mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			1134 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1134 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the Apache License 2.0 (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| /* We need to use the OPENSSL_fork_*() deprecated APIs */
 | |
| #define OPENSSL_SUPPRESS_DEPRECATED
 | |
| 
 | |
| #if !defined(__GNUC__) || !defined(__ATOMIC_ACQ_REL) || \
 | |
|     defined(BROKEN_CLANG_ATOMICS) || defined(OPENSSL_NO_STDIO)
 | |
| /*
 | |
|  * we only enable REPORT_RWLOCK_CONTENTION on clang/gcc when we have
 | |
|  * atomics available.  We do this because we need to use an atomic to track
 | |
|  * when we can close the log file.  We could use the CRYPTO_atomic_ api
 | |
|  * but that requires lock creation which gets us into a bad recursive loop
 | |
|  * when we try to initialize the file pointer
 | |
|  */
 | |
| # ifdef REPORT_RWLOCK_CONTENTION
 | |
| #  warning "RWLOCK CONTENTION REPORTING NOT SUPPORTED, Disabling"
 | |
| #  undef REPORT_RWLOCK_CONTENTION
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #ifdef REPORT_RWLOCK_CONTENTION
 | |
| # define _GNU_SOURCE
 | |
| # include <execinfo.h>
 | |
| # include <unistd.h>
 | |
| #endif
 | |
| 
 | |
| #include <openssl/crypto.h>
 | |
| #include <crypto/cryptlib.h>
 | |
| #include <crypto/sparse_array.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include "internal/threads_common.h"
 | |
| #include "internal/rcu.h"
 | |
| #ifdef REPORT_RWLOCK_CONTENTION
 | |
| # include "internal/time.h"
 | |
| #endif
 | |
| #include "rcu_internal.h"
 | |
| 
 | |
| #if defined(__clang__) && defined(__has_feature)
 | |
| # if __has_feature(thread_sanitizer)
 | |
| #  define __SANITIZE_THREAD__
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #if defined(__SANITIZE_THREAD__)
 | |
| # include <sanitizer/tsan_interface.h>
 | |
| # define TSAN_FAKE_UNLOCK(x)   __tsan_mutex_pre_unlock((x), 0); \
 | |
| __tsan_mutex_post_unlock((x), 0)
 | |
| 
 | |
| # define TSAN_FAKE_LOCK(x)  __tsan_mutex_pre_lock((x), 0); \
 | |
| __tsan_mutex_post_lock((x), 0, 0)
 | |
| #else
 | |
| # define TSAN_FAKE_UNLOCK(x)
 | |
| # define TSAN_FAKE_LOCK(x)
 | |
| #endif
 | |
| 
 | |
| #if defined(__sun)
 | |
| # include <atomic.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(__apple_build_version__) && __apple_build_version__ < 6000000
 | |
| /*
 | |
|  * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
 | |
|  * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
 | |
|  * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
 | |
|  * All of this makes impossible to use __atomic_is_lock_free here.
 | |
|  *
 | |
|  * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
 | |
|  */
 | |
| # define BROKEN_CLANG_ATOMICS
 | |
| #endif
 | |
| 
 | |
| #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
 | |
| 
 | |
| # if defined(OPENSSL_SYS_UNIX)
 | |
| #  include <sys/types.h>
 | |
| #  include <unistd.h>
 | |
| # endif
 | |
| 
 | |
| # include <assert.h>
 | |
| 
 | |
| /*
 | |
|  * The Non-Stop KLT thread model currently seems broken in its rwlock
 | |
|  * implementation
 | |
|  */
 | |
| # if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_)
 | |
| #  define USE_RWLOCK
 | |
| # endif
 | |
| 
 | |
| /*
 | |
|  * For all GNU/clang atomic builtins, we also need fallbacks, to cover all
 | |
|  * other compilers.
 | |
| 
 | |
|  * Unfortunately, we can't do that with some "generic type", because there's no
 | |
|  * guarantee that the chosen generic type is large enough to cover all cases.
 | |
|  * Therefore, we implement fallbacks for each applicable type, with composed
 | |
|  * names that include the type they handle.
 | |
|  *
 | |
|  * (an anecdote: we previously tried to use |void *| as the generic type, with
 | |
|  * the thought that the pointer itself is the largest type.  However, this is
 | |
|  * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
 | |
|  *
 | |
|  * All applicable ATOMIC_ macros take the intended type as first parameter, so
 | |
|  * they can map to the correct fallback function.  In the GNU/clang case, that
 | |
|  * parameter is simply ignored.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Internal types used with the ATOMIC_ macros, to make it possible to compose
 | |
|  * fallback function names.
