 | |
|          * algorithms include RSA-PSS with a matching digest algorithm.
 | |
|          *
 | |
|          * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
 | |
|          * points, and we're doing strict checking of the certificate chain (in
 | |
|          * a cert_cb via SSL_check_chain()) we may then reject RSA signed
 | |
|          * certificates in the chain, but the TLS requirement on PSS should not
 | |
|          * extend to certificates.  Though the peer can in fact list the legacy
 | |
|          * sigalgs for just this purpose, it is not likely that a better chain
 | |
|          * signed with RSA-PSS is available.
 | |
|          */
 | |
|         if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
 | |
|             continue;
 | |
|         if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
 | |
|             return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Check to see if a certificate issuer name matches list of CA names */
 | |
| static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
 | |
| {
 | |
|     const X509_NAME *nm;
 | |
|     int i;
 | |
|     nm = X509_get_issuer_name(x);
 | |
|     for (i = 0; i < sk_X509_NAME_num(names); i++) {
 | |
|         if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
 | |
|             return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check certificate chain is consistent with TLS extensions and is usable by
 | |
|  * server. This servers two purposes: it allows users to check chains before
 | |
|  * passing them to the server and it allows the server to check chains before
 | |
|  * attempting to use them.
 | |
|  */
 | |
| 
 | |
| /* Flags which need to be set for a certificate when strict mode not set */
 | |
| 
 | |
| #define CERT_PKEY_VALID_FLAGS \
 | |
|         (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
 | |
| /* Strict mode flags */
 | |
| #define CERT_PKEY_STRICT_FLAGS \
 | |
|          (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
 | |
|          | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
 | |
| 
 | |
| int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
 | |
|                      STACK_OF(X509) *chain, int idx)
 | |
| {
 | |
|     int i;
 | |
|     int rv = 0;
 | |
|     int check_flags = 0, strict_mode;
 | |
|     CERT_PKEY *cpk = NULL;
 | |
|     CERT *c = s->cert;
 | |
|     uint32_t *pvalid;
 | |
|     unsigned int suiteb_flags = tls1_suiteb(s);
 | |
| 
 | |
|     /*
 | |
|      * Meaning of idx:
 | |
|      * idx == -1 means SSL_check_chain() invocation
 | |
|      * idx == -2 means checking client certificate chains
 | |
|      * idx >= 0 means checking SSL_PKEY index
 | |
|      *
 | |
|      * For RPK, where there may be no cert, we ignore -1
 | |
|      */
 | |
|     if (idx != -1) {
 | |
|         if (idx == -2) {
 | |
|             cpk = c->key;
 | |
|             idx = (int)(cpk - c->pkeys);
 | |
|         } else
 | |
|             cpk = c->pkeys + idx;
 | |
|         pvalid = s->s3.tmp.valid_flags + idx;
 | |
|         x = cpk->x509;
 | |
|         pk = cpk->privatekey;
 | |
|         chain = cpk->chain;
 | |
|         strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
 | |
|         if (tls12_rpk_and_privkey(s, idx)) {
 | |
|             if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
 | |
|                 return 0;
 | |
|             *pvalid = rv = CERT_PKEY_RPK;
 | |
|             return rv;
 | |
|         }
 | |
|         /* If no cert or key, forget it */
 | |
|         if (x == NULL || pk == NULL)
 | |
|             goto end;
 | |
|     } else {
 | |
|         size_t certidx;
 | |
| 
 | |
|         if (x == NULL || pk == NULL)
 | |
|             return 0;
 | |
| 
 | |
|         if (ssl_cert_lookup_by_pkey(pk, &certidx,
 | |
|                                     SSL_CONNECTION_GET_CTX(s)) == NULL)
 | |
|             return 0;
 | |
|         idx = (int)certidx;
 | |
|         pvalid = s->s3.tmp.valid_flags + idx;
 | |
| 
 | |
|         if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
 | |
|             check_flags = CERT_PKEY_STRICT_FLAGS;
 | |
|         else
 | |
|             check_flags = CERT_PKEY_VALID_FLAGS;
 | |
|         strict_mode = 1;
 | |
|     }
 | |
| 
 | |
|     if (suiteb_flags) {
 | |
|         int ok;
 | |
|         if (check_flags)
 | |
|             check_flags |= CERT_PKEY_SUITEB;
 | |
|         ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
 | |
|         if (ok == X509_V_OK)
 | |
|             rv |= CERT_PKEY_SUITEB;
 | |
|         else if (!check_flags)
 | |
|             goto end;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check all signature algorithms are consistent with signature
 | |
|      * algorithms extension if TLS 1.2 or later and strict mode.
