mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			1190 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1190 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the Apache License 2.0 (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include "internal/quic_record_rx.h"
 | |
| #include "quic_record_shared.h"
 | |
| #include "internal/common.h"
 | |
| #include "internal/list.h"
 | |
| #include "../ssl_local.h"
 | |
| 
 | |
| /*
 | |
|  * Mark a packet in a bitfield.
 | |
|  *
 | |
|  * pkt_idx: index of packet within datagram.
 | |
|  */
 | |
| static ossl_inline void pkt_mark(uint64_t *bitf, size_t pkt_idx)
 | |
| {
 | |
|     assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
 | |
|     *bitf |= ((uint64_t)1) << pkt_idx;
 | |
| }
 | |
| 
 | |
| /* Returns 1 if a packet is in the bitfield. */
 | |
| static ossl_inline int pkt_is_marked(const uint64_t *bitf, size_t pkt_idx)
 | |
| {
 | |
|     assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
 | |
|     return (*bitf & (((uint64_t)1) << pkt_idx)) != 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RXE
 | |
|  * ===
 | |
|  *
 | |
|  * RX Entries (RXEs) store processed (i.e., decrypted) data received from the
 | |
|  * network. One RXE is used per received QUIC packet.
 | |
|  */
 | |
| typedef struct rxe_st RXE;
 | |
| 
 | |
| struct rxe_st {
 | |
|     OSSL_QRX_PKT        pkt;
 | |
|     OSSL_LIST_MEMBER(rxe, RXE);
 | |
|     size_t              data_len, alloc_len, refcount;
 | |
| 
 | |
|     /* Extra fields for per-packet information. */
 | |
|     QUIC_PKT_HDR        hdr; /* data/len are decrypted payload */
 | |
| 
 | |
|     /* Decoded packet number. */
 | |
|     QUIC_PN             pn;
 | |
| 
 | |
|     /* Addresses copied from URXE. */
 | |
|     BIO_ADDR            peer, local;
 | |
| 
 | |
|     /* Time we received the packet (not when we processed it). */
 | |
|     OSSL_TIME           time;
 | |
| 
 | |
|     /* Total length of the datagram which contained this packet. */
 | |
|     size_t              datagram_len;
 | |
| 
 | |
|     /*
 | |
|      * alloc_len allocated bytes (of which data_len bytes are valid) follow this
 | |
|      * structure.
 | |
|      */
 | |
| };
 | |
| 
 | |
| DEFINE_LIST_OF(rxe, RXE);
 | |
| typedef OSSL_LIST(rxe) RXE_LIST;
 | |
| 
 | |
| static ossl_inline unsigned char *rxe_data(const RXE *e)
 | |
| {
 | |
|     return (unsigned char *)(e + 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * QRL
 | |
|  * ===
 | |
|  */
 | |
| struct ossl_qrx_st {
 | |
|     OSSL_LIB_CTX               *libctx;
 | |
|     const char                 *propq;
 | |
| 
 | |
|     /* Demux to receive datagrams from. */
 | |
|     QUIC_DEMUX                 *demux;
 | |
| 
 | |
|     /* Length of connection IDs used in short-header packets in bytes. */
 | |
|     size_t                      short_conn_id_len;
 | |
| 
 | |
|     /* Maximum number of deferred datagrams buffered at any one time. */
 | |
|     size_t                      max_deferred;
 | |
| 
 | |
|     /* Current count of deferred datagrams. */
 | |
|     size_t                      num_deferred;
 | |
| 
 | |
|     /*
 | |
|      * List of URXEs which are filled with received encrypted data.
 | |
|      * These are returned to the DEMUX's free list as they are processed.
 | |
|      */
 | |
|     QUIC_URXE_LIST              urx_pending;
 | |
| 
 | |
|     /*
 | |
|      * List of URXEs which we could not decrypt immediately and which are being
 | |
|      * kept in case they can be decrypted later.
 | |
|      */
 | |
|     QUIC_URXE_LIST              urx_deferred;
 | |
| 
 | |
|     /*
 | |
|      * List of RXEs which are not currently in use. These are moved
 | |
|      * to the pending list as they are filled.
 | |
|      */
 | |
|     RXE_LIST                    rx_free;
 | |
| 
 | |
|     /*
 | |
|      * List of RXEs which are filled with decrypted packets ready to be passed
 | |
|      * to the user. A RXE is removed from all lists inside the QRL when passed
 | |
|      * to the user, then returned to the free list when the user returns it.
 | |
|      */
 | |
|     RXE_LIST                    rx_pending;
 | |
| 
 | |
|     /* Largest PN we have received and processed in a given PN space. */
 | |
|     QUIC_PN                     largest_pn[QUIC_PN_SPACE_NUM];
 | |
| 
 | |
|     /* Per encryption-level state. */
 | |
|     OSSL_QRL_ENC_LEVEL_SET      el_set;
 | |
| 
 | |
|     /* Bytes we have received since this counter was last cleared. */
 | |
|     uint64_t                    bytes_received;
 | |
| 
 | |
|     /*
 | |
|      * Number of forged packets we have received since the QRX was instantiated.
 | |
|      * Note that as per RFC 9001, this is connection-level state; it is not per
 | |
|      * EL and is not reset by a key update.