 | |
|  */
 | |
| typedef void *pvoid;
 | |
| 
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
 | |
|     && !defined(USE_ATOMIC_FALLBACKS)
 | |
| #  define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
 | |
| #  define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
 | |
| #  define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
 | |
| #  define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
 | |
| #  define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
 | |
| # else
 | |
| static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
 | |
| 
 | |
| #  define IMPL_fallback_atomic_load_n(t)                        \
 | |
|     static ossl_inline t fallback_atomic_load_n_##t(t *p)            \
 | |
|     {                                                           \
 | |
|         t ret;                                                  \
 | |
|                                                                 \
 | |
|         pthread_mutex_lock(&atomic_sim_lock);                   \
 | |
|         ret = *p;                                               \
 | |
|         pthread_mutex_unlock(&atomic_sim_lock);                 \
 | |
|         return ret;                                             \
 | |
|     }
 | |
| IMPL_fallback_atomic_load_n(uint32_t)
 | |
| IMPL_fallback_atomic_load_n(uint64_t)
 | |
| IMPL_fallback_atomic_load_n(pvoid)
 | |
| 
 | |
| #  define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
 | |
| 
 | |
| #  define IMPL_fallback_atomic_store_n(t)                       \
 | |
|     static ossl_inline t fallback_atomic_store_n_##t(t *p, t v)      \
 | |
|     {                                                           \
 | |
|         t ret;                                                  \
 | |
|                                                                 \
 | |
|         pthread_mutex_lock(&atomic_sim_lock);                   \
 | |
|         ret = *p;                                               \
 | |
|         *p = v;                                                 \
 | |
|         pthread_mutex_unlock(&atomic_sim_lock);                 \
 | |
|         return ret;                                             \
 | |
|     }
 | |
| IMPL_fallback_atomic_store_n(uint32_t)
 | |
| 
 | |
| #  define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
 | |
| 
 | |
| #  define IMPL_fallback_atomic_store(t)                         \
 | |
|     static ossl_inline void fallback_atomic_store_##t(t *p, t *v)    \
 | |
|     {                                                           \
 | |
|         pthread_mutex_lock(&atomic_sim_lock);                   \
 | |
|         *p = *v;                                                \
 | |
|         pthread_mutex_unlock(&atomic_sim_lock);                 \
 | |
|     }
 | |
| IMPL_fallback_atomic_store(pvoid)
 | |
| 
 | |
| #  define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
 | |
| 
 | |
| /*
 | |
|  * The fallbacks that follow don't need any per type implementation, as
 | |
|  * they are designed for uint64_t only.  If there comes a time when multiple
 | |
|  * types need to be covered, it's relatively easy to refactor them the same
 | |
|  * way as the fallbacks above.
 | |
|  */
 | |
| 
 | |
| static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
 | |
| {
 | |
|     uint64_t ret;
 | |
| 
 | |
|     pthread_mutex_lock(&atomic_sim_lock);
 | |
|     *p += v;
 | |
|     ret = *p;
 | |
|     pthread_mutex_unlock(&atomic_sim_lock);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #  define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
 | |
| 
 | |
| static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
 | |
| {
 | |
|     uint64_t ret;
 | |
| 
 | |
|     pthread_mutex_lock(&atomic_sim_lock);
 | |
|     *p -= v;
 | |
|     ret = *p;
 | |
|     pthread_mutex_unlock(&atomic_sim_lock);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #  define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
 | |
| # endif
 | |
| 
 | |
| /*
 | |
|  * This is the core of an rcu lock. It tracks the readers and writers for the
 | |
|  * current quiescence point for a given lock. Users is the 64 bit value that
 | |
|  * stores the READERS/ID as defined above
 | |
|  *
 | |
|  */
 | |
| struct rcu_qp {
 | |
|     uint64_t users;
 | |
| };
 | |
| 
 | |
| struct thread_qp {
 | |
|     struct rcu_qp *qp;
 | |
|     unsigned int depth;
 | |
|     CRYPTO_RCU_LOCK *lock;
 | |
| };
 | |
| 
 | |
| # define MAX_QPS 10
 | |
| /*
 | |
|  * This is the per thread tracking data
 | |
|  * that is assigned to each thread participating
 | |
|  * in an rcu qp
 | |
|  *
 | |
|  * qp points to the qp that it last acquired
 | |
|  *
 | |
|  */
 | |
| struct rcu_thr_data {
 | |
|     struct thread_qp thread_qps[MAX_QPS];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This is the internal version of a CRYPTO_RCU_LOCK
 | |
|  * it is cast from CRYPTO_RCU_LOCK
 | |
|  */
 | |
| struct rcu_lock_st {
 | |
|     /* Callbacks to call for next ossl_synchronize_rcu */
 | |
|     struct rcu_cb_item *cb_items;
 | |
| 
 | |
|     /* The context we are being created against */
 | |
|     OSSL_LIB_CTX *ctx;
 | |
| 
 | |
|     /* Array of quiescent points for synchronization */
 | |
|     struct rcu_qp *qp_group;
 | |
| 
 | |
|     /* rcu generation counter for in-order retirement */
 | |
|     uint32_t id_ctr;
 | |
| 
 | |
|     /* Number of elements in qp_group array */