 | |
|      */
 | |
|     if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
 | |
|         && strict_mode) {
 | |
|         int default_nid;
 | |
|         int rsign = 0;
 | |
| 
 | |
|         if (s->s3.tmp.peer_cert_sigalgs != NULL
 | |
|                 || s->s3.tmp.peer_sigalgs != NULL) {
 | |
|             default_nid = 0;
 | |
|         /* If no sigalgs extension use defaults from RFC5246 */
 | |
|         } else {
 | |
|             switch (idx) {
 | |
|             case SSL_PKEY_RSA:
 | |
|                 rsign = EVP_PKEY_RSA;
 | |
|                 default_nid = NID_sha1WithRSAEncryption;
 | |
|                 break;
 | |
| 
 | |
|             case SSL_PKEY_DSA_SIGN:
 | |
|                 rsign = EVP_PKEY_DSA;
 | |
|                 default_nid = NID_dsaWithSHA1;
 | |
|                 break;
 | |
| 
 | |
|             case SSL_PKEY_ECC:
 | |
|                 rsign = EVP_PKEY_EC;
 | |
|                 default_nid = NID_ecdsa_with_SHA1;
 | |
|                 break;
 | |
| 
 | |
|             case SSL_PKEY_GOST01:
 | |
|                 rsign = NID_id_GostR3410_2001;
 | |
|                 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
 | |
|                 break;
 | |
| 
 | |
|             case SSL_PKEY_GOST12_256:
 | |
|                 rsign = NID_id_GostR3410_2012_256;
 | |
|                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
 | |
|                 break;
 | |
| 
 | |
|             case SSL_PKEY_GOST12_512:
 | |
|                 rsign = NID_id_GostR3410_2012_512;
 | |
|                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
 | |
|                 break;
 | |
| 
 | |
|             default:
 | |
|                 default_nid = -1;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         /*
 | |
|          * If peer sent no signature algorithms extension and we have set
 | |
|          * preferred signature algorithms check we support sha1.
 | |
|          */
 | |
|         if (default_nid > 0 && c->conf_sigalgs) {
 | |
|             size_t j;
 | |
|             const uint16_t *p = c->conf_sigalgs;
 | |
|             for (j = 0; j < c->conf_sigalgslen; j++, p++) {
 | |
|                 const SIGALG_LOOKUP *lu =
 | |
|                     tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
 | |
| 
 | |
|                 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
 | |
|                     break;
 | |
|             }
 | |
|             if (j == c->conf_sigalgslen) {
 | |
|                 if (check_flags)
 | |
|                     goto skip_sigs;
 | |
|                 else
 | |
|                     goto end;
 | |
|             }
 | |
|         }
 | |
|         /* Check signature algorithm of each cert in chain */
 | |
|         if (SSL_CONNECTION_IS_TLS13(s)) {
 | |
|             /*
 | |
|              * We only get here if the application has called SSL_check_chain(),
 | |
|              * so check_flags is always set.
 | |
|              */
 | |
|             if (find_sig_alg(s, x, pk) != NULL)
 | |
|                 rv |= CERT_PKEY_EE_SIGNATURE;
 | |
|         } else if (!tls1_check_sig_alg(s, x, default_nid)) {
 | |
|             if (!check_flags)
 | |
|                 goto end;
 | |
|         } else
 | |
|             rv |= CERT_PKEY_EE_SIGNATURE;
 | |
|         rv |= CERT_PKEY_CA_SIGNATURE;
 | |
|         for (i = 0; i < sk_X509_num(chain); i++) {
 | |
|             if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
 | |
|                 if (check_flags) {
 | |
|                     rv &= ~CERT_PKEY_CA_SIGNATURE;
 | |
|                     break;
 | |
|                 } else
 | |
|                     goto end;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
 | |
|     else if (check_flags)
 | |
|         rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
 | |
|  skip_sigs:
 | |
|     /* Check cert parameters are consistent */
 | |
|     if (tls1_check_cert_param(s, x, 1))
 | |
|         rv |= CERT_PKEY_EE_PARAM;
 | |
|     else if (!check_flags)
 | |
|         goto end;
 | |
|     if (!s->server)
 | |
|         rv |= CERT_PKEY_CA_PARAM;
 | |
|     /* In strict mode check rest of chain too */
 | |
|     else if (strict_mode) {
 | |
|         rv |= CERT_PKEY_CA_PARAM;
 | |
|         for (i = 0; i < sk_X509_num(chain); i++) {
 | |
|             X509 *ca = sk_X509_value(chain, i);
 | |
|             if (!tls1_check_cert_param(s, ca, 0)) {
 | |
|                 if (check_flags) {
 | |
|                     rv &= ~CERT_PKEY_CA_PARAM;
 | |
|                     break;
 | |
|                 } else
 | |
|                     goto end;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (!s->server && strict_mode) {