 | |
|      */
 | |
|     uint64_t                    forged_pkt_count;
 | |
| 
 | |
|     /* Validation callback. */
 | |
|     ossl_qrx_early_validation_cb   *validation_cb;
 | |
|     void                           *validation_cb_arg;
 | |
| 
 | |
|     /* Key update callback. */
 | |
|     ossl_qrx_key_update_cb         *key_update_cb;
 | |
|     void                           *key_update_cb_arg;
 | |
| 
 | |
|     /* Initial key phase. For debugging use only; always 0 in real use. */
 | |
|     unsigned char                   init_key_phase_bit;
 | |
| };
 | |
| 
 | |
| static void qrx_on_rx(QUIC_URXE *urxe, void *arg);
 | |
| 
 | |
| OSSL_QRX *ossl_qrx_new(const OSSL_QRX_ARGS *args)
 | |
| {
 | |
|     OSSL_QRX *qrx;
 | |
|     size_t i;
 | |
| 
 | |
|     if (args->demux == NULL || args->max_deferred == 0)
 | |
|         return 0;
 | |
| 
 | |
|     qrx = OPENSSL_zalloc(sizeof(OSSL_QRX));
 | |
|     if (qrx == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     for (i = 0; i < OSSL_NELEM(qrx->largest_pn); ++i)
 | |
|         qrx->largest_pn[i] = args->init_largest_pn[i];
 | |
| 
 | |
|     qrx->libctx                 = args->libctx;
 | |
|     qrx->propq                  = args->propq;
 | |
|     qrx->demux                  = args->demux;
 | |
|     qrx->short_conn_id_len      = args->short_conn_id_len;
 | |
|     qrx->init_key_phase_bit     = args->init_key_phase_bit;
 | |
|     qrx->max_deferred           = args->max_deferred;
 | |
|     return qrx;
 | |
| }
 | |
| 
 | |
| static void qrx_cleanup_rxl(RXE_LIST *l)
 | |
| {
 | |
|     RXE *e, *enext;
 | |
| 
 | |
|     for (e = ossl_list_rxe_head(l); e != NULL; e = enext) {
 | |
|         enext = ossl_list_rxe_next(e);
 | |
|         ossl_list_rxe_remove(l, e);
 | |
|         OPENSSL_free(e);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void qrx_cleanup_urxl(OSSL_QRX *qrx, QUIC_URXE_LIST *l)
 | |
| {
 | |
|     QUIC_URXE *e, *enext;
 | |
| 
 | |
|     for (e = ossl_list_urxe_head(l); e != NULL; e = enext) {
 | |
|         enext = ossl_list_urxe_next(e);
 | |
|         ossl_quic_demux_release_urxe(qrx->demux, e);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ossl_qrx_free(OSSL_QRX *qrx)
 | |
| {
 | |
|     uint32_t i;
 | |
| 
 | |
|     if (qrx == NULL)
 | |
|         return;
 | |
| 
 | |
|     /* Unregister from the RX DEMUX. */
 | |
|     ossl_quic_demux_unregister_by_cb(qrx->demux, qrx_on_rx, qrx);
 | |
| 
 | |
|     /* Free RXE queue data. */
 | |
|     qrx_cleanup_rxl(&qrx->rx_free);
 | |
|     qrx_cleanup_rxl(&qrx->rx_pending);
 | |
|     qrx_cleanup_urxl(qrx, &qrx->urx_pending);
 | |
|     qrx_cleanup_urxl(qrx, &qrx->urx_deferred);
 | |
| 
 | |
|     /* Drop keying material and crypto resources. */
 | |
|     for (i = 0; i < QUIC_ENC_LEVEL_NUM; ++i)
 | |
|         ossl_qrl_enc_level_set_discard(&qrx->el_set, i);
 | |
| 
 | |
|     OPENSSL_free(qrx);
 | |
| }
 | |
| 
 | |
| void ossl_qrx_inject_urxe(OSSL_QRX *qrx, QUIC_URXE *urxe)
 | |
| {
 | |
|     /* Initialize our own fields inside the URXE and add to the pending list. */
 | |
|     urxe->processed     = 0;
 | |
|     urxe->hpr_removed   = 0;
 | |
|     urxe->deferred      = 0;
 | |
|     ossl_list_urxe_insert_tail(&qrx->urx_pending, urxe);
 | |
| }
 | |
| 
 | |
| static void qrx_on_rx(QUIC_URXE *urxe, void *arg)
 | |
| {
 | |
|     OSSL_QRX *qrx = arg;
 | |
|     ossl_qrx_inject_urxe(qrx, urxe);
 | |
| }
 | |
| 
 | |
| int ossl_qrx_add_dst_conn_id(OSSL_QRX *qrx,
 | |
|                              const QUIC_CONN_ID *dst_conn_id)
 | |
| {
 | |
|     return ossl_quic_demux_register(qrx->demux,
 | |
|                                     dst_conn_id,
 | |
|                                     qrx_on_rx,
 | |
|                                     qrx);
 | |
| }
 | |
| 
 | |
| int ossl_qrx_remove_dst_conn_id(OSSL_QRX *qrx,
 | |
|                                 const QUIC_CONN_ID *dst_conn_id)
 | |
| {
 | |
|     return ossl_quic_demux_unregister(qrx->demux, dst_conn_id);
 | |
| }
 | |
| 
 | |
| static void qrx_requeue_deferred(OSSL_QRX *qrx)
 | |
| {
 | |
|     QUIC_URXE *e;
 | |
| 
 | |
|     while ((e = ossl_list_urxe_head(&qrx->urx_deferred)) != NULL) {
 | |
|         ossl_list_urxe_remove(&qrx->urx_deferred, e);
 | |
|         ossl_list_urxe_insert_head(&qrx->urx_pending, e);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ossl_qrx_provide_secret(OSSL_QRX *qrx, uint32_t enc_level,
 | |
|                             uint32_t suite_id, EVP_MD *md,
 | |
|                             const unsigned char *secret, size_t secret_len)
 | |
| {
 | |
|     if (enc_level >= QUIC_ENC_LEVEL_NUM)
 | |
|         return 0;
 | |
| 
 | |
|     if (!ossl_qrl_enc_level_set_provide_secret(&qrx->el_set,
 | |
|                                                qrx->libctx,
 | |
|                                                qrx->propq,
 | |
|                                                enc_level,
 | |
|                                                suite_id,
 | |
|                                                md,
 | |
|                                                secret,
 | |
|                                                secret_len,
 | |
|                                                qrx->init_key_phase_bit,
 | |
|                                                /*is_tx=*/0))
 | |
|         return 0;
 | |
| 
 | |
|     /*
 | |
|      * Any packets we previously could not decrypt, we may now be able to
 | |
|      * decrypt, so move any datagrams containing deferred packets from the
 | |
|      * deferred to the pending queue.
