mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			901 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			901 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2011-2024 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the Apache License 2.0 (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| /* We need to use some deprecated APIs */
 | |
| #define OPENSSL_SUPPRESS_DEPRECATED
 | |
| 
 | |
| #include <string.h>
 | |
| #include "internal/nelem.h"
 | |
| #include <openssl/crypto.h>
 | |
| #include <openssl/err.h>
 | |
| #include <openssl/rand.h>
 | |
| #include <openssl/obj_mac.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/aes.h>
 | |
| #include "../crypto/rand/rand_local.h"
 | |
| #include "../include/crypto/rand.h"
 | |
| #include "../include/crypto/evp.h"
 | |
| #include "../providers/implementations/rands/drbg_local.h"
 | |
| #include "../crypto/evp/evp_local.h"
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| # include <windows.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(OPENSSL_SYS_UNIX)
 | |
| # include <sys/types.h>
 | |
| # include <sys/wait.h>
 | |
| # include <unistd.h>
 | |
| #endif
 | |
| 
 | |
| #include "testutil.h"
 | |
| 
 | |
| /*
 | |
|  * DRBG generate wrappers
 | |
|  */
 | |
| static int gen_bytes(EVP_RAND_CTX *drbg, unsigned char *buf, int num)
 | |
| {
 | |
| #ifndef OPENSSL_NO_DEPRECATED_3_0
 | |
|     const RAND_METHOD *meth = RAND_get_rand_method();
 | |
| 
 | |
|     if (meth != NULL && meth != RAND_OpenSSL()) {
 | |
|         if (meth->bytes != NULL)
 | |
|             return meth->bytes(buf, num);
 | |
|         return -1;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (drbg != NULL)
 | |
|         return EVP_RAND_generate(drbg, buf, num, 0, 0, NULL, 0);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int rand_bytes(unsigned char *buf, int num)
 | |
| {
 | |
|     return gen_bytes(RAND_get0_public(NULL), buf, num);
 | |
| }
 | |
| 
 | |
| static int rand_priv_bytes(unsigned char *buf, int num)
 | |
| {
 | |
|     return gen_bytes(RAND_get0_private(NULL), buf, num);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* size of random output generated in test_drbg_reseed() */
 | |
| #define RANDOM_SIZE 16
 | |
| 
 | |
| /*
 | |
|  * DRBG query functions
 | |
|  */
 | |
| static int state(EVP_RAND_CTX *drbg)
 | |
| {
 | |
|     return EVP_RAND_get_state(drbg);
 | |
| }
 | |
| 
 | |
| static unsigned int query_rand_uint(EVP_RAND_CTX *drbg, const char *name)
 | |
| {
 | |
|     OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
 | |
|     unsigned int n;
 | |
| 
 | |
|     *params = OSSL_PARAM_construct_uint(name, &n);
 | |
|     if (EVP_RAND_CTX_get_params(drbg, params))
 | |
|         return n;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define DRBG_UINT(name)                                 \
 | |
|     static unsigned int name(EVP_RAND_CTX *drbg)        \
 | |
|     {                                                   \
 | |
|         return query_rand_uint(drbg, #name);            \
 | |
|     }
 | |
| DRBG_UINT(reseed_counter)
 | |
| 
 | |
| static PROV_DRBG *prov_rand(EVP_RAND_CTX *drbg)
 | |
| {
 | |
|     return (PROV_DRBG *)drbg->algctx;
 | |
| }
 | |
| 
 | |
| static void set_reseed_counter(EVP_RAND_CTX *drbg, unsigned int n)
 | |
| {
 | |
|     PROV_DRBG *p = prov_rand(drbg);
 | |
| 
 | |
|     p->reseed_counter = n;
 | |
| }
 | |
| 
 | |
| static void inc_reseed_counter(EVP_RAND_CTX *drbg)
 | |
| {
 | |
|     set_reseed_counter(drbg, reseed_counter(drbg) + 1);
 | |
| }
 | |
| 
 | |
| static time_t reseed_time(EVP_RAND_CTX *drbg)
 | |
| {
 | |
|     OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
 | |
|     time_t t;
 | |
| 
 | |
|     *params = OSSL_PARAM_construct_time_t(OSSL_DRBG_PARAM_RESEED_TIME, &t);
 | |
|     if (EVP_RAND_CTX_get_params(drbg, params))
 | |
|         return t;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When building the FIPS module, it isn't possible to disable the continuous
 | |
|  * RNG tests.  Tests that require this are skipped and this means a detection
 | |
|  * mechanism for the FIPS provider being in use.