 | |
|         STACK_OF(X509_NAME) *ca_dn;
 | |
|         int check_type = 0;
 | |
| 
 | |
|         if (EVP_PKEY_is_a(pk, "RSA"))
 | |
|             check_type = TLS_CT_RSA_SIGN;
 | |
|         else if (EVP_PKEY_is_a(pk, "DSA"))
 | |
|             check_type = TLS_CT_DSS_SIGN;
 | |
|         else if (EVP_PKEY_is_a(pk, "EC"))
 | |
|             check_type = TLS_CT_ECDSA_SIGN;
 | |
| 
 | |
|         if (check_type) {
 | |
|             const uint8_t *ctypes = s->s3.tmp.ctype;
 | |
|             size_t j;
 | |
| 
 | |
|             for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
 | |
|                 if (*ctypes == check_type) {
 | |
|                     rv |= CERT_PKEY_CERT_TYPE;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
 | |
|                 goto end;
 | |
|         } else {
 | |
|             rv |= CERT_PKEY_CERT_TYPE;
 | |
|         }
 | |
| 
 | |
|         ca_dn = s->s3.tmp.peer_ca_names;
 | |
| 
 | |
|         if (ca_dn == NULL
 | |
|             || sk_X509_NAME_num(ca_dn) == 0
 | |
|             || ssl_check_ca_name(ca_dn, x))
 | |
|             rv |= CERT_PKEY_ISSUER_NAME;
 | |
|         else
 | |
|             for (i = 0; i < sk_X509_num(chain); i++) {
 | |
|                 X509 *xtmp = sk_X509_value(chain, i);
 | |
| 
 | |
|                 if (ssl_check_ca_name(ca_dn, xtmp)) {
 | |
|                     rv |= CERT_PKEY_ISSUER_NAME;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|         if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
 | |
|             goto end;
 | |
|     } else
 | |
|         rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
 | |
| 
 | |
|     if (!check_flags || (rv & check_flags) == check_flags)
 | |
|         rv |= CERT_PKEY_VALID;
 | |
| 
 | |
|  end:
 | |
| 
 | |
|     if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
 | |
|         rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
 | |
|     else
 | |
|         rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
 | |
| 
 | |
|     /*
 | |
|      * When checking a CERT_PKEY structure all flags are irrelevant if the
 | |
|      * chain is invalid.
 | |
|      */
 | |
|     if (!check_flags) {
 | |
|         if (rv & CERT_PKEY_VALID) {
 | |
|             *pvalid = rv;
 | |
|         } else {
 | |
|             /* Preserve sign and explicit sign flag, clear rest */
 | |
|             *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| /* Set validity of certificates in an SSL structure */
 | |
| void tls1_set_cert_validity(SSL_CONNECTION *s)
 | |
| {
 | |
|     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
 | |
|     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
 | |
|     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
 | |
|     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
 | |
|     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
 | |
|     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
 | |
|     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
 | |
|     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
 | |
|     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
 | |
| }
 | |
| 
 | |
| /* User level utility function to check a chain is suitable */
 | |
| int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
 | |
| {
 | |
|     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
 | |
| 
 | |
|     if (sc == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     return tls1_check_chain(sc, x, pk, chain, -1);
 | |
| }
 | |
| 
 | |
| EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
 | |
| {
 | |
|     EVP_PKEY *dhp = NULL;
 | |
|     BIGNUM *p;
 | |
|     int dh_secbits = 80, sec_level_bits;
 | |
|     EVP_PKEY_CTX *pctx = NULL;
 | |
|     OSSL_PARAM_BLD *tmpl = NULL;
 | |
|     OSSL_PARAM *params = NULL;
 | |
|     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
 | |
| 
 | |
|     if (s->cert->dh_tmp_auto != 2) {
 | |
|         if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
 | |
|             if (s->s3.tmp.new_cipher->strength_bits == 256)
 | |
|                 dh_secbits = 128;
 | |
|             else
 | |
|                 dh_secbits = 80;
 | |
|         } else {
 | |
|             if (s->s3.tmp.cert == NULL)
 | |
|                 return NULL;
 | |
|             dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Do not pick a prime that is too weak for the current security level */
 | |
|     sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
 | |
|                                                  NULL, NULL);
 | |
|     if (dh_secbits < sec_level_bits)
 | |
|         dh_secbits = sec_level_bits;
