mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			146 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
| =pod
 | |
| 
 | |
| =head1 NAME
 | |
| 
 | |
| BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
 | |
| BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_mod_sqrt, BN_exp, BN_mod_exp, BN_gcd -
 | |
| arithmetic operations on BIGNUMs
 | |
| 
 | |
| =head1 SYNOPSIS
 | |
| 
 | |
|  #include <openssl/bn.h>
 | |
| 
 | |
|  int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
 | |
| 
 | |
|  int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
 | |
| 
 | |
|  int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
 | |
| 
 | |
|  int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
 | |
| 
 | |
|  int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
 | |
|             BN_CTX *ctx);
 | |
| 
 | |
|  int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
 | |
| 
 | |
|  int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
 | |
| 
 | |
|  int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
 | |
|                 BN_CTX *ctx);
 | |
| 
 | |
|  int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
 | |
|                 BN_CTX *ctx);
 | |
| 
 | |
|  int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
 | |
|                 BN_CTX *ctx);
 | |
| 
 | |
|  int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
 | |
| 
 | |
|  BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
 | |
| 
 | |
|  int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
 | |
| 
 | |
|  int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
 | |
|                 const BIGNUM *m, BN_CTX *ctx);
 | |
| 
 | |
|  int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
 | |
| 
 | |
| =head1 DESCRIPTION
 | |
| 
 | |
| BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
 | |
| I<r> may be the same B<BIGNUM> as I<a> or I<b>.
 | |
| 
 | |
| BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
 | |
| I<r> may be the same B<BIGNUM> as I<a> or I<b>.
 | |
| 
 | |
| BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
 | |
| I<r> may be the same B<BIGNUM> as I<a> or I<b>.
 | |
| For multiplication by powers of 2, use L<BN_lshift(3)>.
 | |
| 
 | |
| BN_sqr() takes the square of I<a> and places the result in I<r>
 | |
| (C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
 | |
| This function is faster than BN_mul(r,a,a).
 | |
| 
 | |
| BN_div() divides I<a> by I<d> and places the result in I<dv> and the
 | |
| remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
 | |
| be B<NULL>, in which case the respective value is not returned.
 | |
| The result is rounded towards zero; thus if I<a> is negative, the
 | |
| remainder will be zero or negative.
 | |
| For division by powers of 2, use BN_rshift(3).
 | |
| 
 | |
| BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.
 | |
| 
 | |
| BN_nnmod() reduces I<a> modulo I<m> and places the nonnegative
 | |
| remainder in I<r>.
 | |
| 
 | |
| BN_mod_add() adds I<a> to I<b> modulo I<m> and places the nonnegative
 | |
| result in I<r>.
 | |
| 
 | |
| BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the
 | |
| nonnegative result in I<r>.
 | |
| 
 | |
| BN_mod_mul() multiplies I<a> by I<b> and finds the nonnegative
 | |
| remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
 | |
| the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
 | |
| repeated computations using the same modulus, see
 | |
| L<BN_mod_mul_montgomery(3)> and
 | |
| L<BN_mod_mul_reciprocal(3)>.
 | |
| 
 | |
| BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
 | |
| result in I<r>.
 | |
| 
 | |
| BN_mod_sqrt() returns the modular square root of I<a> such that
 | |
| C<in^2 = a (mod p)>. The modulus I<p> must be a
 | |
| prime, otherwise an error or an incorrect "result" will be returned.
 | |
| The result is stored into I<in> which can be NULL. The result will be
 | |
| newly allocated in that case.
 | |
| 
 | |
| BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
 | |
| (C<r=a^p>). This function is faster than repeated applications of
 | |
| BN_mul().
 | |
| 
 | |
| BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
 | |
| m>). This function uses less time and space than BN_exp(). Do not call this
 | |
| function when B<m> is even and any of the parameters have the
 | |
| B<BN_FLG_CONSTTIME> flag set.
 | |
| 
 | |
| BN_gcd() computes the greatest common divisor of I<a> and I<b> and
 | |
| places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
 | |
| I<b>.
 | |
| 
 | |
| For all functions, I<ctx> is a previously allocated B<BN_CTX> used for
 | |
| temporary variables; see L<BN_CTX_new(3)>.
 | |
| 
 | |
| Unless noted otherwise, the result B<BIGNUM> must be different from
 | |
| the arguments.
 | |
| 
 | |
| =head1 NOTES
 | |
| 
 | |
| For modular operations such as BN_nnmod() or BN_mod_exp() it is an error
 | |
| to use the same B<BIGNUM> object for the modulus as for the output.
 | |
| 
 | |
| =head1 RETURN VALUES
 | |
| 
 | |
| The BN_mod_sqrt() returns the result (possibly incorrect if I<p> is
 | |
| not a prime), or NULL.
 | |
| 
 | |
| For all remaining functions, 1 is returned for success, 0 on error. The return
 | |
| value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).
 | |
| The error codes can be obtained by L<ERR_get_error(3)>.
 | |
| 
 | |
| =head1 SEE ALSO
 | |
| 
 | |
| L<ERR_get_error(3)>, L<BN_CTX_new(3)>,
 | |
| L<BN_add_word(3)>, L<BN_set_bit(3)>
 | |
| 
 | |
| =head1 COPYRIGHT
 | |
| 
 | |
| Copyright 2000-2024 The OpenSSL Project Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License 2.0 (the "License").  You may not use
 | |
| this file except in compliance with the License.  You can obtain a copy
 | |
| in the file LICENSE in the source distribution or at
 | |
| L<https://www.openssl.org/source/license.html>.
 | |
| 
 | |
| =cut
 |