 | |
|      */
 | |
|     qrx_requeue_deferred(qrx);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int ossl_qrx_discard_enc_level(OSSL_QRX *qrx, uint32_t enc_level)
 | |
| {
 | |
|     if (enc_level >= QUIC_ENC_LEVEL_NUM)
 | |
|         return 0;
 | |
| 
 | |
|     ossl_qrl_enc_level_set_discard(&qrx->el_set, enc_level);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Returns 1 if there are one or more pending RXEs. */
 | |
| int ossl_qrx_processed_read_pending(OSSL_QRX *qrx)
 | |
| {
 | |
|     return !ossl_list_rxe_is_empty(&qrx->rx_pending);
 | |
| }
 | |
| 
 | |
| /* Returns 1 if there are yet-unprocessed packets. */
 | |
| int ossl_qrx_unprocessed_read_pending(OSSL_QRX *qrx)
 | |
| {
 | |
|     return !ossl_list_urxe_is_empty(&qrx->urx_pending)
 | |
|            || !ossl_list_urxe_is_empty(&qrx->urx_deferred);
 | |
| }
 | |
| 
 | |
| /* Pop the next pending RXE. Returns NULL if no RXE is pending. */
 | |
| static RXE *qrx_pop_pending_rxe(OSSL_QRX *qrx)
 | |
| {
 | |
|     RXE *rxe = ossl_list_rxe_head(&qrx->rx_pending);
 | |
| 
 | |
|     if (rxe == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     ossl_list_rxe_remove(&qrx->rx_pending, rxe);
 | |
|     return rxe;
 | |
| }
 | |
| 
 | |
| /* Allocate a new RXE. */
 | |
| static RXE *qrx_alloc_rxe(size_t alloc_len)
 | |
| {
 | |
|     RXE *rxe;
 | |
| 
 | |
|     if (alloc_len >= SIZE_MAX - sizeof(RXE))
 | |
|         return NULL;
 | |
| 
 | |
|     rxe = OPENSSL_malloc(sizeof(RXE) + alloc_len);
 | |
|     if (rxe == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     ossl_list_rxe_init_elem(rxe);
 | |
|     rxe->alloc_len = alloc_len;
 | |
|     rxe->data_len  = 0;
 | |
|     rxe->refcount  = 0;
 | |
|     return rxe;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensures there is at least one RXE in the RX free list, allocating a new entry
 | |
|  * if necessary. The returned RXE is in the RX free list; it is not popped.
 | |
|  *
 | |
|  * alloc_len is a hint which may be used to determine the RXE size if allocation
 | |
|  * is necessary. Returns NULL on allocation failure.
 | |
|  */
 | |
| static RXE *qrx_ensure_free_rxe(OSSL_QRX *qrx, size_t alloc_len)
 | |
| {
 | |
|     RXE *rxe;
 | |
| 
 | |
|     if (ossl_list_rxe_head(&qrx->rx_free) != NULL)
 | |
|         return ossl_list_rxe_head(&qrx->rx_free);
 | |
| 
 | |
|     rxe = qrx_alloc_rxe(alloc_len);
 | |
|     if (rxe == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
 | |
|     return rxe;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Resize the data buffer attached to an RXE to be n bytes in size. The address
 | |
|  * of the RXE might change; the new address is returned, or NULL on failure, in
 | |
|  * which case the original RXE remains valid.
 | |
|  */
 | |
| static RXE *qrx_resize_rxe(RXE_LIST *rxl, RXE *rxe, size_t n)
 | |
| {
 | |
|     RXE *rxe2, *p;
 | |
| 
 | |
|     /* Should never happen. */
 | |
|     if (rxe == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     if (n >= SIZE_MAX - sizeof(RXE))
 | |
|         return NULL;
 | |
| 
 | |
|     /* Remove the item from the list to avoid accessing freed memory */
 | |
|     p = ossl_list_rxe_prev(rxe);
 | |
|     ossl_list_rxe_remove(rxl, rxe);
 | |
| 
 | |
|     /* Should never resize an RXE which has been handed out. */
 | |
|     if (!ossl_assert(rxe->refcount == 0))
 | |
|         return NULL;
 | |
| 
 | |
|     /*
 | |
|      * NOTE: We do not clear old memory, although it does contain decrypted
 | |
|      * data.
 | |
|      */
 | |
|     rxe2 = OPENSSL_realloc(rxe, sizeof(RXE) + n);
 | |
|     if (rxe2 == NULL) {
 | |
|         /* Resize failed, restore old allocation. */
 | |
|         if (p == NULL)
 | |
|             ossl_list_rxe_insert_head(rxl, rxe);
 | |
|         else
 | |
|             ossl_list_rxe_insert_after(rxl, p, rxe);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (p == NULL)
 | |
|         ossl_list_rxe_insert_head(rxl, rxe2);
 | |
|     else
 | |
|         ossl_list_rxe_insert_after(rxl, p, rxe2);
 | |
| 
 | |
|     rxe2->alloc_len = n;
 | |
|     return rxe2;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure the data buffer attached to an RXE is at least n bytes in size.
 | |
|  * Returns NULL on failure.
 | |
|  */
 | |
| static RXE *qrx_reserve_rxe(RXE_LIST *rxl,
 | |
|                             RXE *rxe, size_t n)
 | |
| {
 | |
|     if (rxe->alloc_len >= n)
 | |
|         return rxe;
 | |
| 
 | |
|     return qrx_resize_rxe(rxl, rxe, n);
 | |
| }
 | |
| 
 | |
| /* Return a RXE handed out to the user back to our freelist. */
 | |
| static void qrx_recycle_rxe(OSSL_QRX *qrx, RXE *rxe)
 | |
| {
 | |
|     /* RXE should not be in any list */
 | |
|     assert(ossl_list_rxe_prev(rxe) == NULL && ossl_list_rxe_next(rxe) == NULL);
 | |
|     rxe->pkt.hdr    = NULL;
 | |
|     rxe->pkt.peer   = NULL;
 | |
|     rxe->pkt.local  = NULL;
 | |
|     ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a pointer to a pointer pointing to a buffer and the size of that
 | |
|  * buffer, copy the buffer into *prxe, expanding the RXE if necessary (its
 | |
|  * pointer may change due to realloc). *pi is the offset in bytes to copy the
 | |
|  * buffer to, and on success is updated to be the offset pointing after the
 | |
|  * copied buffer. *pptr is updated to point to the new location of the buffer.