 | |
| 
 | |
|     if (dh_secbits >= 192)
 | |
|         p = BN_get_rfc3526_prime_8192(NULL);
 | |
|     else if (dh_secbits >= 152)
 | |
|         p = BN_get_rfc3526_prime_4096(NULL);
 | |
|     else if (dh_secbits >= 128)
 | |
|         p = BN_get_rfc3526_prime_3072(NULL);
 | |
|     else if (dh_secbits >= 112)
 | |
|         p = BN_get_rfc3526_prime_2048(NULL);
 | |
|     else
 | |
|         p = BN_get_rfc2409_prime_1024(NULL);
 | |
|     if (p == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
 | |
|     if (pctx == NULL
 | |
|             || EVP_PKEY_fromdata_init(pctx) != 1)
 | |
|         goto err;
 | |
| 
 | |
|     tmpl = OSSL_PARAM_BLD_new();
 | |
|     if (tmpl == NULL
 | |
|             || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
 | |
|             || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
 | |
|         goto err;
 | |
| 
 | |
|     params = OSSL_PARAM_BLD_to_param(tmpl);
 | |
|     if (params == NULL
 | |
|             || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
 | |
|         goto err;
 | |
| 
 | |
| err:
 | |
|     OSSL_PARAM_free(params);
 | |
|     OSSL_PARAM_BLD_free(tmpl);
 | |
|     EVP_PKEY_CTX_free(pctx);
 | |
|     BN_free(p);
 | |
|     return dhp;
 | |
| }
 | |
| 
 | |
| static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
 | |
|                                  int op)
 | |
| {
 | |
|     int secbits = -1;
 | |
|     EVP_PKEY *pkey = X509_get0_pubkey(x);
 | |
| 
 | |
|     if (pkey) {
 | |
|         /*
 | |
|          * If no parameters this will return -1 and fail using the default
 | |
|          * security callback for any non-zero security level. This will
 | |
|          * reject keys which omit parameters but this only affects DSA and
 | |
|          * omission of parameters is never (?) done in practice.
 | |
|          */
 | |
|         secbits = EVP_PKEY_get_security_bits(pkey);
 | |
|     }
 | |
|     if (s != NULL)
 | |
|         return ssl_security(s, op, secbits, 0, x);
 | |
|     else
 | |
|         return ssl_ctx_security(ctx, op, secbits, 0, x);
 | |
| }
 | |
| 
 | |
| static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
 | |
|                                  int op)
 | |
| {
 | |
|     /* Lookup signature algorithm digest */
 | |
|     int secbits, nid, pknid;
 | |
| 
 | |
|     /* Don't check signature if self signed */
 | |
|     if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
 | |
|         return 1;
 | |
|     if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
 | |
|         secbits = -1;
 | |
|     /* If digest NID not defined use signature NID */
 | |
|     if (nid == NID_undef)
 | |
|         nid = pknid;
 | |
|     if (s != NULL)
 | |
|         return ssl_security(s, op, secbits, nid, x);
 | |
|     else
 | |
|         return ssl_ctx_security(ctx, op, secbits, nid, x);
 | |
| }
 | |
| 
 | |
| int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
 | |
|                       int is_ee)
 | |
| {
 | |
|     if (vfy)
 | |
|         vfy = SSL_SECOP_PEER;
 | |
|     if (is_ee) {
 | |
|         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
 | |
|             return SSL_R_EE_KEY_TOO_SMALL;
 | |
|     } else {
 | |
|         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
 | |
|             return SSL_R_CA_KEY_TOO_SMALL;
 | |
|     }
 | |
|     if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
 | |
|         return SSL_R_CA_MD_TOO_WEAK;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check security of a chain, if |sk| includes the end entity certificate then
 | |
|  * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
 | |
|  * one to the peer. Return values: 1 if ok otherwise error code to use
 | |
|  */
 | |
| 
 | |
| int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
 | |
|                             X509 *x, int vfy)
 | |
| {
 | |
|     int rv, start_idx, i;
 | |
| 
 | |
|     if (x == NULL) {
 | |
|         x = sk_X509_value(sk, 0);
 | |
|         if (x == NULL)
 | |
|             return ERR_R_INTERNAL_ERROR;
 | |
|         start_idx = 1;
 | |
|     } else
 | |
|         start_idx = 0;
 | |
| 
 | |
|     rv = ssl_security_cert(s, NULL, x, vfy, 1);
 | |
|     if (rv != 1)
 | |
|         return rv;
 | |
| 
 | |
|     for (i = start_idx; i < sk_X509_num(sk); i++) {
 | |
|         x = sk_X509_value(sk, i);
 | |
|         rv = ssl_security_cert(s, NULL, x, vfy, 0);
 | |
|         if (rv != 1)
 | |
|             return rv;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For TLS 1.2 servers check if we have a certificate which can be used
 | |
|  * with the signature algorithm "lu" and return index of certificate.