 | |
|     uint32_t group_count;
 | |
| 
 | |
|     /* Index of the current qp in the qp_group array */
 | |
|     uint32_t reader_idx;
 | |
| 
 | |
|     /* value of the next id_ctr value to be retired */
 | |
|     uint32_t next_to_retire;
 | |
| 
 | |
|     /* index of the next free rcu_qp in the qp_group */
 | |
|     uint32_t current_alloc_idx;
 | |
| 
 | |
|     /* number of qp's in qp_group array currently being retired */
 | |
|     uint32_t writers_alloced;
 | |
| 
 | |
|     /* lock protecting write side operations */
 | |
|     pthread_mutex_t write_lock;
 | |
| 
 | |
|     /* lock protecting updates to writers_alloced/current_alloc_idx */
 | |
|     pthread_mutex_t alloc_lock;
 | |
| 
 | |
|     /* signal to wake threads waiting on alloc_lock */
 | |
|     pthread_cond_t alloc_signal;
 | |
| 
 | |
|     /* lock to enforce in-order retirement */
 | |
|     pthread_mutex_t prior_lock;
 | |
| 
 | |
|     /* signal to wake threads waiting on prior_lock */
 | |
|     pthread_cond_t prior_signal;
 | |
| };
 | |
| 
 | |
| /* Read side acquisition of the current qp */
 | |
| static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
 | |
| {
 | |
|     uint32_t qp_idx;
 | |
| 
 | |
|     /* get the current qp index */
 | |
|     for (;;) {
 | |
|         qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_RELAXED);
 | |
| 
 | |
|         /*
 | |
|          * Notes on use of __ATOMIC_ACQUIRE
 | |
|          * We need to ensure the following:
 | |
|          * 1) That subsequent operations aren't optimized by hoisting them above
 | |
|          * this operation.  Specifically, we don't want the below re-load of
 | |
|          * qp_idx to get optimized away
 | |
|          * 2) We want to ensure that any updating of reader_idx on the write side
 | |
|          * of the lock is flushed from a local cpu cache so that we see any
 | |
|          * updates prior to the load.  This is a non-issue on cache coherent
 | |
|          * systems like x86, but is relevant on other arches
 | |
|          */
 | |
|         ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
 | |
|                          __ATOMIC_ACQUIRE);
 | |
| 
 | |
|         /* if the idx hasn't changed, we're good, else try again */
 | |
|         if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx,
 | |
|                                     __ATOMIC_RELAXED))
 | |
|             break;
 | |
| 
 | |
|         ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
 | |
|                          __ATOMIC_RELAXED);
 | |
|     }
 | |
| 
 | |
|     return &lock->qp_group[qp_idx];
 | |
| }
 | |
| 
 | |
| static void ossl_rcu_free_local_data(void *arg)
 | |
| {
 | |
|     OSSL_LIB_CTX *ctx = arg;
 | |
|     struct rcu_thr_data *data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, ctx);
 | |
| 
 | |
|     CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, ctx, NULL);
 | |
|     OPENSSL_free(data);
 | |
| }
 | |
| 
 | |
| void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     struct rcu_thr_data *data;
 | |
|     int i, available_qp = -1;
 | |
| 
 | |
|     /*
 | |
|      * we're going to access current_qp here so ask the
 | |
|      * processor to fetch it
 | |
|      */
 | |
|     data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx);
 | |
| 
 | |
|     if (data == NULL) {
 | |
|         data = OPENSSL_zalloc(sizeof(*data));
 | |
|         OPENSSL_assert(data != NULL);
 | |
|         CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx, data);
 | |
|         ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < MAX_QPS; i++) {
 | |
|         if (data->thread_qps[i].qp == NULL && available_qp == -1)
 | |
|             available_qp = i;
 | |
|         /* If we have a hold on this lock already, we're good */
 | |
|         if (data->thread_qps[i].lock == lock) {
 | |
|             data->thread_qps[i].depth++;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * if we get here, then we don't have a hold on this lock yet
 | |
|      */
 | |
|     assert(available_qp != -1);
 | |
| 
 | |
|     data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
 | |
|     data->thread_qps[available_qp].depth = 1;
 | |
|     data->thread_qps[available_qp].lock = lock;
 | |
| }
 | |
| 
 | |
| void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     int i;
 | |
|     struct rcu_thr_data *data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx);
 | |
|     uint64_t ret;
 | |
| 
 | |
|     assert(data != NULL);
 | |
| 
 | |
|     for (i = 0; i < MAX_QPS; i++) {
 | |
|         if (data->thread_qps[i].lock == lock) {
 | |
|             /*
 | |
|              * we have to use __ATOMIC_RELEASE here
 | |
|              * to ensure that all preceding read instructions complete
 | |
|              * before the decrement is visible to ossl_synchronize_rcu
 | |
|              */
 | |
|             data->thread_qps[i].depth--;
 | |
|             if (data->thread_qps[i].depth == 0) {
 | |
|                 ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users,
 | |
|                                        (uint64_t)1, __ATOMIC_RELEASE);
 | |
|                 OPENSSL_assert(ret != UINT64_MAX);
 | |
|                 data->thread_qps[i].qp = NULL;
 | |
|                 data->thread_qps[i].lock = NULL;
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     /*
 | |
|      * If we get here, we're trying to unlock a lock that we never acquired -
 | |
|      * that's fatal.