 | |
|  */
 | |
| static int qrx_relocate_buffer(OSSL_QRX *qrx, RXE **prxe, size_t *pi,
 | |
|                                const unsigned char **pptr, size_t buf_len)
 | |
| {
 | |
|     RXE *rxe;
 | |
|     unsigned char *dst;
 | |
| 
 | |
|     if (!buf_len)
 | |
|         return 1;
 | |
| 
 | |
|     if ((rxe = qrx_reserve_rxe(&qrx->rx_free, *prxe, *pi + buf_len)) == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     *prxe = rxe;
 | |
|     dst = (unsigned char *)rxe_data(rxe) + *pi;
 | |
| 
 | |
|     memcpy(dst, *pptr, buf_len);
 | |
|     *pi += buf_len;
 | |
|     *pptr = dst;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static uint32_t qrx_determine_enc_level(const QUIC_PKT_HDR *hdr)
 | |
| {
 | |
|     switch (hdr->type) {
 | |
|         case QUIC_PKT_TYPE_INITIAL:
 | |
|             return QUIC_ENC_LEVEL_INITIAL;
 | |
|         case QUIC_PKT_TYPE_HANDSHAKE:
 | |
|             return QUIC_ENC_LEVEL_HANDSHAKE;
 | |
|         case QUIC_PKT_TYPE_0RTT:
 | |
|             return QUIC_ENC_LEVEL_0RTT;
 | |
|         case QUIC_PKT_TYPE_1RTT:
 | |
|             return QUIC_ENC_LEVEL_1RTT;
 | |
| 
 | |
|         default:
 | |
|             assert(0);
 | |
|         case QUIC_PKT_TYPE_RETRY:
 | |
|         case QUIC_PKT_TYPE_VERSION_NEG:
 | |
|             return QUIC_ENC_LEVEL_INITIAL; /* not used */
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t rxe_determine_pn_space(RXE *rxe)
 | |
| {
 | |
|     uint32_t enc_level;
 | |
| 
 | |
|     enc_level = qrx_determine_enc_level(&rxe->hdr);
 | |
|     return ossl_quic_enc_level_to_pn_space(enc_level);
 | |
| }
 | |
| 
 | |
| static int qrx_validate_hdr_early(OSSL_QRX *qrx, RXE *rxe,
 | |
|                                   const QUIC_CONN_ID *first_dcid)
 | |
| {
 | |
|     /* Ensure version is what we want. */
 | |
|     if (rxe->hdr.version != QUIC_VERSION_1
 | |
|         && rxe->hdr.version != QUIC_VERSION_NONE)
 | |
|         return 0;
 | |
| 
 | |
|     /* Clients should never receive 0-RTT packets. */
 | |
|     if (rxe->hdr.type == QUIC_PKT_TYPE_0RTT)
 | |
|         return 0;
 | |
| 
 | |
|     /* Version negotiation and retry packets must be the first packet. */
 | |
|     if (first_dcid != NULL && !ossl_quic_pkt_type_can_share_dgram(rxe->hdr.type))
 | |
|         return 0;
 | |
| 
 | |
|     /*
 | |
|      * If this is not the first packet in a datagram, the destination connection
 | |
|      * ID must match the one in that packet.
 | |
|      */
 | |
|     if (first_dcid != NULL) {
 | |
|         if (!ossl_assert(first_dcid->id_len < QUIC_MAX_CONN_ID_LEN)
 | |
|             || !ossl_quic_conn_id_eq(first_dcid,
 | |
|                                      &rxe->hdr.dst_conn_id))
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Validate header and decode PN. */
 | |
| static int qrx_validate_hdr(OSSL_QRX *qrx, RXE *rxe)
 | |
| {
 | |
|     int pn_space = rxe_determine_pn_space(rxe);
 | |
| 
 | |
|     if (!ossl_quic_wire_decode_pkt_hdr_pn(rxe->hdr.pn, rxe->hdr.pn_len,
 | |
|                                           qrx->largest_pn[pn_space],
 | |
|                                           &rxe->pn))
 | |
|         return 0;
 | |
| 
 | |
|     /*
 | |
|      * Allow our user to decide whether to discard the packet before we try and
 | |
|      * decrypt it.
 | |
|      */
 | |
|     if (qrx->validation_cb != NULL
 | |
|         && !qrx->validation_cb(rxe->pn, pn_space, qrx->validation_cb_arg))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Retrieves the correct cipher context for an EL and key phase. */
 | |
| static size_t qrx_get_cipher_ctx_idx(OSSL_QRX *qrx, OSSL_QRL_ENC_LEVEL *el,
 | |
|                                      uint32_t enc_level,
 | |
|                                      unsigned char key_phase_bit)
 | |
| {
 | |
|     if (enc_level != QUIC_ENC_LEVEL_1RTT)
 | |
|         return 0;
 | |
| 
 | |
|     if (!ossl_assert(key_phase_bit <= 1))
 | |
|         return SIZE_MAX;
 | |
| 
 | |
|     /*
 | |
|      * RFC 9001 requires that we not create timing channels which could reveal
 | |
|      * the decrypted value of the Key Phase bit. We usually handle this by
 | |
|      * keeping the cipher contexts for both the current and next key epochs
 | |
|      * around, so that we just select a cipher context blindly using the key
 | |
|      * phase bit, which is time-invariant.
 | |
|      *
 | |
|      * In the COOLDOWN state, we only have one keyslot/cipher context. RFC 9001
 | |
|      * suggests an implementation strategy to avoid creating a timing channel in
 | |
|      * this case:
 | |
|      *
 | |
|      *   Endpoints can use randomized packet protection keys in place of
 | |
|      *   discarded keys when key updates are not yet permitted.
 | |
|      *
 | |
|      * Rather than use a randomised key, we simply use our existing key as it
 | |
|      * will fail AEAD verification anyway. This avoids the need to keep around a
 | |
|      * dedicated garbage key.
 | |
|      *
 | |
|      * Note: Accessing different cipher contexts is technically not
 | |
|      * timing-channel safe due to microarchitectural side channels, but this is
 | |
|      * the best we can reasonably do and appears to be directly suggested by the
 | |
|      * RFC.
 | |
|      */
 | |
|     return el->state == QRL_EL_STATE_PROV_COOLDOWN ? el->key_epoch & 1
 | |
|                                                    : key_phase_bit;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tries to decrypt a packet payload.
 | |
|  *
 | |
|  * Returns 1 on success or 0 on failure (which is permanent). The payload is
 | |
|  * decrypted from src and written to dst. The buffer dst must be of at least
 | |
|  * src_len bytes in length. The actual length of the output in bytes is written
 | |
|  * to *dec_len on success, which will always be equal to or less than (usually
 | |
|  * less than) src_len.
 | |
|  */
 | |
| static int qrx_decrypt_pkt_body(OSSL_QRX *qrx, unsigned char *dst,
 | |
|                                 const unsigned char *src,
 | |
|                                 size_t src_len, size_t *dec_len,
 | |
|                                 const unsigned char *aad, size_t aad_len,
 | |
|                                 QUIC_PN pn, uint32_t enc_level,
 | |
|                                 unsigned char key_phase_bit)
 | |
| {
 | |
|     int l = 0, l2 = 0;
 | |
|     unsigned char nonce[EVP_MAX_IV_LENGTH];
 | |
|     size_t nonce_len, i, cctx_idx;
 | |
|     OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
 | |
|                                                         enc_level, 1);
 | |
|     EVP_CIPHER_CTX *cctx;
 | |
| 
 | |
|     if (src_len > INT_MAX || aad_len > INT_MAX)
 | |
|         return 0;
 | |
| 
 | |
|     /* We should not have been called if we do not have key material. */
 | |
|     if (!ossl_assert(el != NULL))
 | |
|         return 0;
 | |
| 
 | |
|     if (el->tag_len >= src_len)
 | |
|         return 0;
 | |
| 
 | |
|     /*
 | |
|      * If we have failed to authenticate a certain number of ciphertexts, refuse
 | |
|      * to decrypt any more ciphertexts.