 | |
|  */
 | |
| 
 | |
| static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
 | |
|                                      const SIGALG_LOOKUP *lu)
 | |
| {
 | |
|     int sig_idx = lu->sig_idx;
 | |
|     const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
 | |
|                                                         SSL_CONNECTION_GET_CTX(s));
 | |
| 
 | |
|     /* If not recognised or not supported by cipher mask it is not suitable */
 | |
|     if (clu == NULL
 | |
|             || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
 | |
|             || (clu->nid == EVP_PKEY_RSA_PSS
 | |
|                 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
 | |
|         return -1;
 | |
| 
 | |
|     /* If doing RPK, the CERT_PKEY won't be "valid" */
 | |
|     if (tls12_rpk_and_privkey(s, sig_idx))
 | |
|         return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
 | |
| 
 | |
|     return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks the given cert against signature_algorithm_cert restrictions sent by
 | |
|  * the peer (if any) as well as whether the hash from the sigalg is usable with
 | |
|  * the key.
 | |
|  * Returns true if the cert is usable and false otherwise.
 | |
|  */
 | |
| static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
 | |
|                              X509 *x, EVP_PKEY *pkey)
 | |
| {
 | |
|     const SIGALG_LOOKUP *lu;
 | |
|     int mdnid, pknid, supported;
 | |
|     size_t i;
 | |
|     const char *mdname = NULL;
 | |
|     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
 | |
| 
 | |
|     /*
 | |
|      * If the given EVP_PKEY cannot support signing with this digest,
 | |
|      * the answer is simply 'no'.
 | |
|      */
 | |
|     if (sig->hash != NID_undef)
 | |
|         mdname = OBJ_nid2sn(sig->hash);
 | |
|     supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
 | |
|                                                     mdname,
 | |
|                                                     sctx->propq);
 | |
|     if (supported <= 0)
 | |
|         return 0;
 | |
| 
 | |
|     /*
 | |
|      * The TLS 1.3 signature_algorithms_cert extension places restrictions
 | |
|      * on the sigalg with which the certificate was signed (by its issuer).
 | |
|      */
 | |
|     if (s->s3.tmp.peer_cert_sigalgs != NULL) {
 | |
|         if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
 | |
|             return 0;
 | |
|         for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
 | |
|             lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
 | |
|                                     s->s3.tmp.peer_cert_sigalgs[i]);
 | |
|             if (lu == NULL)
 | |
|                 continue;
 | |
| 
 | |
|             /*
 | |
|              * This does not differentiate between the
 | |
|              * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
 | |
|              * have a chain here that lets us look at the key OID in the
 | |
|              * signing certificate.
 | |
|              */
 | |
|             if (mdnid == lu->hash && pknid == lu->sig)
 | |
|                 return 1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Without signat_algorithms_cert, any certificate for which we have
 | |
|      * a viable public key is permitted.
 | |
|      */
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if |s| has a usable certificate configured for use
 | |
|  * with signature scheme |sig|.
 | |
|  * "Usable" includes a check for presence as well as applying
 | |
|  * the signature_algorithm_cert restrictions sent by the peer (if any).
 | |
|  * Returns false if no usable certificate is found.
 | |
|  */
 | |
| static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
 | |
| {
 | |
|     /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
 | |
|     if (idx == -1)
 | |
|         idx = sig->sig_idx;
 | |
|     if (!ssl_has_cert(s, idx))
 | |
|         return 0;
 | |
| 
 | |
|     return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
 | |
|                              s->cert->pkeys[idx].privatekey);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the supplied cert |x| and key |pkey| is usable with the
 | |
|  * specified signature scheme |sig|, or false otherwise.