 | |
|  */
 | |
| static int using_fips_rng(void)
 | |
| {
 | |
|     EVP_RAND_CTX *primary = RAND_get0_primary(NULL);
 | |
|     const OSSL_PROVIDER *prov;
 | |
|     const char *name;
 | |
| 
 | |
|     if (!TEST_ptr(primary))
 | |
|         return 0;
 | |
| 
 | |
|     prov = EVP_RAND_get0_provider(EVP_RAND_CTX_get0_rand(primary));
 | |
|     if (!TEST_ptr(prov))
 | |
|         return 0;
 | |
|     name = OSSL_PROVIDER_get0_name(prov);
 | |
|     return strstr(name, "FIPS Provider") != NULL;
 | |
| }
 | |
| 
 | |
|  /*
 | |
|  * Disable CRNG testing if it is enabled.
 | |
|  * This stub remains to indicate the calling locations where it is necessary.
 | |
|  * Once the RNG infrastructure is able to disable these tests, it should be
 | |
|  * reconstituted.
 | |
|  */
 | |
| static int disable_crngt(EVP_RAND_CTX *drbg)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generates random output using rand_bytes() and rand_priv_bytes()
 | |
|  * and checks whether the three shared DRBGs were reseeded as
 | |
|  * expected.
 | |
|  *
 | |
|  * |expect_success|: expected outcome (as reported by RAND_status())
 | |
|  * |primary|, |public|, |private|: pointers to the three shared DRBGs
 | |
|  * |public_random|, |private_random|: generated random output
 | |
|  * |expect_xxx_reseed| =
 | |
|  *       1:  it is expected that the specified DRBG is reseeded
 | |
|  *       0:  it is expected that the specified DRBG is not reseeded
 | |
|  *      -1:  don't check whether the specified DRBG was reseeded or not
 | |
|  * |reseed_when|: if nonzero, used instead of time(NULL) to set the
 | |
|  *                |before_reseed| time.
 | |
|  */
 | |
| static int test_drbg_reseed(int expect_success,
 | |
|                             EVP_RAND_CTX *primary,
 | |
|                             EVP_RAND_CTX *public,
 | |
|                             EVP_RAND_CTX *private,
 | |
|                             unsigned char *public_random,
 | |
|                             unsigned char *private_random,
 | |
|                             int expect_primary_reseed,
 | |
|                             int expect_public_reseed,
 | |
|                             int expect_private_reseed,
 | |
|                             time_t reseed_when
 | |
|                            )
 | |
| {
 | |
|     time_t before_reseed, after_reseed;
 | |
|     int expected_state = (expect_success ? DRBG_READY : DRBG_ERROR);
 | |
|     unsigned int primary_reseed, public_reseed, private_reseed;
 | |
|     unsigned char dummy[RANDOM_SIZE];
 | |
| 
 | |
|     if (public_random == NULL)
 | |
|         public_random = dummy;
 | |
| 
 | |
|     if (private_random == NULL)
 | |
|         private_random = dummy;
 | |
| 
 | |
|     /*
 | |
|      * step 1: check preconditions
 | |
|      */
 | |
| 
 | |
|     /* Test whether seed propagation is enabled */
 | |
|     if (!TEST_int_ne(primary_reseed = reseed_counter(primary), 0)
 | |
|         || !TEST_int_ne(public_reseed = reseed_counter(public), 0)
 | |
|         || !TEST_int_ne(private_reseed = reseed_counter(private), 0))
 | |
|         return 0;
 | |
| 
 | |
|     /*
 | |
|      * step 2: generate random output
 | |
|      */
 | |
| 
 | |
|     if (reseed_when == 0)
 | |
|         reseed_when = time(NULL);
 | |
| 
 | |
|     /* Generate random output from the public and private DRBG */
 | |
|     before_reseed = expect_primary_reseed == 1 ? reseed_when : 0;
 | |
|     if (!TEST_int_eq(rand_bytes((unsigned char*)public_random,
 | |
|                                 RANDOM_SIZE), expect_success)
 | |
|         || !TEST_int_eq(rand_priv_bytes((unsigned char*) private_random,
 | |
|                                         RANDOM_SIZE), expect_success))
 | |
|         return 0;
 | |
|     after_reseed = time(NULL);
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * step 3: check postconditions
 | |
|      */
 | |
| 
 | |
|     /* Test whether reseeding succeeded as expected */
 | |
|     if (!TEST_int_eq(state(primary), expected_state)
 | |
|         || !TEST_int_eq(state(public), expected_state)
 | |
|         || !TEST_int_eq(state(private), expected_state))
 | |
|         return 0;
 | |
| 
 | |
|     if (expect_primary_reseed >= 0) {
 | |
|         /* Test whether primary DRBG was reseeded as expected */
 | |
|         if (!TEST_int_ge(reseed_counter(primary), primary_reseed))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (expect_public_reseed >= 0) {
 | |
|         /* Test whether public DRBG was reseeded as expected */
 | |
|         if (!TEST_int_ge(reseed_counter(public), public_reseed)
 | |
|                 || !TEST_uint_ge(reseed_counter(public),