 | |
|      */
 | |
|     if (qrx->forged_pkt_count >= ossl_qrl_get_suite_max_forged_pkt(el->suite_id))
 | |
|         return 0;
 | |
| 
 | |
|     cctx_idx = qrx_get_cipher_ctx_idx(qrx, el, enc_level, key_phase_bit);
 | |
|     if (!ossl_assert(cctx_idx < OSSL_NELEM(el->cctx)))
 | |
|         return 0;
 | |
| 
 | |
|     cctx = el->cctx[cctx_idx];
 | |
| 
 | |
|     /* Construct nonce (nonce=IV ^ PN). */
 | |
|     nonce_len = EVP_CIPHER_CTX_get_iv_length(cctx);
 | |
|     if (!ossl_assert(nonce_len >= sizeof(QUIC_PN)))
 | |
|         return 0;
 | |
| 
 | |
|     memcpy(nonce, el->iv[cctx_idx], nonce_len);
 | |
|     for (i = 0; i < sizeof(QUIC_PN); ++i)
 | |
|         nonce[nonce_len - i - 1] ^= (unsigned char)(pn >> (i * 8));
 | |
| 
 | |
|     /* type and key will already have been setup; feed the IV. */
 | |
|     if (EVP_CipherInit_ex(cctx, NULL,
 | |
|                           NULL, NULL, nonce, /*enc=*/0) != 1)
 | |
|         return 0;
 | |
| 
 | |
|     /* Feed the AEAD tag we got so the cipher can validate it. */
 | |
|     if (EVP_CIPHER_CTX_ctrl(cctx, EVP_CTRL_AEAD_SET_TAG,
 | |
|                             el->tag_len,
 | |
|                             (unsigned char *)src + src_len - el->tag_len) != 1)
 | |
|         return 0;
 | |
| 
 | |
|     /* Feed AAD data. */
 | |
|     if (EVP_CipherUpdate(cctx, NULL, &l, aad, aad_len) != 1)
 | |
|         return 0;
 | |
| 
 | |
|     /* Feed encrypted packet body. */
 | |
|     if (EVP_CipherUpdate(cctx, dst, &l, src, src_len - el->tag_len) != 1)
 | |
|         return 0;
 | |
| 
 | |
|     /* Ensure authentication succeeded. */
 | |
|     if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) {
 | |
|         /* Authentication failed, increment failed auth counter. */
 | |
|         ++qrx->forged_pkt_count;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     *dec_len = l;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static ossl_inline void ignore_res(int x)
 | |
| {
 | |
|     /* No-op. */
 | |
| }
 | |
| 
 | |
| static void qrx_key_update_initiated(OSSL_QRX *qrx)
 | |
| {
 | |
|     if (!ossl_qrl_enc_level_set_key_update(&qrx->el_set, QUIC_ENC_LEVEL_1RTT))
 | |
|         return;
 | |
| 
 | |
|     if (qrx->key_update_cb != NULL)
 | |
|         qrx->key_update_cb(qrx->key_update_cb_arg);
 | |
| }
 | |
| 
 | |
| /* Process a single packet in a datagram. */
 | |
| static int qrx_process_pkt(OSSL_QRX *qrx, QUIC_URXE *urxe,
 | |
|                            PACKET *pkt, size_t pkt_idx,
 | |
|                            QUIC_CONN_ID *first_dcid,
 | |
|                            size_t datagram_len)
 | |
| {
 | |
|     RXE *rxe;
 | |
|     const unsigned char *eop = NULL;
 | |
|     size_t i, aad_len = 0, dec_len = 0;
 | |
|     PACKET orig_pkt = *pkt;
 | |
|     const unsigned char *sop = PACKET_data(pkt);
 | |
|     unsigned char *dst;
 | |
|     char need_second_decode = 0, already_processed = 0;
 | |
|     QUIC_PKT_HDR_PTRS ptrs;
 | |
|     uint32_t pn_space, enc_level;
 | |
|     OSSL_QRL_ENC_LEVEL *el = NULL;
 | |
| 
 | |
|     /*
 | |
|      * Get a free RXE. If we need to allocate a new one, use the packet length
 | |
|      * as a good ballpark figure.
 | |
|      */
 | |
|     rxe = qrx_ensure_free_rxe(qrx, PACKET_remaining(pkt));
 | |
|     if (rxe == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     /* Have we already processed this packet? */
 | |
|     if (pkt_is_marked(&urxe->processed, pkt_idx))
 | |
|         already_processed = 1;
 | |
| 
 | |
|     /*
 | |
|      * Decode the header into the RXE structure. We first decrypt and read the
 | |
|      * unprotected part of the packet header (unless we already removed header
 | |
|      * protection, in which case we decode all of it).
 | |
|      */
 | |
|     need_second_decode = !pkt_is_marked(&urxe->hpr_removed, pkt_idx);
 | |
|     if (!ossl_quic_wire_decode_pkt_hdr(pkt,
 | |
|                                        qrx->short_conn_id_len,
 | |
|                                        need_second_decode, &rxe->hdr, &ptrs))
 | |
|         goto malformed;
 | |
| 
 | |
|     /*
 | |
|      * Our successful decode above included an intelligible length and the
 | |
|      * PACKET is now pointing to the end of the QUIC packet.
 | |
|      */
 | |
|     eop = PACKET_data(pkt);
 | |
| 
 | |
|     /*
 | |
|      * Make a note of the first packet's DCID so we can later ensure the
 | |
|      * destination connection IDs of all packets in a datagram match.
 | |
|      */
 | |
|     if (pkt_idx == 0)
 | |
|         *first_dcid = rxe->hdr.dst_conn_id;
 | |
| 
 | |
|     /*
 | |
|      * Early header validation. Since we now know the packet length, we can also
 | |
|      * now skip over it if we already processed it.
 | |
|      */
 | |
|     if (already_processed
 | |
|         || !qrx_validate_hdr_early(qrx, rxe, pkt_idx == 0 ? NULL : first_dcid))
 | |
|         /*
 | |
|          * Already processed packets are handled identically to malformed
 | |
|          * packets; i.e., they are ignored.