 | |
|  */
 | |
| static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
 | |
|                           EVP_PKEY *pkey)
 | |
| {
 | |
|     size_t idx;
 | |
| 
 | |
|     if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     /* Check the key is consistent with the sig alg */
 | |
|     if ((int)idx != sig->sig_idx)
 | |
|         return 0;
 | |
| 
 | |
|     return check_cert_usable(s, sig, x, pkey);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a signature scheme that works with the supplied certificate |x| and key
 | |
|  * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
 | |
|  * available certs/keys to find one that works.
 | |
|  */
 | |
| static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
 | |
|                                          EVP_PKEY *pkey)
 | |
| {
 | |
|     const SIGALG_LOOKUP *lu = NULL;
 | |
|     size_t i;
 | |
|     int curve = -1;
 | |
|     EVP_PKEY *tmppkey;
 | |
|     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
 | |
| 
 | |
|     /* Look for a shared sigalgs matching possible certificates */
 | |
|     for (i = 0; i < s->shared_sigalgslen; i++) {
 | |
|         /* Skip SHA1, SHA224, DSA and RSA if not PSS */
 | |
|         lu = s->shared_sigalgs[i];
 | |
|         if (lu->hash == NID_sha1
 | |
|             || lu->hash == NID_sha224
 | |
|             || lu->sig == EVP_PKEY_DSA
 | |
|             || lu->sig == EVP_PKEY_RSA
 | |
|             || !tls_sigalg_compat(s, lu))
 | |
|             continue;
 | |
| 
 | |
|         /* Check that we have a cert, and signature_algorithms_cert */
 | |
|         if (!tls1_lookup_md(sctx, lu, NULL))
 | |
|             continue;
 | |
|         if ((pkey == NULL && !has_usable_cert(s, lu, -1))
 | |
|                 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
 | |
|             continue;
 | |
| 
 | |
|         tmppkey = (pkey != NULL) ? pkey
 | |
|                                  : s->cert->pkeys[lu->sig_idx].privatekey;
 | |
| 
 | |
|         if (lu->sig == EVP_PKEY_EC) {
 | |
|             if (curve == -1)
 | |
|                 curve = ssl_get_EC_curve_nid(tmppkey);
 | |
|             if (lu->curve != NID_undef && curve != lu->curve)
 | |
|                 continue;
 | |
|         } else if (lu->sig == EVP_PKEY_RSA_PSS) {
 | |
|             /* validate that key is large enough for the signature algorithm */
 | |
|             if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
 | |
|                 continue;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (i == s->shared_sigalgslen)
 | |
|         return NULL;
 | |
| 
 | |
|     return lu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Choose an appropriate signature algorithm based on available certificates
 | |
|  * Sets chosen certificate and signature algorithm.
 | |
|  *
 | |
|  * For servers if we fail to find a required certificate it is a fatal error,
 | |
|  * an appropriate error code is set and a TLS alert is sent.
 | |
|  *
 | |
|  * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
 | |
|  * a fatal error: we will either try another certificate or not present one
 | |
|  * to the server. In this case no error is set.
 | |
|  */
 | |
| int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
 | |
| {
 | |
|     const SIGALG_LOOKUP *lu = NULL;
 | |
|     int sig_idx = -1;
 | |
| 
 | |
|     s->s3.tmp.cert = NULL;
 | |
|     s->s3.tmp.sigalg = NULL;
 | |
| 
 | |
|     if (SSL_CONNECTION_IS_TLS13(s)) {
 | |
|         lu = find_sig_alg(s, NULL, NULL);
 | |
|         if (lu == NULL) {
 | |
|             if (!fatalerrs)
 | |
|                 return 1;
 | |
|             SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
 | |
|                      SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
 | |
|             return 0;
 | |
|         }
 | |
|     } else {
 | |
|         /* If ciphersuite doesn't require a cert nothing to do */
 | |
|         if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
 | |
|             return 1;
 | |
|         if (!s->server && !ssl_has_cert(s, (int)(s->cert->key - s->cert->pkeys)))
 | |
|                 return 1;
 | |
| 
 | |
|         if (SSL_USE_SIGALGS(s)) {
 | |
|             size_t i;
 | |
|             if (s->s3.tmp.peer_sigalgs != NULL) {
 | |
|                 int curve = -1;
 | |
|                 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
 | |
| 
 | |
|                 /* For Suite B need to match signature algorithm to curve */
 | |
|                 if (tls1_suiteb(s))
 | |
|                     curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
 | |
|                                                  .privatekey);
 | |
| 
 | |
|                 /*
 | |
|                  * Find highest preference signature algorithm matching
 | |
|                  * cert type
 | |
|                  */
 | |
|                 for (i = 0; i < s->shared_sigalgslen; i++) {
 | |
|                     /* Check the sigalg version bounds */
 | |
|                     lu = s->shared_sigalgs[i];
 | |
|                     if (!tls_sigalg_compat(s, lu))
 | |
|                         continue;
 | |
|                     if (s->server) {
 | |
|                         if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
 | |
|                             continue;
 | |
|                     } else {
 | |
|                         int cc_idx = (int)(s->cert->key - s->cert->pkeys);