 | |
|      */
 | |
|     assert(0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write side allocation routine to get the current qp
 | |
|  * and replace it with a new one
 | |
|  */
 | |
| static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id)
 | |
| {
 | |
|     uint32_t current_idx;
 | |
| 
 | |
|     pthread_mutex_lock(&lock->alloc_lock);
 | |
| 
 | |
|     /*
 | |
|      * we need at least one qp to be available with one
 | |
|      * left over, so that readers can start working on
 | |
|      * one that isn't yet being waited on
 | |
|      */
 | |
|     while (lock->group_count - lock->writers_alloced < 2)
 | |
|         /* we have to wait for one to be free */
 | |
|         pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
 | |
| 
 | |
|     current_idx = lock->current_alloc_idx;
 | |
| 
 | |
|     /* Allocate the qp */
 | |
|     lock->writers_alloced++;
 | |
| 
 | |
|     /* increment the allocation index */
 | |
|     lock->current_alloc_idx =
 | |
|         (lock->current_alloc_idx + 1) % lock->group_count;
 | |
| 
 | |
|     *curr_id = lock->id_ctr;
 | |
|     lock->id_ctr++;
 | |
| 
 | |
|     ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx,
 | |
|                    __ATOMIC_RELAXED);
 | |
| 
 | |
|     /*
 | |
|      * this should make sure that the new value of reader_idx is visible in
 | |
|      * get_hold_current_qp, directly after incrementing the users count
 | |
|      */
 | |
|     ATOMIC_ADD_FETCH(&lock->qp_group[current_idx].users, (uint64_t)0,
 | |
|                      __ATOMIC_RELEASE);
 | |
| 
 | |
|     /* wake up any waiters */
 | |
|     pthread_cond_signal(&lock->alloc_signal);
 | |
|     pthread_mutex_unlock(&lock->alloc_lock);
 | |
|     return &lock->qp_group[current_idx];
 | |
| }
 | |
| 
 | |
| static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
 | |
| {
 | |
|     pthread_mutex_lock(&lock->alloc_lock);
 | |
|     lock->writers_alloced--;
 | |
|     pthread_cond_signal(&lock->alloc_signal);
 | |
|     pthread_mutex_unlock(&lock->alloc_lock);
 | |
| }
 | |
| 
 | |
| static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
 | |
|                                             uint32_t count)
 | |
| {
 | |
|     struct rcu_qp *new =
 | |
|         OPENSSL_zalloc(sizeof(*new) * count);
 | |
| 
 | |
|     lock->group_count = count;
 | |
|     return new;
 | |
| }
 | |
| 
 | |
| void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     pthread_mutex_lock(&lock->write_lock);
 | |
|     TSAN_FAKE_UNLOCK(&lock->write_lock);
 | |
| }
 | |
| 
 | |
| void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     TSAN_FAKE_LOCK(&lock->write_lock);
 | |
|     pthread_mutex_unlock(&lock->write_lock);
 | |
| }
 | |
| 
 | |
| void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     struct rcu_qp *qp;
 | |
|     uint64_t count;
 | |
|     uint32_t curr_id;
 | |
|     struct rcu_cb_item *cb_items, *tmpcb;
 | |
| 
 | |
|     pthread_mutex_lock(&lock->write_lock);
 | |
|     cb_items = lock->cb_items;
 | |
|     lock->cb_items = NULL;
 | |
|     pthread_mutex_unlock(&lock->write_lock);
 | |
| 
 | |
|     qp = update_qp(lock, &curr_id);
 | |
| 
 | |
|     /* retire in order */
 | |
|     pthread_mutex_lock(&lock->prior_lock);
 | |
|     while (lock->next_to_retire != curr_id)
 | |
|         pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
 | |
| 
 | |
|     /*
 | |
|      * wait for the reader count to reach zero
 | |
|      * Note the use of __ATOMIC_ACQUIRE here to ensure that any
 | |
|      * prior __ATOMIC_RELEASE write operation in ossl_rcu_read_unlock
 | |
|      * is visible prior to our read
 | |
|      * however this is likely just necessary to silence a tsan warning
 | |
