mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			376 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			376 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the Apache License 2.0 (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
 | |
| 
 | |
| /*
 | |
|  * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:
 | |
|  * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security
 | |
|  * proof for the original OAEP scheme, which EME-OAEP is based on. A new
 | |
|  * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,
 | |
|  * "RSA-OEAP is Still Alive!", Dec. 2000, <URL:
 | |
|  * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements
 | |
|  * for the underlying permutation: "partial-one-wayness" instead of
 | |
|  * one-wayness.  For the RSA function, this is an equivalent notion.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * RSA low level APIs are deprecated for public use, but still ok for
 | |
|  * internal use.
 | |
|  */
 | |
| #include "internal/deprecated.h"
 | |
| 
 | |
| #include "internal/constant_time.h"
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include <openssl/bn.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/rand.h>
 | |
| #include <openssl/sha.h>
 | |
| #include "rsa_local.h"
 | |
| 
 | |
| int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
 | |
|                                const unsigned char *from, int flen,
 | |
|                                const unsigned char *param, int plen)
 | |
| {
 | |
|     return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
 | |
|                                                    param, plen, NULL, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform the padding as per NIST 800-56B 7.2.2.3
 | |
|  *      from (K) is the key material.
 | |
|  *      param (A) is the additional input.
 | |
|  * Step numbers are included here but not in the constant time inverse below
 | |
|  * to avoid complicating an already difficult enough function.
 | |
|  */
 | |
| int ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(OSSL_LIB_CTX *libctx,
 | |
|                                             unsigned char *to, int tlen,
 | |
|                                             const unsigned char *from, int flen,
 | |
|                                             const unsigned char *param,
 | |
|                                             int plen, const EVP_MD *md,
 | |
|                                             const EVP_MD *mgf1md)
 | |
| {
 | |
|     int rv = 0;
 | |
|     int i, emlen = tlen - 1;
 | |
|     unsigned char *db, *seed;
 | |
|     unsigned char *dbmask = NULL;
 | |
|     unsigned char seedmask[EVP_MAX_MD_SIZE];
 | |
|     int mdlen, dbmask_len = 0;
 | |
| 
 | |
|     if (md == NULL) {
 | |
| #ifndef FIPS_MODULE
 | |
|         md = EVP_sha1();
 | |
| #else
 | |
|         ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
 | |
|         return 0;
 | |
| #endif
 | |
|     }
 | |
|     if (mgf1md == NULL)
 | |
|         mgf1md = md;
 | |
| 
 | |
|     mdlen = EVP_MD_get_size(md);
 | |
|     if (mdlen <= 0) {
 | |
|         ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* step 2b: check KLen > nLen - 2 HLen - 2 */
 | |
|     if (flen > emlen - 2 * mdlen - 1) {
 | |
|         ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (emlen < 2 * mdlen + 1) {
 | |
|         ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* step 3i: EM = 00000000 || maskedMGF || maskedDB */
 | |
|     to[0] = 0;
 | |
|     seed = to + 1;
 | |
|     db = to + mdlen + 1;
 | |
| 
 | |
|     /* step 3a: hash the additional input */
 | |
|     if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
 | |
|         goto err;
 | |
|     /* step 3b: zero bytes array of length nLen - KLen - 2 HLen -2 */
 | |
|     memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
 | |
|     /* step 3c: DB = HA || PS || 00000001 || K */
 | |
|     db[emlen - flen - mdlen - 1] = 0x01;
 | |
|     memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
 | |
|     /* step 3d: generate random byte string */
 | |
|     if (RAND_bytes_ex(libctx, seed, mdlen, 0) <= 0)
 | |
|         goto err;
 | |
| 
 | |
|     dbmask_len = emlen - mdlen;
 | |
|     dbmask = OPENSSL_malloc(dbmask_len);
 | |
|     if (dbmask == NULL) {
 | |
|         ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* step 3e: dbMask = MGF(mgfSeed, nLen - HLen - 1) */
 | |
|     if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)
 | |
|         goto err;
 | |
|     /* step 3f: maskedDB = DB XOR dbMask */
 | |
|     for (i = 0; i < dbmask_len; i++)
 | |
|         db[i] ^= dbmask[i];
 | |
| 
 | |
|     /* step 3g: mgfSeed = MGF(maskedDB, HLen) */
 | |
|     if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)
 | |
|         goto err;
 | |
|     /* stepo 3h: maskedMGFSeed = mgfSeed XOR mgfSeedMask */
 | |
|     for (i = 0; i < mdlen; i++)
 | |
|         seed[i] ^= seedmask[i];
 | |
|     rv = 1;
 | |
| 
 | |
|  err:
 | |
|     OPENSSL_cleanse(seedmask, sizeof(seedmask));
 | |
|     OPENSSL_clear_free(dbmask, dbmask_len);
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
 | |
|                                     const unsigned char *from, int flen,