 | |
|                                  reseed_counter(primary)))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (expect_private_reseed >= 0) {
 | |
|         /* Test whether public DRBG was reseeded as expected */
 | |
|         if (!TEST_int_ge(reseed_counter(private), private_reseed)
 | |
|                 || !TEST_uint_ge(reseed_counter(private),
 | |
|                                  reseed_counter(primary)))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (expect_success == 1) {
 | |
|         /* Test whether reseed time of primary DRBG is set correctly */
 | |
|         if (!TEST_time_t_le(before_reseed, reseed_time(primary))
 | |
|             || !TEST_time_t_le(reseed_time(primary), after_reseed))
 | |
|             return 0;
 | |
| 
 | |
|         /* Test whether reseed times of child DRBGs are synchronized with primary */
 | |
|         if (!TEST_time_t_ge(reseed_time(public), reseed_time(primary))
 | |
|             || !TEST_time_t_ge(reseed_time(private), reseed_time(primary)))
 | |
|             return 0;
 | |
|     } else {
 | |
|         ERR_clear_error();
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_RAND_SEED_EGD)
 | |
| /* number of children to fork */
 | |
| #define DRBG_FORK_COUNT 9
 | |
| /* two results per child, two for the parent */
 | |
| #define DRBG_FORK_RESULT_COUNT (2 * (DRBG_FORK_COUNT + 1))
 | |
| 
 | |
| typedef struct drbg_fork_result_st {
 | |
| 
 | |
|     unsigned char random[RANDOM_SIZE]; /* random output */
 | |
| 
 | |
|     int pindex;               /* process index (0: parent, 1,2,3...: children)*/
 | |
|     pid_t pid;                /* process id */
 | |
|     int private;              /* true if the private drbg was used */
 | |
|     char name[10];            /* 'parent' resp. 'child 1', 'child 2', ... */
 | |
| } drbg_fork_result;
 | |
| 
 | |
| /*
 | |
|  * Sort the drbg_fork_result entries in lexicographical order
 | |
|  *
 | |
|  * This simplifies finding duplicate random output and makes
 | |
|  * the printout in case of an error more readable.
 | |
|  */
 | |
| static int compare_drbg_fork_result(const void *left, const void *right)
 | |
| {
 | |
|     int result;
 | |
|     const drbg_fork_result *l = left;
 | |
|     const drbg_fork_result *r = right;
 | |
| 
 | |
|     /* separate public and private results */
 | |
|     result = l->private - r->private;
 | |
| 
 | |
|     if (result == 0)
 | |
|         result = memcmp(l->random, r->random, RANDOM_SIZE);
 | |
| 
 | |
|     if (result == 0)
 | |
|         result = l->pindex - r->pindex;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sort two-byte chunks of random data
 | |
|  *
 | |
|  * Used for finding collisions in two-byte chunks
 | |
|  */
 | |
| static int compare_rand_chunk(const void *left, const void *right)
 | |
| {
 | |
|     return memcmp(left, right, 2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test whether primary, public and private DRBG are reseeded
 | |
|  * in the child after forking the process. Collect the random
 | |
|  * output of the public and private DRBG and send it back to
 | |
|  * the parent process.
 | |
|  */
 | |
| static int test_drbg_reseed_in_child(EVP_RAND_CTX *primary,
 | |
|                                      EVP_RAND_CTX *public,
 | |
|                                      EVP_RAND_CTX *private,
 | |
|                                      drbg_fork_result result[2])
 | |
| {
 | |
|     int rv = 0, status;
 | |
|     int fd[2];
 | |
|     pid_t pid;
 | |
|     unsigned char random[2 * RANDOM_SIZE];
 | |
| 
 | |
|     if (!TEST_int_ge(pipe(fd), 0))
 | |
|         return 0;
 | |
| 
 | |
|     if (!TEST_int_ge(pid = fork(), 0)) {
 | |
|         close(fd[0]);
 | |
|         close(fd[1]);
 | |
|         return 0;
 | |
|     } else if (pid > 0) {
 | |
| 
 | |
|         /* I'm the parent; close the write end */
 | |
|         close(fd[1]);
 | |
| 
 | |
|         /* wait for children to terminate and collect their random output */
 | |
|         if (TEST_int_eq(waitpid(pid, &status, 0), pid)
 | |
|             && TEST_int_eq(status, 0)
 | |
|             && TEST_true(read(fd[0], &random[0], sizeof(random))
 | |
|                           == sizeof(random))) {
 | |
| 
 | |
|             /* random output of public drbg */
 | |
|             result[0].pid = pid;
 | |
|             result[0].private = 0;
 | |
|             memcpy(result[0].random, &random[0], RANDOM_SIZE);
 | |
| 
 | |
|             /* random output of private drbg */
 | |
|             result[1].pid = pid;
 | |
|             result[1].private = 1;
 | |
|             memcpy(result[1].random, &random[RANDOM_SIZE], RANDOM_SIZE);