|      * because the read side should not do any write operation
 | |
|      * outside the atomic itself
 | |
|      */
 | |
|     do {
 | |
|         count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
 | |
|     } while (count != (uint64_t)0);
 | |
| 
 | |
|     lock->next_to_retire++;
 | |
|     pthread_cond_broadcast(&lock->prior_signal);
 | |
|     pthread_mutex_unlock(&lock->prior_lock);
 | |
| 
 | |
|     retire_qp(lock, qp);
 | |
| 
 | |
|     /* handle any callbacks that we have */
 | |
|     while (cb_items != NULL) {
 | |
|         tmpcb = cb_items;
 | |
|         cb_items = cb_items->next;
 | |
|         tmpcb->fn(tmpcb->data);
 | |
|         OPENSSL_free(tmpcb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: This call assumes its made under the protection of
 | |
|  * ossl_rcu_write_lock
 | |
|  */
 | |
| int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
 | |
| {
 | |
|     struct rcu_cb_item *new =
 | |
|         OPENSSL_zalloc(sizeof(*new));
 | |
| 
 | |
|     if (new == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     new->data = data;
 | |
|     new->fn = cb;
 | |
| 
 | |
|     new->next = lock->cb_items;
 | |
|     lock->cb_items = new;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void *ossl_rcu_uptr_deref(void **p)
 | |
| {
 | |
|     return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
 | |
| }
 | |
| 
 | |
| void ossl_rcu_assign_uptr(void **p, void **v)
 | |
| {
 | |
|     ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
 | |
| }
 | |
| 
 | |
| CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
 | |
| {
 | |
|     struct rcu_lock_st *new;
 | |
| 
 | |
|     /*
 | |
|      * We need a minimum of 2 qp's
 | |
|      */
 | |
|     if (num_writers < 2)
 | |
|         num_writers = 2;
 | |
| 
 | |
|     ctx = ossl_lib_ctx_get_concrete(ctx);
 | |
|     if (ctx == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     new = OPENSSL_zalloc(sizeof(*new));
 | |
|     if (new == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     new->ctx = ctx;
 | |
|     pthread_mutex_init(&new->write_lock, NULL);
 | |
|     pthread_mutex_init(&new->prior_lock, NULL);
 | |
|     pthread_mutex_init(&new->alloc_lock, NULL);
 | |
|     pthread_cond_init(&new->prior_signal, NULL);
 | |
|     pthread_cond_init(&new->alloc_signal, NULL);
 | |
| 
 | |
|     new->qp_group = allocate_new_qp_group(new, num_writers);
 | |
|     if (new->qp_group == NULL) {
 | |
|         OPENSSL_free(new);
 | |
|         new = NULL;
 | |
|     }
 | |
| 
 | |
|     return new;
 | |
| }
 | |
| 
 | |
| void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
 | |
| {
 | |
|     struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
 | |
| 
 | |
|     if (lock == NULL)
 | |
|         return;
 | |
| 
 | |
|     /* make sure we're synchronized */
 | |
|     ossl_synchronize_rcu(rlock);
 | |
| 
 | |
|     OPENSSL_free(rlock->qp_group);
 | |
|     /* There should only be a single qp left now */
 | |
|     OPENSSL_free(rlock);
 | |
| }
 | |
| 
 | |
| # ifdef REPORT_RWLOCK_CONTENTION
 | |
| /*
 | |
|  * Normally we would use a BIO here to do this, but we create locks during
 | |
|  * library initialization, and creating a bio too early, creates a recursive set
 | |
|  * of stack calls that leads us to call CRYPTO_thread_run_once while currently
 | |
|  * executing the init routine for various run_once functions, which leads to
 | |
|  * deadlock.  Avoid that by just using a FILE pointer.  Also note that we
 | |
|  * directly use a pthread_mutex_t to protect access from multiple threads
 | |
|  * to the contention log file.  We do this because we want to avoid use
 | |
|  * of the CRYPTO_THREAD api so as to prevent recursive blocking reports.