 | |
|          */
 | |
|         goto malformed;
 | |
| 
 | |
|     if (!ossl_quic_pkt_type_is_encrypted(rxe->hdr.type)) {
 | |
|         /*
 | |
|          * Version negotiation and retry packets are a special case. They do not
 | |
|          * contain a payload which needs decrypting and have no header
 | |
|          * protection.
 | |
|          */
 | |
| 
 | |
|         /* Just copy the payload from the URXE to the RXE. */
 | |
|         if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len)) == NULL)
 | |
|             /*
 | |
|              * Allocation failure. EOP will be pointing to the end of the
 | |
|              * datagram so processing of this datagram will end here.
 | |
|              */
 | |
|             goto malformed;
 | |
| 
 | |
|         /* We are now committed to returning the packet. */
 | |
|         memcpy(rxe_data(rxe), rxe->hdr.data, rxe->hdr.len);
 | |
|         pkt_mark(&urxe->processed, pkt_idx);
 | |
| 
 | |
|         rxe->hdr.data   = rxe_data(rxe);
 | |
|         rxe->pn         = QUIC_PN_INVALID;
 | |
| 
 | |
|         /* Move RXE to pending. */
 | |
|         ossl_list_rxe_remove(&qrx->rx_free, rxe);
 | |
|         ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
 | |
|         return 0; /* success, did not defer */
 | |
|     }
 | |
| 
 | |
|     /* Determine encryption level of packet. */
 | |
|     enc_level = qrx_determine_enc_level(&rxe->hdr);
 | |
| 
 | |
|     /* If we do not have keying material for this encryption level yet, defer. */
 | |
|     switch (ossl_qrl_enc_level_set_have_el(&qrx->el_set, enc_level)) {
 | |
|         case 1:
 | |
|             /* We have keys. */
 | |
|             break;
 | |
|         case 0:
 | |
|             /* No keys yet. */
 | |
|             goto cannot_decrypt;
 | |
|         default:
 | |
|             /* We already discarded keys for this EL, we will never process this.*/
 | |
|             goto malformed;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We will copy any token included in the packet to the start of our RXE
 | |
|      * data buffer (so that we don't reference the URXE buffer any more and can
 | |
|      * recycle it). Track our position in the RXE buffer by index instead of
 | |
|      * pointer as the pointer may change as reallocs occur.
 | |
|      */
 | |
|     i = 0;
 | |
| 
 | |
|     /*
 | |
|      * rxe->hdr.data is now pointing at the (encrypted) packet payload. rxe->hdr
 | |
|      * also has fields pointing into the PACKET buffer which will be going away
 | |
|      * soon (the URXE will be reused for another incoming packet).
 | |
|      *
 | |
|      * Firstly, relocate some of these fields into the RXE as needed.
 | |
|      *
 | |
|      * Relocate token buffer and fix pointer.
 | |
|      */
 | |
|     if (rxe->hdr.type == QUIC_PKT_TYPE_INITIAL
 | |
|         && !qrx_relocate_buffer(qrx, &rxe, &i, &rxe->hdr.token,
 | |
|                                 rxe->hdr.token_len))
 | |
|         goto malformed;
 | |
| 
 | |
|     /* Now remove header protection. */
 | |
|     *pkt = orig_pkt;
 | |
| 
 | |
|     el = ossl_qrl_enc_level_set_get(&qrx->el_set, enc_level, 1);
 | |
|     assert(el != NULL); /* Already checked above */
 | |
| 
 | |
|     if (need_second_decode) {
 | |
|         if (!ossl_quic_hdr_protector_decrypt(&el->hpr, &ptrs))
 | |
|             goto malformed;
 | |
| 
 | |
|         /*
 | |
|          * We have removed header protection, so don't attempt to do it again if
 | |
|          * the packet gets deferred and processed again.
 | |
|          */
 | |
|         pkt_mark(&urxe->hpr_removed, pkt_idx);
 | |
| 
 | |
|         /* Decode the now unprotected header. */
 | |
|         if (ossl_quic_wire_decode_pkt_hdr(pkt, qrx->short_conn_id_len,
 | |
|                                           0, &rxe->hdr, NULL) != 1)
 | |
|             goto malformed;
 | |
|     }
 | |
| 
 | |
|     /* Validate header and decode PN. */
 | |
|     if (!qrx_validate_hdr(qrx, rxe))
 | |
|         goto malformed;
 | |
| 
 | |
|     /*
 | |
|      * The AAD data is the entire (unprotected) packet header including the PN.
 | |
|      * The packet header has been unprotected in place, so we can just reuse the
 | |
|      * PACKET buffer. The header ends where the payload begins.
 | |
|      */
 | |
|     aad_len = rxe->hdr.data - sop;
 | |
| 
 | |
|     /* Ensure the RXE buffer size is adequate for our payload. */
 | |
|     if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len + i)) == NULL) {
 | |
|         /*
 | |
|          * Allocation failure, treat as malformed and do not bother processing
 | |
|          * any further packets in the datagram as they are likely to also
 | |
|          * encounter allocation failures.
 | |
|          */
 | |
|         eop = NULL;
 | |
|         goto malformed;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We decrypt the packet body to immediately after the token at the start of
 | |
|      * the RXE buffer (where present).
 | |
|      *
 | |
|      * Do the decryption from the PACKET (which points into URXE memory) to our
 | |
|      * RXE payload (single-copy decryption), then fixup the pointers in the
 | |
|      * header to point to our new buffer.
 | |
|      *
 | |
|      * If decryption fails this is considered a permanent error; we defer
 | |
|      * packets we don't yet have decryption keys for above, so if this fails,
 | |
|      * something has gone wrong with the handshake process or a packet has been
 | |
|      * corrupted.
 | |
|      */
 | |
|     dst = (unsigned char *)rxe_data(rxe) + i;
 | |
|     if (!qrx_decrypt_pkt_body(qrx, dst, rxe->hdr.data, rxe->hdr.len,
 | |
|                               &dec_len, sop, aad_len, rxe->pn, enc_level,
 | |
|                               rxe->hdr.key_phase))
 | |
|         goto malformed;
 | |
| 
 | |
|     /*
 | |
|      * At this point, we have successfully authenticated the AEAD tag and no
 | |
|      * longer need to worry about exposing the Key Phase bit in timing channels.
 | |
|      * Check for a Key Phase bit differing from our expectation.