 | |
|                                     const unsigned char *param, int plen,
 | |
|                                     const EVP_MD *md, const EVP_MD *mgf1md)
 | |
| {
 | |
|     return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
 | |
|                                                    param, plen, md, mgf1md);
 | |
| }
 | |
| 
 | |
| int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
 | |
|                                  const unsigned char *from, int flen, int num,
 | |
|                                  const unsigned char *param, int plen)
 | |
| {
 | |
|     return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
 | |
|                                              param, plen, NULL, NULL);
 | |
| }
 | |
| 
 | |
| int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
 | |
|                                       const unsigned char *from, int flen,
 | |
|                                       int num, const unsigned char *param,
 | |
|                                       int plen, const EVP_MD *md,
 | |
|                                       const EVP_MD *mgf1md)
 | |
| {
 | |
|     int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
 | |
|     unsigned int good = 0, found_one_byte, mask;
 | |
|     const unsigned char *maskedseed, *maskeddb;
 | |
|     /*
 | |
|      * |em| is the encoded message, zero-padded to exactly |num| bytes: em =
 | |
|      * Y || maskedSeed || maskedDB
 | |
|      */
 | |
|     unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
 | |
|         phash[EVP_MAX_MD_SIZE];
 | |
|     int mdlen;
 | |
| 
 | |
|     if (md == NULL) {
 | |
| #ifndef FIPS_MODULE
 | |
|         md = EVP_sha1();
 | |
| #else
 | |
|         ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
 | |
|         return -1;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     if (mgf1md == NULL)
 | |
|         mgf1md = md;
 | |
| 
 | |
|     mdlen = EVP_MD_get_size(md);
 | |
| 
 | |
|     if (tlen <= 0 || flen <= 0 || mdlen <= 0)
 | |
|         return -1;
 | |
|     /*
 | |
|      * |num| is the length of the modulus; |flen| is the length of the
 | |
|      * encoded message. Therefore, for any |from| that was obtained by
 | |
|      * decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
 | |
|      * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of
 | |
|      * the ciphertext, see PKCS #1 v2.2, section 7.1.2.
 | |
|      * This does not leak any side-channel information.
 | |
|      */
 | |
|     if (num < flen || num < 2 * mdlen + 2) {
 | |
|         ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     dblen = num - mdlen - 1;
 | |
|     db = OPENSSL_malloc(dblen);
 | |
|     if (db == NULL) {
 | |
|         ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     em = OPENSSL_malloc(num);
 | |
|     if (em == NULL) {
 | |
|         ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Caller is encouraged to pass zero-padded message created with
 | |
|      * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
 | |
|      * bounds, it's impossible to have an invariant memory access pattern
 | |
|      * in case |from| was not zero-padded in advance.
 | |
|      */
 | |
|     for (from += flen, em += num, i = 0; i < num; i++) {
 | |
|         mask = ~constant_time_is_zero(flen);
 | |
|         flen -= 1 & mask;
 | |
|         from -= 1 & mask;
 | |
|         *--em = *from & mask;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The first byte must be zero, however we must not leak if this is
 | |
|      * true. See James H. Manger, "A Chosen Ciphertext  Attack on RSA
 | |
|      * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
 | |
|      */
 | |
|     good = constant_time_is_zero(em[0]);
 | |
| 
 | |
|     maskedseed = em + 1;
 | |
|     maskeddb = em + 1 + mdlen;
 | |
| 
 | |
|     if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
 | |
|         goto cleanup;
 | |
|     for (i = 0; i < mdlen; i++)
 | |
|         seed[i] ^= maskedseed[i];
 | |
| 
 | |
|     if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
 | |
|         goto cleanup;
 | |
|     for (i = 0; i < dblen; i++)
 | |
|         db[i] ^= maskeddb[i];
 | |
| 
 | |
|     if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
 | |
|         goto cleanup;
 | |
| 
 | |
|     good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));
 | |
| 
 | |
|     found_one_byte = 0;
 | |
|     for (i = mdlen; i < dblen; i++) {
 | |
|         /*
 | |
|          * Padding consists of a number of 0-bytes, followed by a 1.
 | |
|          */
 | |
|         unsigned int equals1 = constant_time_eq(db[i], 1);
 | |
|         unsigned int equals0 = constant_time_is_zero(db[i]);
 | |
|         one_index = constant_time_select_int(~found_one_byte & equals1,
 | |
|                                              i, one_index);
 | |
|         found_one_byte |= equals1;
 | |
|         good &= (found_one_byte | equals0);
 | |
|     }
 | |
| 
 | |
|     good &= found_one_byte;
 | |
| 
 | |
|     /*
 | |
|      * At this point |good| is zero unless the plaintext was valid,
 | |
|      * so plaintext-awareness ensures timing side-channels are no longer a
 | |
|      * concern.