 | |
|  */
 | |
| static FILE *contention_fp = NULL;
 | |
| static CRYPTO_ONCE init_contention_fp = CRYPTO_ONCE_STATIC_INIT;
 | |
| static int rwlock_count = 0;
 | |
| pthread_mutex_t log_lock = PTHREAD_MUTEX_INITIALIZER;
 | |
| CRYPTO_THREAD_LOCAL thread_contention_data;
 | |
| 
 | |
| static void destroy_contention_data(void *data)
 | |
| {
 | |
|     OPENSSL_free(data);
 | |
| }
 | |
| 
 | |
| struct stack_info {
 | |
|     unsigned int nptrs;
 | |
|     int write;
 | |
|     OSSL_TIME start;
 | |
|     OSSL_TIME duration;
 | |
|     char **strings;
 | |
| };
 | |
| 
 | |
| #  define STACKS_COUNT 32
 | |
| struct stack_traces {
 | |
|     int lock_depth;
 | |
|     size_t idx;
 | |
|     struct stack_info stacks[STACKS_COUNT];
 | |
| };
 | |
| 
 | |
| static void init_contention_fp_once(void)
 | |
| {
 | |
| #  ifdef FIPS_MODULE
 | |
|     contention_fp = fopen("lock-contention-log-fips.txt", "w");
 | |
| #  else
 | |
|     contention_fp = fopen("lock-contention-log.txt", "w");
 | |
| #  endif
 | |
|     if (contention_fp == NULL)
 | |
|         fprintf(stderr, "Contention log file could not be opened, log will not be recorded\n");
 | |
| 
 | |
|     /*
 | |
|      * Create a thread local key here to store our list of stack traces
 | |
|      * to be printed when we unlock the lock we are holding
 | |
|      */
 | |
|     CRYPTO_THREAD_init_local(&thread_contention_data, destroy_contention_data);
 | |
|     return;
 | |
| }
 | |
| # endif
 | |
| 
 | |
| CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
 | |
| {
 | |
| # ifdef USE_RWLOCK
 | |
|     CRYPTO_RWLOCK *lock;
 | |
| 
 | |
| #  ifdef REPORT_RWLOCK_CONTENTION
 | |
|     CRYPTO_THREAD_run_once(&init_contention_fp, init_contention_fp_once);
 | |
|     __atomic_add_fetch(&rwlock_count, 1, __ATOMIC_ACQ_REL);
 | |
|     {
 | |
|         struct stack_info *thread_stack_info;
 | |
| 
 | |
|         thread_stack_info = CRYPTO_THREAD_get_local(&thread_contention_data);
 | |
|         if (thread_stack_info == NULL) {
 | |
|             thread_stack_info = OPENSSL_zalloc(sizeof(struct stack_traces));
 | |
|             CRYPTO_THREAD_set_local(&thread_contention_data, thread_stack_info);
 | |
|         }
 | |
|     }
 | |
| #  endif
 | |
| 
 | |
|     if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
 | |
|         /* Don't set error, to avoid recursion blowup. */
 | |
|         return NULL;
 | |
| 
 | |
|     if (pthread_rwlock_init(lock, NULL) != 0) {
 | |
|         OPENSSL_free(lock);
 | |
|         return NULL;
 | |
|     }
 | |
| # else
 | |
|     pthread_mutexattr_t attr;
 | |
|     CRYPTO_RWLOCK *lock;
 | |
| 
 | |
|     if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
 | |
|         /* Don't set error, to avoid recursion blowup. */
 | |
|         return NULL;
 | |
| 
 | |
|     /*
 | |
|      * We don't use recursive mutexes, but try to catch errors if we do.
 | |
|      */
 | |
|     pthread_mutexattr_init(&attr);
 | |
| #  if !defined (__TANDEM) && !defined (_SPT_MODEL_)
 | |
| #   if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
 | |
|     pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
 | |
| #   endif
 | |
| #  else
 | |
|     /* The SPT Thread Library does not define MUTEX attributes. */
 | |
| #  endif
 | |
| 
 | |
|     if (pthread_mutex_init(lock, &attr) != 0) {
 | |
|         pthread_mutexattr_destroy(&attr);
 | |
|         OPENSSL_free(lock);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     pthread_mutexattr_destroy(&attr);
 | |
| # endif
 | |
| 
 | |
|     return lock;
 | |
| }
 | |
| 
 | |
| # ifdef REPORT_RWLOCK_CONTENTION
 | |
| static void print_stack_traces(struct stack_traces *traces, FILE *fptr)
 | |
| {
 | |
|     unsigned int j;
 | |
| 
 | |
|     pthread_mutex_lock(&log_lock);
 | |
|     while (traces != NULL && traces->idx >= 1) {
 | |
|         traces->idx--;
 | |
|         fprintf(fptr, "lock blocked on %s for %zu usec at time %zu tid %d\n",
 | |
|                 traces->stacks[traces->idx].write == 1 ? "WRITE" : "READ",
 | |
|                 ossl_time2us(traces->stacks[traces->idx].duration),
 | |
|                 ossl_time2us(traces->stacks[traces->idx].start),
 | |
|                 gettid());
 | |
|         if (traces->stacks[traces->idx].strings != NULL) {
 | |
|             for (j = 0; j < traces->stacks[traces->idx].nptrs; j++)
 | |
|                 fprintf(fptr, "%s\n", traces->stacks[traces->idx].strings[j]);
 | |
|             free(traces->stacks[traces->idx].strings);
 | |
|         } else {
 | |
|             fprintf(fptr, "No stack trace available\n");
 | |
|         }
 | |
|         fprintf(contention_fp, "\n");
 | |
|     }
 | |
|     pthread_mutex_unlock(&log_lock);
 | |
| }
 | |
| # endif
 | |
| 
 | |
| # define BT_BUF_SIZE 1024
 | |
| 
 | |
| __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # ifdef USE_RWLOCK
 | |
| #  ifdef REPORT_RWLOCK_CONTENTION
 | |
|     struct stack_traces *traces = CRYPTO_THREAD_get_local(&thread_contention_data);
 | |
| 