 | |
|      */
 | |
|     if (rxe->hdr.type == QUIC_PKT_TYPE_1RTT
 | |
|         && rxe->hdr.key_phase != (el->key_epoch & 1))
 | |
|         qrx_key_update_initiated(qrx);
 | |
| 
 | |
|     /*
 | |
|      * We have now successfully decrypted the packet payload. If there are
 | |
|      * additional packets in the datagram, it is possible we will fail to
 | |
|      * decrypt them and need to defer them until we have some key material we
 | |
|      * don't currently possess. If this happens, the URXE will be moved to the
 | |
|      * deferred queue. Since a URXE corresponds to one datagram, which may
 | |
|      * contain multiple packets, we must ensure any packets we have already
 | |
|      * processed in the URXE are not processed again (this is an RFC
 | |
|      * requirement). We do this by marking the nth packet in the datagram as
 | |
|      * processed.
 | |
|      *
 | |
|      * We are now committed to returning this decrypted packet to the user,
 | |
|      * meaning we now consider the packet processed and must mark it
 | |
|      * accordingly.
 | |
|      */
 | |
|     pkt_mark(&urxe->processed, pkt_idx);
 | |
| 
 | |
|     /*
 | |
|      * Update header to point to the decrypted buffer, which may be shorter
 | |
|      * due to AEAD tags, block padding, etc.
 | |
|      */
 | |
|     rxe->hdr.data       = dst;
 | |
|     rxe->hdr.len        = dec_len;
 | |
|     rxe->data_len       = dec_len;
 | |
|     rxe->datagram_len   = datagram_len;
 | |
| 
 | |
|     /* We processed the PN successfully, so update largest processed PN. */
 | |
|     pn_space = rxe_determine_pn_space(rxe);
 | |
|     if (rxe->pn > qrx->largest_pn[pn_space])
 | |
|         qrx->largest_pn[pn_space] = rxe->pn;
 | |
| 
 | |
|     /* Copy across network addresses and RX time from URXE to RXE. */
 | |
|     rxe->peer   = urxe->peer;
 | |
|     rxe->local  = urxe->local;
 | |
|     rxe->time   = urxe->time;
 | |
| 
 | |
|     /* Move RXE to pending. */
 | |
|     ossl_list_rxe_remove(&qrx->rx_free, rxe);
 | |
|     ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
 | |
|     return 0; /* success, did not defer; not distinguished from failure */
 | |
| 
 | |
| cannot_decrypt:
 | |
|     /*
 | |
|      * We cannot process this packet right now (but might be able to later). We
 | |
|      * MUST attempt to process any other packets in the datagram, so defer it
 | |
|      * and skip over it.
 | |
|      */
 | |
|     assert(eop != NULL && eop >= PACKET_data(pkt));
 | |
|     /*
 | |
|      * We don't care if this fails as it will just result in the packet being at
 | |
|      * the end of the datagram buffer.
 | |
|      */
 | |
|     ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
 | |
|     return 1; /* deferred */
 | |
| 
 | |
| malformed:
 | |
|     if (eop != NULL) {
 | |
|         /*
 | |
|          * This packet cannot be processed and will never be processable. We
 | |
|          * were at least able to decode its header and determine its length, so
 | |
|          * we can skip over it and try to process any subsequent packets in the
 | |
|          * datagram.
 | |
|          *
 | |
|          * Mark as processed as an optimization.
 | |
|          */
 | |
|         assert(eop >= PACKET_data(pkt));
 | |
|         pkt_mark(&urxe->processed, pkt_idx);
 | |
|         /* We don't care if this fails (see above) */
 | |
|         ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
 | |
|     } else {
 | |
|         /*
 | |
|          * This packet cannot be processed and will never be processable.
 | |
|          * Because even its header is not intelligible, we cannot examine any
 | |
|          * further packets in the datagram because its length cannot be
 | |
|          * discerned.
 | |
|          *
 | |
|          * Advance over the entire remainder of the datagram, and mark it as
 | |
|          * processed gap as an optimization.
 | |
|          */
 | |
|         pkt_mark(&urxe->processed, pkt_idx);
 | |
|         /* We don't care if this fails (see above) */
 | |
|         ignore_res(PACKET_forward(pkt, PACKET_remaining(pkt)));
 | |
|     }
 | |
|     return 0; /* failure, did not defer; not distinguished from success */
 | |
| }
 | |
| 
 | |
| /* Process a datagram which was received. */
 | |
| static int qrx_process_datagram(OSSL_QRX *qrx, QUIC_URXE *e,
 | |
|                                 const unsigned char *data,
 | |
|                                 size_t data_len)
 | |
| {
 | |
|     int have_deferred = 0;
 | |
|     PACKET pkt;
 | |
|     size_t pkt_idx = 0;
 | |
|     QUIC_CONN_ID first_dcid = { 255 };
 | |
| 
 | |
|     qrx->bytes_received += data_len;
 | |
| 
 | |
|     if (!PACKET_buf_init(&pkt, data, data_len))
 | |
|         return 0;
 | |
| 
 | |
|     for (; PACKET_remaining(&pkt) > 0; ++pkt_idx) {
 | |
|         /*
 | |
|          * A packet smallest than the minimum possible QUIC packet size is not
 | |
|          * considered valid. We also ignore more than a certain number of
 | |
|          * packets within the same datagram.
 | |
|          */
 | |
|         if (PACKET_remaining(&pkt) < QUIC_MIN_VALID_PKT_LEN
 | |
|             || pkt_idx >= QUIC_MAX_PKT_PER_URXE)
 | |
|             break;
 | |
| 
 | |
|         /*
 | |
|          * We note whether packet processing resulted in a deferral since
 | |
|          * this means we need to move the URXE to the deferred list rather
 | |
|          * than the free list after we're finished dealing with it for now.
 | |
|          *
 | |
|          * However, we don't otherwise care here whether processing succeeded or
 | |
|          * failed, as the RFC says even if a packet in a datagram is malformed,
 | |
|          * we should still try to process any packets following it.
 | |
|          *
 | |
|          * In the case where the packet is so malformed we can't determine its
 | |
|          * length, qrx_process_pkt will take care of advancing to the end of
 | |
|          * the packet, so we will exit the loop automatically in this case.