 | |
| 
 | |
|             rv = 1;
 | |
|         }
 | |
| 
 | |
|         /* close the read end */
 | |
|         close(fd[0]);
 | |
| 
 | |
|         return rv;
 | |
| 
 | |
|     } else {
 | |
| 
 | |
|         /* I'm the child; close the read end */
 | |
|         close(fd[0]);
 | |
| 
 | |
|         /* check whether all three DRBGs reseed and send output to parent */
 | |
|         if (TEST_true(test_drbg_reseed(1, primary, public, private,
 | |
|                                         &random[0], &random[RANDOM_SIZE],
 | |
|                                        1, 1, 1, 0))
 | |
|             && TEST_true(write(fd[1], random, sizeof(random))
 | |
|                          == sizeof(random))) {
 | |
| 
 | |
|             rv = 1;
 | |
|         }
 | |
| 
 | |
|         /* close the write end */
 | |
|         close(fd[1]);
 | |
| 
 | |
|         /* convert boolean to exit code */
 | |
|         exit(rv == 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int test_rand_reseed_on_fork(EVP_RAND_CTX *primary,
 | |
|                                     EVP_RAND_CTX *public,
 | |
|                                     EVP_RAND_CTX *private)
 | |
| {
 | |
|     unsigned int i;
 | |
|     pid_t pid = getpid();
 | |
|     int verbose = (getenv("V") != NULL);
 | |
|     int success = 1;
 | |
|     int duplicate[2] = {0, 0};
 | |
|     unsigned char random[2 * RANDOM_SIZE];
 | |
|     unsigned char sample[DRBG_FORK_RESULT_COUNT * RANDOM_SIZE];
 | |
|     unsigned char *psample = &sample[0];
 | |
|     drbg_fork_result result[DRBG_FORK_RESULT_COUNT];
 | |
|     drbg_fork_result *presult = &result[2];
 | |
| 
 | |
|     memset(&result,  0, sizeof(result));
 | |
| 
 | |
|     for (i = 1 ; i <= DRBG_FORK_COUNT ; ++i) {
 | |
| 
 | |
|         presult[0].pindex = presult[1].pindex = i;
 | |
| 
 | |
|         BIO_snprintf(presult[0].name, sizeof(presult[0].name), "child %d", i);
 | |
|         strcpy(presult[1].name, presult[0].name);
 | |
| 
 | |
|         /* collect the random output of the children */
 | |
|         if (!TEST_true(test_drbg_reseed_in_child(primary,
 | |
|                                                  public,
 | |
|                                                  private,
 | |
|                                                  presult)))
 | |
|             return 0;
 | |
| 
 | |
|         presult += 2;
 | |
|     }
 | |
| 
 | |
|     /* collect the random output of the parent */
 | |
|     if (!TEST_true(test_drbg_reseed(1,
 | |
|                                     primary, public, private,
 | |
|                                     &random[0], &random[RANDOM_SIZE],
 | |
|                                     0, 0, 0, 0)))
 | |
|         return 0;
 | |
| 
 | |
|     strcpy(result[0].name, "parent");
 | |
|     strcpy(result[1].name, "parent");
 | |
| 
 | |
|     /* output of public drbg */
 | |
|     result[0].pid = pid;
 | |
|     result[0].private = 0;
 | |
|     memcpy(result[0].random, &random[0], RANDOM_SIZE);
 | |
| 
 | |
|     /* output of private drbg */
 | |
|     result[1].pid = pid;
 | |
|     result[1].private = 1;
 | |
|     memcpy(result[1].random, &random[RANDOM_SIZE], RANDOM_SIZE);
 | |
| 
 | |
|     /* collect all sampled random data in a single buffer */
 | |
|     for (i = 0 ; i < DRBG_FORK_RESULT_COUNT ; ++i) {
 | |
|         memcpy(psample, &result[i].random[0], RANDOM_SIZE);
 | |
|         psample += RANDOM_SIZE;
 | |
|     }
 | |
| 
 | |
|     /* sort the results... */
 | |
|     qsort(result, DRBG_FORK_RESULT_COUNT, sizeof(drbg_fork_result),
 | |
|           compare_drbg_fork_result);
 | |
| 
 | |
|     /* ...and count duplicate prefixes by looking at the first byte only */
 | |
|     for (i = 1 ; i < DRBG_FORK_RESULT_COUNT ; ++i) {
 | |
|         if (result[i].random[0] == result[i-1].random[0]) {
 | |
|             /* count public and private duplicates separately */
 | |
|             ++duplicate[result[i].private];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (duplicate[0] >= DRBG_FORK_COUNT - 1) {
 | |
|         /* just too many duplicates to be a coincidence */
 | |
|         TEST_note("ERROR: %d duplicate prefixes in public random output", duplicate[0]);
 | |
|         success = 0;
 | |
|     }
 | |
| 
 | |
|     if (duplicate[1] >= DRBG_FORK_COUNT - 1) {
 | |
|         /* just too many duplicates to be a coincidence */
 | |
|         TEST_note("ERROR: %d duplicate prefixes in private random output", duplicate[1]);
 | |
|         success = 0;
 | |
|     }
 | |
| 
 | |
|     duplicate[0] = 0;
 | |
| 
 | |
|     /* sort the two-byte chunks... */
 | |
|     qsort(sample, sizeof(sample)/2, 2, compare_rand_chunk);