 | |
|     if (ossl_unlikely(traces == NULL)) {
 | |
|         traces = OPENSSL_zalloc(sizeof(struct stack_traces));
 | |
|         CRYPTO_THREAD_set_local(&thread_contention_data, traces);
 | |
|         if (ossl_unlikely(traces == NULL))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     traces->lock_depth++;
 | |
|     if (pthread_rwlock_tryrdlock(lock)) {
 | |
|         void *buffer[BT_BUF_SIZE];
 | |
|         OSSL_TIME start, end;
 | |
| 
 | |
|         start = ossl_time_now();
 | |
|         if (!ossl_assert(pthread_rwlock_rdlock(lock) == 0)) {
 | |
|             traces->lock_depth--;
 | |
|             return 0;
 | |
|         }
 | |
|         end = ossl_time_now();
 | |
|         traces->stacks[traces->idx].duration = ossl_time_subtract(end, start);
 | |
|         traces->stacks[traces->idx].nptrs = backtrace(buffer, BT_BUF_SIZE);
 | |
|         traces->stacks[traces->idx].strings = backtrace_symbols(buffer,
 | |
|                                                                 traces->stacks[traces->idx].nptrs);
 | |
|         traces->stacks[traces->idx].duration = ossl_time_subtract(end, start);
 | |
|         traces->stacks[traces->idx].start = start;
 | |
|         traces->stacks[traces->idx].write = 0;
 | |
|         traces->idx++;
 | |
|         if (traces->idx >= STACKS_COUNT) {
 | |
|             fprintf(stderr, "STACK RECORD OVERFLOW!\n");
 | |
|             print_stack_traces(traces, contention_fp);
 | |
|         }
 | |
|     }
 | |
| #  else
 | |
|     if (!ossl_assert(pthread_rwlock_rdlock(lock) == 0))
 | |
|         return 0;
 | |
| #  endif
 | |
| # else
 | |
|     if (pthread_mutex_lock(lock) != 0) {
 | |
|         assert(errno != EDEADLK && errno != EBUSY);
 | |
|         return 0;
 | |
|     }
 | |
| # endif
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # ifdef USE_RWLOCK
 | |
| #  ifdef REPORT_RWLOCK_CONTENTION
 | |
|     struct stack_traces *traces = CRYPTO_THREAD_get_local(&thread_contention_data);
 | |
| 
 | |
|     if (ossl_unlikely(traces == NULL)) {
 | |
|         traces = OPENSSL_zalloc(sizeof(struct stack_traces));
 | |
|         CRYPTO_THREAD_set_local(&thread_contention_data, traces);
 | |
|         if (ossl_unlikely(traces == NULL))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     traces->lock_depth++;
 | |
|     if (pthread_rwlock_trywrlock(lock)) {
 | |
|         void *buffer[BT_BUF_SIZE];
 | |
|         OSSL_TIME start, end;
 | |
| 
 | |
|         start = ossl_time_now();
 | |
|         if (!ossl_assert(pthread_rwlock_wrlock(lock) == 0)) {
 | |
|             traces->lock_depth--;
 | |
|             return 0;
 | |
|         }
 | |
|         end = ossl_time_now();
 | |
|         traces->stacks[traces->idx].nptrs = backtrace(buffer, BT_BUF_SIZE);
 | |
|         traces->stacks[traces->idx].strings = backtrace_symbols(buffer,
 | |
|                                                                 traces->stacks[traces->idx].nptrs);
 | |
|         traces->stacks[traces->idx].duration = ossl_time_subtract(end, start);
 | |
|         traces->stacks[traces->idx].start = start;
 | |
|         traces->stacks[traces->idx].write = 1;
 | |
|         traces->idx++;
 | |
|         if (traces->idx >= STACKS_COUNT) {
 | |
|             fprintf(stderr, "STACK RECORD OVERFLOW!\n");
 | |
|             print_stack_traces(traces, contention_fp);
 | |
|         }
 | |
|     }
 | |
| #  else
 | |
|     if (!ossl_assert(pthread_rwlock_wrlock(lock) == 0))
 | |
|         return 0;
 | |
| #  endif
 | |
| # else
 | |
|     if (pthread_mutex_lock(lock) != 0) {
 | |
|         assert(errno != EDEADLK && errno != EBUSY);
 | |
|         return 0;
 | |
|     }
 | |
| # endif
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # ifdef USE_RWLOCK
 | |
|     if (pthread_rwlock_unlock(lock) != 0)
 | |
|         return 0;
 | |
| #  ifdef REPORT_RWLOCK_CONTENTION
 | |
|     {
 | |
|         struct stack_traces *traces = CRYPTO_THREAD_get_local(&thread_contention_data);
 | |
| 
 | |
|         if (contention_fp != NULL && traces != NULL) {
 | |
|             traces->lock_depth--;
 | |
|             assert(traces->lock_depth >= 0);
 | |
|             if (traces->lock_depth == 0)
 | |
|                 print_stack_traces(traces, contention_fp);
 | |
|         }
 | |
|     }
 | |
| #  endif
 | |
| # else
 | |
|     if (pthread_mutex_unlock(lock) != 0) {
 | |
|         assert(errno != EPERM);
 | |
|         return 0;
 | |
|     }
 | |
| # endif
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
 | |
| {
 | |
|     if (lock == NULL)
 | |
|         return;
 | |
| # ifdef REPORT_RWLOCK_CONTENTION
 | |
| 
 | |
|     /*
 | |
|      * Note: It's possible here that OpenSSL may allocate a lock and immediately
 | |
|      * free it, in which case we would erroneously close the contention log
 | |
|      * prior to the library going on to do more real work.  In practice
 | |
|      * that never happens though, and since this is a debug facility
 | |
|      * we don't worry about that here.