 | |
| 
 | |
|                         sig_idx = lu->sig_idx;
 | |
|                         if (cc_idx != sig_idx)
 | |
|                             continue;
 | |
|                     }
 | |
|                     /* Check that we have a cert, and sig_algs_cert */
 | |
|                     if (!has_usable_cert(s, lu, sig_idx))
 | |
|                         continue;
 | |
|                     if (lu->sig == EVP_PKEY_RSA_PSS) {
 | |
|                         /* validate that key is large enough for the signature algorithm */
 | |
|                         EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
 | |
| 
 | |
|                         if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
 | |
|                             continue;
 | |
|                     }
 | |
|                     if (curve == -1 || lu->curve == curve)
 | |
|                         break;
 | |
|                 }
 | |
| #ifndef OPENSSL_NO_GOST
 | |
|                 /*
 | |
|                  * Some Windows-based implementations do not send GOST algorithms indication
 | |
|                  * in supported_algorithms extension, so when we have GOST-based ciphersuite,
 | |
|                  * we have to assume GOST support.
 | |
|                  */
 | |
|                 if (i == s->shared_sigalgslen
 | |
|                     && (s->s3.tmp.new_cipher->algorithm_auth
 | |
|                         & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
 | |
|                   if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
 | |
|                     if (!fatalerrs)
 | |
|                       return 1;
 | |
|                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
 | |
|                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
 | |
|                     return 0;
 | |
|                   } else {
 | |
|                     i = 0;
 | |
|                     sig_idx = lu->sig_idx;
 | |
|                   }
 | |
|                 }
 | |
| #endif
 | |
|                 if (i == s->shared_sigalgslen) {
 | |
|                     if (!fatalerrs)
 | |
|                         return 1;
 | |
|                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
 | |
|                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
 | |
|                     return 0;
 | |
|                 }
 | |
|             } else {
 | |
|                 /*
 | |
|                  * If we have no sigalg use defaults
 | |
|                  */
 | |
|                 const uint16_t *sent_sigs;
 | |
|                 size_t sent_sigslen;
 | |
| 
 | |
|                 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
 | |
|                     if (!fatalerrs)
 | |
|                         return 1;
 | |
|                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
 | |
|                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
 | |
|                     return 0;
 | |
|                 }
 | |
| 
 | |
|                 /* Check signature matches a type we sent */
 | |
|                 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
 | |
|                 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
 | |
|                     if (lu->sigalg == *sent_sigs
 | |
|                             && has_usable_cert(s, lu, lu->sig_idx))
 | |
|                         break;
 | |
|                 }
 | |
|                 if (i == sent_sigslen) {
 | |
|                     if (!fatalerrs)
 | |
|                         return 1;
 | |
|                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
 | |
|                              SSL_R_WRONG_SIGNATURE_TYPE);
 | |
|                     return 0;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
 | |
|                 if (!fatalerrs)
 | |
|                     return 1;
 | |
|                 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
 | |
|                          SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (sig_idx == -1)
 | |
|         sig_idx = lu->sig_idx;
 | |
|     s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
 | |
|     s->cert->key = s->s3.tmp.cert;
 | |
|     s->s3.tmp.sigalg = lu;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
 | |
| {
 | |
|     if (mode != TLSEXT_max_fragment_length_DISABLED
 | |
|             && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
 | |
|         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     ctx->ext.max_fragment_len_mode = mode;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
 | |
| {
 | |
|     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
 | |
| 
 | |
|     if (sc == NULL
 | |
|         || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
 | |
|         return 0;
 | |
| 
 | |
|     if (mode != TLSEXT_max_fragment_length_DISABLED
 | |
|             && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
 | |
|         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     sc->ext.max_fragment_len_mode = mode;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
 | |
| {
 | |
|     if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
 | |
|         return TLSEXT_max_fragment_length_DISABLED;
 | |
|     return session->ext.max_fragment_len_mode;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper functions for HMAC access with legacy support included.