 | |
| 
 | |
|     /* ...and count duplicate chunks */
 | |
|     for (i = 2, psample = sample + 2 ; i < sizeof(sample) ; i += 2, psample += 2) {
 | |
|         if (compare_rand_chunk(psample - 2, psample) == 0)
 | |
|             ++duplicate[0];
 | |
|     }
 | |
| 
 | |
|     if (duplicate[0] >= DRBG_FORK_COUNT - 1) {
 | |
|         /* just too many duplicates to be a coincidence */
 | |
|         TEST_note("ERROR: %d duplicate chunks in random output", duplicate[0]);
 | |
|         success = 0;
 | |
|     }
 | |
| 
 | |
|     if (verbose || !success) {
 | |
| 
 | |
|         for (i = 0 ; i < DRBG_FORK_RESULT_COUNT ; ++i) {
 | |
|             char *rand_hex = OPENSSL_buf2hexstr(result[i].random, RANDOM_SIZE);
 | |
| 
 | |
|             TEST_note("    random: %s, pid: %d (%s, %s)",
 | |
|                       rand_hex,
 | |
|                       result[i].pid,
 | |
|                       result[i].name,
 | |
|                       result[i].private ? "private" : "public"
 | |
|                       );
 | |
| 
 | |
|             OPENSSL_free(rand_hex);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return success;
 | |
| }
 | |
| 
 | |
| static int test_rand_fork_safety(int i)
 | |
| {
 | |
|     int success = 1;
 | |
|     unsigned char random[1];
 | |
|     EVP_RAND_CTX *primary, *public, *private;
 | |
| 
 | |
|     /* All three DRBGs should be non-null */
 | |
|     if (!TEST_ptr(primary = RAND_get0_primary(NULL))
 | |
|         || !TEST_ptr(public = RAND_get0_public(NULL))
 | |
|         || !TEST_ptr(private = RAND_get0_private(NULL)))
 | |
|         return 0;
 | |
| 
 | |
|     /* run the actual test */
 | |
|     if (!TEST_true(test_rand_reseed_on_fork(primary, public, private)))
 | |
|         success = 0;
 | |
| 
 | |
|     /* request a single byte from each of the DRBGs before the next run */
 | |
|     if (!TEST_int_gt(RAND_bytes(random, 1), 0) || !TEST_int_gt(RAND_priv_bytes(random, 1), 0))
 | |
|         success = 0;
 | |
| 
 | |
|     return success;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Test whether the default rand_method (RAND_OpenSSL()) is
 | |
|  * setup correctly, in particular whether reseeding works
 | |
|  * as designed.
 | |
|  */
 | |
| static int test_rand_reseed(void)
 | |
| {
 | |
|     EVP_RAND_CTX *primary, *public, *private;
 | |
|     unsigned char rand_add_buf[256];
 | |
|     int rv = 0;
 | |
|     time_t before_reseed;
 | |
| 
 | |
|     if (using_fips_rng())
 | |
|         return TEST_skip("CRNGT cannot be disabled");
 | |
| 
 | |
| #ifndef OPENSSL_NO_DEPRECATED_3_0
 | |
|     /* Check whether RAND_OpenSSL() is the default method */
 | |
|     if (!TEST_ptr_eq(RAND_get_rand_method(), RAND_OpenSSL()))
 | |
|         return 0;
 | |
| #endif
 | |
| 
 | |
|     /* All three DRBGs should be non-null */
 | |
|     if (!TEST_ptr(primary = RAND_get0_primary(NULL))
 | |
|         || !TEST_ptr(public = RAND_get0_public(NULL))
 | |
|         || !TEST_ptr(private = RAND_get0_private(NULL)))
 | |
|         return 0;
 | |
| 
 | |
|     /* There should be three distinct DRBGs, two of them chained to primary */
 | |
|     if (!TEST_ptr_ne(public, private)
 | |
|         || !TEST_ptr_ne(public, primary)
 | |
|         || !TEST_ptr_ne(private, primary)
 | |
|         || !TEST_ptr_eq(prov_rand(public)->parent, prov_rand(primary))
 | |
|         || !TEST_ptr_eq(prov_rand(private)->parent, prov_rand(primary)))
 | |
|         return 0;
 | |
| 
 | |
|     /* Disable CRNG testing for the primary DRBG */
 | |
|     if (!TEST_true(disable_crngt(primary)))
 | |
|         return 0;
 | |
| 
 | |
|     /* uninstantiate the three global DRBGs */
 | |
|     EVP_RAND_uninstantiate(primary);
 | |
|     EVP_RAND_uninstantiate(private);
 | |
|     EVP_RAND_uninstantiate(public);
 | |
| 
 | |
|     /*
 | |
|      * Test initial seeding of shared DRBGs
 | |
|      */
 | |
|     if (!TEST_true(test_drbg_reseed(1,
 | |
|                                     primary, public, private,
 | |
|                                     NULL, NULL,
 | |
|                                     1, 1, 1, 0)))
 | |
|         goto error;
 | |
| 
 | |
|     /*
 | |
|      * Test initial state of shared DRBGs
 | |
|      */
 | |
|     if (!TEST_true(test_drbg_reseed(1,
 | |
|                                     primary, public, private,
 | |
|                                     NULL, NULL,
 | |
|                                     0, 0, 0, 0)))
 | |
|         goto error;
 | |
| 
 | |
|     /*
 | |
|      * Test whether the public and private DRBG are both reseeded when their
 | |
|      * reseed counters differ from the primary's reseed counter.