 | |
|      */
 | |
|     if (__atomic_add_fetch(&rwlock_count, -1, __ATOMIC_ACQ_REL) == 0) {
 | |
|         fclose(contention_fp);
 | |
|         contention_fp = NULL;
 | |
|     }
 | |
| # endif
 | |
| 
 | |
| # ifdef USE_RWLOCK
 | |
|     pthread_rwlock_destroy(lock);
 | |
| # else
 | |
|     pthread_mutex_destroy(lock);
 | |
| # endif
 | |
|     OPENSSL_free(lock);
 | |
| 
 | |
|     return;
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
 | |
| {
 | |
|     if (ossl_unlikely(pthread_once(once, init) != 0))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
 | |
| {
 | |
|     if (pthread_key_create(key, cleanup) != 0)
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
 | |
| {
 | |
|     return pthread_getspecific(*key);
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
 | |
| {
 | |
|     if (pthread_setspecific(*key, val) != 0)
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
 | |
| {
 | |
|     if (pthread_key_delete(*key) != 0)
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
 | |
| {
 | |
|     return pthread_self();
 | |
| }
 | |
| 
 | |
| int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
 | |
| {
 | |
|     return pthread_equal(a, b);
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*val), val)) {
 | |
|         *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         *ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     *val += amount;
 | |
|     *ret  = *val;
 | |
| 
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
 | |
|                         CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*val), val)) {
 | |
|         *ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         *ret = atomic_add_64_nv(val, op);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
|     *val += op;
 | |
|     *ret  = *val;
 | |
| 
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
 | |
|                       CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*val), val)) {
 | |
|         *ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         *ret = atomic_and_64_nv(val, op);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
|     *val &= op;
 | |
|     *ret  = *val;
 | |
| 
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
 | |
|                      CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*val), val)) {
 | |
|         *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         *ret = atomic_or_64_nv(val, op);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
|     *val |= op;
 | |
|     *ret  = *val;
 | |
| 
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*val), val)) {
 | |
|         __atomic_load(val, ret, __ATOMIC_ACQUIRE);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         *ret = atomic_or_64_nv(val, 0);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
 | |
|         return 0;
 | |
|     *ret  = *val;
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*dst), dst)) {
 | |
|         __atomic_store(dst, &val, __ATOMIC_RELEASE);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (dst != NULL) {
 | |
|         atomic_swap_64(dst, val);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 | |
|         return 0;
 | |
|     *dst  = val;
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
 | |
| {
 | |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
 | |
|     if (__atomic_is_lock_free(sizeof(*val), val)) {
 | |
|         __atomic_load(val, ret, __ATOMIC_ACQUIRE);
 | |
|         return 1;
 | |
|     }
 | |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
 | |
|     /* This will work for all future Solaris versions. */
 | |
|     if (ret != NULL) {
 | |
|         *ret = (int)atomic_or_uint_nv((unsigned int *)val, 0);
 | |
|         return 1;
 | |
|     }
 | |
| # endif
 | |
|     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
 | |
|         return 0;
 | |
|     *ret  = *val;
 | |
|     if (!CRYPTO_THREAD_unlock(lock))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # ifndef FIPS_MODULE
 | |
| int openssl_init_fork_handlers(void)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| # endif /* FIPS_MODULE */
 | |
| 
 | |
| int openssl_get_fork_id(void)
 | |
| {
 | |
|     return getpid();
 | |
| }
 | |
| #endif
 |