 | |
|      */
 | |
|     msg_index = one_index + 1;
 | |
|     mlen = dblen - msg_index;
 | |
| 
 | |
|     /*
 | |
|      * For good measure, do this check in constant time as well.
 | |
|      */
 | |
|     good &= constant_time_ge(tlen, mlen);
 | |
| 
 | |
|     /*
 | |
|      * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left.
 | |
|      * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|.
 | |
|      * Otherwise leave |to| unchanged.
 | |
|      * Copy the memory back in a way that does not reveal the size of
 | |
|      * the data being copied via a timing side channel. This requires copying
 | |
|      * parts of the buffer multiple times based on the bits set in the real
 | |
|      * length. Clear bits do a non-copy with identical access pattern.
 | |
|      * The loop below has overall complexity of O(N*log(N)).
 | |
|      */
 | |
|     tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),
 | |
|                                     dblen - mdlen - 1, tlen);
 | |
|     for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) {
 | |
|         mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0);
 | |
|         for (i = mdlen + 1; i < dblen - msg_index; i++)
 | |
|             db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]);
 | |
|     }
 | |
|     for (i = 0; i < tlen; i++) {
 | |
|         mask = good & constant_time_lt(i, mlen);
 | |
|         to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]);
 | |
|     }
 | |
| 
 | |
| #ifndef FIPS_MODULE
 | |
|     /*
 | |
|      * To avoid chosen ciphertext attacks, the error message should not
 | |
|      * reveal which kind of decoding error happened.
 | |
|      *
 | |
|      * This trick doesn't work in the FIPS provider because libcrypto manages
 | |
|      * the error stack. Instead we opt not to put an error on the stack at all
 | |
|      * in case of padding failure in the FIPS provider.
 | |
|      */
 | |
|     ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
 | |
|     err_clear_last_constant_time(1 & good);
 | |
| #endif
 | |
|  cleanup:
 | |
|     OPENSSL_cleanse(seed, sizeof(seed));
 | |
|     OPENSSL_clear_free(db, dblen);
 | |
|     OPENSSL_clear_free(em, num);
 | |
| 
 | |
|     return constant_time_select_int(good, mlen, -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mask Generation Function corresponding to section 7.2.2.2 of NIST SP 800-56B.
 | |
|  * The variables are named differently to NIST:
 | |
|  *      mask (T) and len (maskLen)are the returned mask.
 | |
|  *      seed (mgfSeed).
 | |
|  * The range checking steps inm the process are performed outside.
 | |
|  */
 | |
| int PKCS1_MGF1(unsigned char *mask, long len,
 | |
|                const unsigned char *seed, long seedlen, const EVP_MD *dgst)
 | |
| {
 | |
|     long i, outlen = 0;
 | |
|     unsigned char cnt[4];
 | |
|     EVP_MD_CTX *c = EVP_MD_CTX_new();
 | |
|     unsigned char md[EVP_MAX_MD_SIZE];
 | |
|     int mdlen;
 | |
|     int rv = -1;
 | |
| 
 | |
|     if (c == NULL)
 | |
|         goto err;
 | |
|     mdlen = EVP_MD_get_size(dgst);
 | |
|     if (mdlen < 0)
 | |
|         goto err;
 | |
|     /* step 4 */
 | |
|     for (i = 0; outlen < len; i++) {
 | |
|         /* step 4a: D = I2BS(counter, 4) */
 | |
|         cnt[0] = (unsigned char)((i >> 24) & 255);
 | |
|         cnt[1] = (unsigned char)((i >> 16) & 255);
 | |
|         cnt[2] = (unsigned char)((i >> 8)) & 255;
 | |
|         cnt[3] = (unsigned char)(i & 255);
 | |
|         /* step 4b: T =T || hash(mgfSeed || D) */
 | |
|         if (!EVP_DigestInit_ex(c, dgst, NULL)
 | |
|             || !EVP_DigestUpdate(c, seed, seedlen)
 | |
|             || !EVP_DigestUpdate(c, cnt, 4))
 | |
|             goto err;
 | |
|         if (outlen + mdlen <= len) {
 | |
|             if (!EVP_DigestFinal_ex(c, mask + outlen, NULL))
 | |
|                 goto err;
 | |
|             outlen += mdlen;
 | |
|         } else {
 | |
|             if (!EVP_DigestFinal_ex(c, md, NULL))
 | |
|                 goto err;
 | |
|             memcpy(mask + outlen, md, len - outlen);
 | |
|             outlen = len;
 | |
|         }
 | |
|     }
 | |
|     rv = 0;
 | |
|  err:
 | |
|     OPENSSL_cleanse(md, sizeof(md));
 | |
|     EVP_MD_CTX_free(c);
 | |
|     return rv;
 | |
| }
 |