 | |
|      */
 | |
|     inc_reseed_counter(primary);
 | |
|     if (!TEST_true(test_drbg_reseed(1,
 | |
|                                     primary, public, private,
 | |
|                                     NULL, NULL,
 | |
|                                     0, 1, 1, 0)))
 | |
|         goto error;
 | |
| 
 | |
|     /*
 | |
|      * Test whether the public DRBG is reseeded when its reseed counter differs
 | |
|      * from the primary's reseed counter.
 | |
|      */
 | |
|     inc_reseed_counter(primary);
 | |
|     inc_reseed_counter(private);
 | |
|     if (!TEST_true(test_drbg_reseed(1,
 | |
|                                     primary, public, private,
 | |
|                                     NULL, NULL,
 | |
|                                     0, 1, 0, 0)))
 | |
|         goto error;
 | |
| 
 | |
|     /*
 | |
|      * Test whether the private DRBG is reseeded when its reseed counter differs
 | |
|      * from the primary's reseed counter.
 | |
|      */
 | |
|     inc_reseed_counter(primary);
 | |
|     inc_reseed_counter(public);
 | |
|     if (!TEST_true(test_drbg_reseed(1,
 | |
|                                     primary, public, private,
 | |
|                                     NULL, NULL,
 | |
|                                     0, 0, 1, 0)))
 | |
|         goto error;
 | |
| 
 | |
|     /* fill 'randomness' buffer with some arbitrary data */
 | |
|     memset(rand_add_buf, 'r', sizeof(rand_add_buf));
 | |
| 
 | |
|     /*
 | |
|      * Test whether all three DRBGs are reseeded by RAND_add().
 | |
|      * The before_reseed time has to be measured here and passed into the
 | |
|      * test_drbg_reseed() test, because the primary DRBG gets already reseeded
 | |
|      * in RAND_add(), whence the check for the condition
 | |
|      * before_reseed <= reseed_time(primary) will fail if the time value happens
 | |
|      * to increase between the RAND_add() and the test_drbg_reseed() call.
 | |
|      */
 | |
|     before_reseed = time(NULL);
 | |
|     RAND_add(rand_add_buf, sizeof(rand_add_buf), sizeof(rand_add_buf));
 | |
|     if (!TEST_true(test_drbg_reseed(1,
 | |
|                                     primary, public, private,
 | |
|                                     NULL, NULL,
 | |
|                                     1, 1, 1,
 | |
|                                     before_reseed)))
 | |
|         goto error;
 | |
| 
 | |
|     rv = 1;
 | |
| 
 | |
| error:
 | |
|    return rv;
 | |
| }
 | |
| 
 | |
| #if defined(OPENSSL_THREADS)
 | |
| static int multi_thread_rand_bytes_succeeded = 1;
 | |
| static int multi_thread_rand_priv_bytes_succeeded = 1;
 | |
| 
 | |
| static int set_reseed_time_interval(EVP_RAND_CTX *drbg, int t)
 | |
| {
 | |
|     OSSL_PARAM params[2];
 | |
| 
 | |
|     params[0] = OSSL_PARAM_construct_int(OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL,
 | |
|                                          &t);
 | |
|     params[1] = OSSL_PARAM_construct_end();
 | |
|     return EVP_RAND_CTX_set_params(drbg, params);
 | |
| }
 | |
| 
 | |
| static void run_multi_thread_test(void)
 | |
| {
 | |
|     unsigned char buf[256];
 | |
|     time_t start = time(NULL);
 | |
|     EVP_RAND_CTX *public = NULL, *private = NULL;
 | |
| 
 | |
|     if (!TEST_ptr(public = RAND_get0_public(NULL))
 | |
|             || !TEST_ptr(private = RAND_get0_private(NULL))
 | |
|             || !TEST_true(set_reseed_time_interval(private, 1))
 | |
|             || !TEST_true(set_reseed_time_interval(public, 1))) {
 | |
|         multi_thread_rand_bytes_succeeded = 0;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         if (rand_bytes(buf, sizeof(buf)) <= 0)
 | |
|             multi_thread_rand_bytes_succeeded = 0;
 | |
|         if (rand_priv_bytes(buf, sizeof(buf)) <= 0)
 | |
|             multi_thread_rand_priv_bytes_succeeded = 0;
 | |
|     }
 | |