 | |
|  */
 | |
| SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
 | |
| {
 | |
|     SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
 | |
|     EVP_MAC *mac = NULL;
 | |
| 
 | |
|     if (ret == NULL)
 | |
|         return NULL;
 | |
| #ifndef OPENSSL_NO_DEPRECATED_3_0
 | |
|     if (ctx->ext.ticket_key_evp_cb == NULL
 | |
|             && ctx->ext.ticket_key_cb != NULL) {
 | |
|         if (!ssl_hmac_old_new(ret))
 | |
|             goto err;
 | |
|         return ret;
 | |
|     }
 | |
| #endif
 | |
|     mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
 | |
|     if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
 | |
|         goto err;
 | |
|     EVP_MAC_free(mac);
 | |
|     return ret;
 | |
|  err:
 | |
|     EVP_MAC_CTX_free(ret->ctx);
 | |
|     EVP_MAC_free(mac);
 | |
|     OPENSSL_free(ret);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| void ssl_hmac_free(SSL_HMAC *ctx)
 | |
| {
 | |
|     if (ctx != NULL) {
 | |
|         EVP_MAC_CTX_free(ctx->ctx);
 | |
| #ifndef OPENSSL_NO_DEPRECATED_3_0
 | |
|         ssl_hmac_old_free(ctx);
 | |
| #endif
 | |
|         OPENSSL_free(ctx);
 | |
|     }
 | |
| }
 | |
| 
 | |
| EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
 | |
| {
 | |
|     return ctx->ctx;
 | |
| }
 | |
| 
 | |
| int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
 | |
| {
 | |
|     OSSL_PARAM params[2], *p = params;
 | |
| 
 | |
|     if (ctx->ctx != NULL) {
 | |
|         *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
 | |
|         *p = OSSL_PARAM_construct_end();
 | |
|         if (EVP_MAC_init(ctx->ctx, key, len, params))
 | |
|             return 1;
 | |
|     }
 | |
| #ifndef OPENSSL_NO_DEPRECATED_3_0
 | |
|     if (ctx->old_ctx != NULL)
 | |
|         return ssl_hmac_old_init(ctx, key, len, md);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
 | |
| {
 | |
|     if (ctx->ctx != NULL)
 | |
|         return EVP_MAC_update(ctx->ctx, data, len);
 | |
| #ifndef OPENSSL_NO_DEPRECATED_3_0
 | |
|     if (ctx->old_ctx != NULL)
 | |
|         return ssl_hmac_old_update(ctx, data, len);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
 | |
|                    size_t max_size)
 | |
| {
 | |
|     if (ctx->ctx != NULL)
 | |
|         return EVP_MAC_final(ctx->ctx, md, len, max_size);
 | |
| #ifndef OPENSSL_NO_DEPRECATED_3_0
 | |
|     if (ctx->old_ctx != NULL)
 | |
|         return ssl_hmac_old_final(ctx, md, len);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| size_t ssl_hmac_size(const SSL_HMAC *ctx)
 | |
| {
 | |
|     if (ctx->ctx != NULL)
 | |
|         return EVP_MAC_CTX_get_mac_size(ctx->ctx);
 | |
| #ifndef OPENSSL_NO_DEPRECATED_3_0
 | |
|     if (ctx->old_ctx != NULL)
 | |
|         return ssl_hmac_old_size(ctx);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
 | |
| {
 | |
|     char gname[OSSL_MAX_NAME_SIZE];
 | |
| 
 | |
|     if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
 | |
|         return OBJ_txt2nid(gname);
 | |
| 
 | |
|     return NID_undef;
 | |
| }
 | |
| 
 | |
| __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
 | |
|                                      const unsigned char *enckey,
 | |
|                                      size_t enckeylen)
 | |
| {
 | |
|     if (EVP_PKEY_is_a(pkey, "DH")) {
 | |
|         int bits = EVP_PKEY_get_bits(pkey);
 | |
| 
 | |
|         if (bits <= 0 || enckeylen != (size_t)bits / 8)
 | |
|             /* the encoded key must be padded to the length of the p */
 | |
|             return 0;
 | |
|     } else if (EVP_PKEY_is_a(pkey, "EC")) {
 | |
|         if (enckeylen < 3 /* point format and at least 1 byte for x and y */
 | |
|             || enckey[0] != 0x04)
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
 | |
| }
 |