|     while (time(NULL) - start < 5);
 | |
| }
 | |
| 
 | |
| # if defined(OPENSSL_SYS_WINDOWS)
 | |
| 
 | |
| typedef HANDLE thread_t;
 | |
| 
 | |
| static DWORD WINAPI thread_run(LPVOID arg)
 | |
| {
 | |
|     run_multi_thread_test();
 | |
|     /*
 | |
|      * Because we're linking with a static library, we must stop each
 | |
|      * thread explicitly, or so says OPENSSL_thread_stop(3)
 | |
|      */
 | |
|     OPENSSL_thread_stop();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int run_thread(thread_t *t)
 | |
| {
 | |
|     *t = CreateThread(NULL, 0, thread_run, NULL, 0, NULL);
 | |
|     return *t != NULL;
 | |
| }
 | |
| 
 | |
| static int wait_for_thread(thread_t thread)
 | |
| {
 | |
|     return WaitForSingleObject(thread, INFINITE) == 0;
 | |
| }
 | |
| 
 | |
| # else
 | |
| 
 | |
| typedef pthread_t thread_t;
 | |
| 
 | |
| static void *thread_run(void *arg)
 | |
| {
 | |
|     run_multi_thread_test();
 | |
|     /*
 | |
|      * Because we're linking with a static library, we must stop each
 | |
|      * thread explicitly, or so says OPENSSL_thread_stop(3)
 | |
|      */
 | |
|     OPENSSL_thread_stop();
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static int run_thread(thread_t *t)
 | |
| {
 | |
|     return pthread_create(t, NULL, thread_run, NULL) == 0;
 | |
| }
 | |
| 
 | |
| static int wait_for_thread(thread_t thread)
 | |
| {
 | |
|     return pthread_join(thread, NULL) == 0;
 | |
| }
 | |
| 
 | |
| # endif
 | |
| 
 | |
| /*
 | |
|  * The main thread will also run the test, so we'll have THREADS+1 parallel
 | |
|  * tests running
 | |
|  */
 | |
| # define THREADS 3
 | |
| 
 | |
| static int test_multi_thread(void)
 | |
| {
 | |
|     thread_t t[THREADS];
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < THREADS; i++)
 | |
|         run_thread(&t[i]);
 | |
|     run_multi_thread_test();
 | |
|     for (i = 0; i < THREADS; i++)
 | |
|         wait_for_thread(t[i]);
 | |
| 
 | |
|     if (!TEST_true(multi_thread_rand_bytes_succeeded))
 | |
|         return 0;
 | |
|     if (!TEST_true(multi_thread_rand_priv_bytes_succeeded))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static EVP_RAND_CTX *new_drbg(EVP_RAND_CTX *parent)
 | |
| {
 | |
|     OSSL_PARAM params[2];
 | |
|     EVP_RAND *rand = NULL;
 | |
|     EVP_RAND_CTX *drbg = NULL;
 | |
| 
 | |
|     params[0] = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_CIPHER,
 | |
|                                                  "AES-256-CTR", 0);
 | |
|     params[1] = OSSL_PARAM_construct_end();
 | |
| 
 | |
|     if (!TEST_ptr(rand = EVP_RAND_fetch(NULL, "CTR-DRBG", NULL))
 | |
|             || !TEST_ptr(drbg = EVP_RAND_CTX_new(rand, parent))
 | |
|             || !TEST_true(EVP_RAND_CTX_set_params(drbg, params))) {
 | |
|         EVP_RAND_CTX_free(drbg);
 | |
|         drbg = NULL;
 | |
|     }
 | |
|     EVP_RAND_free(rand);
 | |
|     return drbg;
 | |
| }
 | |
| 
 | |
| static int test_rand_prediction_resistance(void)
 | |
| {
 | |
|     EVP_RAND_CTX *x = NULL, *y = NULL, *z = NULL;
 | |
|     unsigned char buf1[51], buf2[sizeof(buf1)];
 | |
|     int ret = 0, xreseed, yreseed, zreseed;
 | |
| 
 | |
|     if (using_fips_rng())
 | |
|         return TEST_skip("CRNGT cannot be disabled");
 | |
| 
 | |
|     /* Initialise a three long DRBG chain */
 | |
|     if (!TEST_ptr(x = new_drbg(NULL))
 | |
|         || !TEST_true(disable_crngt(x))
 | |
|         || !TEST_true(EVP_RAND_instantiate(x, 0, 0, NULL, 0, NULL))
 | |
|         || !TEST_ptr(y = new_drbg(x))
 | |
|         || !TEST_true(EVP_RAND_instantiate(y, 0, 0, NULL, 0, NULL))
 | |
|         || !TEST_ptr(z = new_drbg(y))
 | |
|         || !TEST_true(EVP_RAND_instantiate(z, 0, 0, NULL, 0, NULL)))
 | |
|         goto err;
 | |
| 
 | |
|     /*
 | |
|      * During a normal reseed, only the last DRBG in the chain should
 | |
|      * be reseeded.
 | |
|      */
 | |
|     inc_reseed_counter(y);
 | |
|     xreseed = reseed_counter(x);
 | |
|     yreseed = reseed_counter(y);
 | |
|     zreseed = reseed_counter(z);
 | |
|     if (!TEST_true(EVP_RAND_reseed(z, 0, NULL, 0, NULL, 0))
 | |
|         || !TEST_int_eq(reseed_counter(x), xreseed)
 | |
|         || !TEST_int_eq(reseed_counter(y), yreseed)
 | |
|         || !TEST_int_gt(reseed_counter(z), zreseed))
 | |
|         goto err;
 | |
| 
 | |
|     /*
 | |
|      * When prediction resistance is requested, the request should be
 | |
|      * propagated to the primary, so that the entire DRBG chain reseeds.
 | |
|      */
 | |
|     zreseed = reseed_counter(z);
 | |
|     if (!TEST_true(EVP_RAND_reseed(z, 1, NULL, 0, NULL, 0))
 | |
|         || !TEST_int_gt(reseed_counter(x), xreseed)
 | |
|         || !TEST_int_gt(reseed_counter(y), yreseed)
 | |
|         || !TEST_int_gt(reseed_counter(z), zreseed))
 | |
|         goto err;
 | |
| 
 | |
|     /*
 | |
|      * During a normal generate, only the last DRBG should be reseed */
 | |
|     inc_reseed_counter(y);
 | |
|     xreseed = reseed_counter(x);
 | |
|     yreseed = reseed_counter(y);
 | |
|     zreseed = reseed_counter(z);
 | |
|     if (!TEST_true(EVP_RAND_generate(z, buf1, sizeof(buf1), 0, 0, NULL, 0))
 | |
|         || !TEST_int_eq(reseed_counter(x), xreseed)
 | |
|         || !TEST_int_eq(reseed_counter(y), yreseed)
 | |
|         || !TEST_int_gt(reseed_counter(z), zreseed))
 | |
|         goto err;
 | |
| 
 | |
|     /*
 | |
|      * When a prediction resistant generate is requested, the request
 | |
|      * should be propagated to the primary, reseeding the entire DRBG chain.
 | |
|      */
 | |
|     zreseed = reseed_counter(z);
 | |
|     if (!TEST_true(EVP_RAND_generate(z, buf2, sizeof(buf2), 0, 1, NULL, 0))
 | |
|         || !TEST_int_gt(reseed_counter(x), xreseed)
 | |
|         || !TEST_int_gt(reseed_counter(y), yreseed)
 | |
|         || !TEST_int_gt(reseed_counter(z), zreseed)
 | |
|         || !TEST_mem_ne(buf1, sizeof(buf1), buf2, sizeof(buf2)))
 | |
|         goto err;
 | |
| 
 | |
|     /* Verify that a normal reseed still only reseeds the last DRBG */
 | |
|     inc_reseed_counter(y);
 | |
|     xreseed = reseed_counter(x);
 | |
|     yreseed = reseed_counter(y);
 | |
|     zreseed = reseed_counter(z);
 | |
|     if (!TEST_true(EVP_RAND_reseed(z, 0, NULL, 0, NULL, 0))
 | |
|         || !TEST_int_eq(reseed_counter(x), xreseed)
 | |
|         || !TEST_int_eq(reseed_counter(y), yreseed)
 | |
|         || !TEST_int_gt(reseed_counter(z), zreseed))
 | |
|         goto err;
 | |
| 
 | |
|     ret = 1;
 | |
| err:
 | |
|     EVP_RAND_CTX_free(z);
 | |
|     EVP_RAND_CTX_free(y);
 | |
|     EVP_RAND_CTX_free(x);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int setup_tests(void)
 | |
| {
 | |
|     ADD_TEST(test_rand_reseed);
 | |
| #if defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_RAND_SEED_EGD)
 | |
|     ADD_ALL_TESTS(test_rand_fork_safety, RANDOM_SIZE);
 | |
| #endif
 | |
|     ADD_TEST(test_rand_prediction_resistance);
 | |
| #if defined(OPENSSL_THREADS)
 | |
|     ADD_TEST(test_multi_thread);
 | |
| #endif
 | |
|     return 1;
 | |
| }
 |