 | |
|          */
 | |
|         if (qrx_process_pkt(qrx, e, &pkt, pkt_idx, &first_dcid, data_len))
 | |
|             have_deferred = 1;
 | |
|     }
 | |
| 
 | |
|     /* Only report whether there were any deferrals. */
 | |
|     return have_deferred;
 | |
| }
 | |
| 
 | |
| /* Process a single pending URXE. */
 | |
| static int qrx_process_one_urxe(OSSL_QRX *qrx, QUIC_URXE *e)
 | |
| {
 | |
|     int was_deferred;
 | |
| 
 | |
|     /* The next URXE we process should be at the head of the pending list. */
 | |
|     if (!ossl_assert(e == ossl_list_urxe_head(&qrx->urx_pending)))
 | |
|         return 0;
 | |
| 
 | |
|     /*
 | |
|      * Attempt to process the datagram. The return value indicates only if
 | |
|      * processing of the datagram was deferred. If we failed to process the
 | |
|      * datagram, we do not attempt to process it again and silently eat the
 | |
|      * error.
 | |
|      */
 | |
|     was_deferred = qrx_process_datagram(qrx, e, ossl_quic_urxe_data(e),
 | |
|                                         e->data_len);
 | |
| 
 | |
|     /*
 | |
|      * Remove the URXE from the pending list and return it to
 | |
|      * either the free or deferred list.
 | |
|      */
 | |
|     ossl_list_urxe_remove(&qrx->urx_pending, e);
 | |
|     if (was_deferred > 0 &&
 | |
|             (e->deferred || qrx->num_deferred < qrx->max_deferred)) {
 | |
|         ossl_list_urxe_insert_tail(&qrx->urx_deferred, e);
 | |
|         if (!e->deferred) {
 | |
|             e->deferred = 1;
 | |
|             ++qrx->num_deferred;
 | |
|         }
 | |
|     } else {
 | |
|         if (e->deferred) {
 | |
|             e->deferred = 0;
 | |
|             --qrx->num_deferred;
 | |
|         }
 | |
|         ossl_quic_demux_release_urxe(qrx->demux, e);
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Process any pending URXEs to generate pending RXEs. */
 | |
| static int qrx_process_pending_urxl(OSSL_QRX *qrx)
 | |
| {
 | |
|     QUIC_URXE *e;
 | |
| 
 | |
|     while ((e = ossl_list_urxe_head(&qrx->urx_pending)) != NULL)
 | |
|         if (!qrx_process_one_urxe(qrx, e))
 | |
|             return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int ossl_qrx_read_pkt(OSSL_QRX *qrx, OSSL_QRX_PKT **ppkt)
 | |
| {
 | |
|     RXE *rxe;
 | |
| 
 | |
|     if (!ossl_qrx_processed_read_pending(qrx)) {
 | |
|         if (!qrx_process_pending_urxl(qrx))
 | |
|             return 0;
 | |
| 
 | |
|         if (!ossl_qrx_processed_read_pending(qrx))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     rxe = qrx_pop_pending_rxe(qrx);
 | |
|     if (!ossl_assert(rxe != NULL))
 | |
|         return 0;
 | |
| 
 | |
|     assert(rxe->refcount == 0);
 | |
|     rxe->refcount = 1;
 | |
| 
 | |
|     rxe->pkt.hdr            = &rxe->hdr;
 | |
|     rxe->pkt.pn             = rxe->pn;
 | |
|     rxe->pkt.time           = rxe->time;
 | |
|     rxe->pkt.datagram_len   = rxe->datagram_len;
 | |
|     rxe->pkt.peer
 | |
|         = BIO_ADDR_family(&rxe->peer) != AF_UNSPEC ? &rxe->peer : NULL;
 | |
|     rxe->pkt.local
 | |
|         = BIO_ADDR_family(&rxe->local) != AF_UNSPEC ? &rxe->local : NULL;
 | |
|     rxe->pkt.qrx            = qrx;
 | |
|     *ppkt = &rxe->pkt;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void ossl_qrx_pkt_release(OSSL_QRX_PKT *pkt)
 | |
| {
 | |
|     RXE *rxe;
 | |
| 
 | |
|     if (pkt == NULL)
 | |
|         return;
 | |
| 
 | |
|     rxe = (RXE *)pkt;
 | |
|     assert(rxe->refcount > 0);
 | |
|     if (--rxe->refcount == 0)
 | |
|         qrx_recycle_rxe(pkt->qrx, rxe);
 | |
| }
 | |
| 
 | |
| void ossl_qrx_pkt_up_ref(OSSL_QRX_PKT *pkt)
 | |
| {
 | |
|     RXE *rxe = (RXE *)pkt;
 | |
| 
 | |
|     assert(rxe->refcount > 0);
 | |
|     ++rxe->refcount;
 | |
| }
 | |
| 
 | |
| uint64_t ossl_qrx_get_bytes_received(OSSL_QRX *qrx, int clear)
 | |
| {
 | |
|     uint64_t v = qrx->bytes_received;
 | |
| 
 | |
|     if (clear)
 | |
|         qrx->bytes_received = 0;
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| int ossl_qrx_set_early_validation_cb(OSSL_QRX *qrx,
 | |
|                                      ossl_qrx_early_validation_cb *cb,
 | |
|                                      void *cb_arg)
 | |
| {
 | |
|     qrx->validation_cb       = cb;
 | |
|     qrx->validation_cb_arg   = cb_arg;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int ossl_qrx_set_key_update_cb(OSSL_QRX *qrx,
 | |
|                                ossl_qrx_key_update_cb *cb,
 | |
|                                void *cb_arg)
 | |
| {
 | |
|     qrx->key_update_cb      = cb;
 | |
|     qrx->key_update_cb_arg  = cb_arg;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| uint64_t ossl_qrx_get_key_epoch(OSSL_QRX *qrx)
 | |
| {
 | |
|     OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
 | |
|                                                         QUIC_ENC_LEVEL_1RTT, 1);
 | |
| 
 | |
|     return el == NULL ? UINT64_MAX : el->key_epoch;
 | |
| }
 | |
| 
 | |
| int ossl_qrx_key_update_timeout(OSSL_QRX *qrx, int normal)
 | |
| {
 | |
|     OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
 | |
|                                                         QUIC_ENC_LEVEL_1RTT, 1);
 | |
| 
 | |
|     if (el == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (el->state == QRL_EL_STATE_PROV_UPDATING
 | |
|         && !ossl_qrl_enc_level_set_key_update_done(&qrx->el_set,
 | |
|                                                    QUIC_ENC_LEVEL_1RTT))
 | |
|         return 0;
 | |
| 
 | |
|     if (normal && el->state == QRL_EL_STATE_PROV_COOLDOWN
 | |
|         && !ossl_qrl_enc_level_set_key_cooldown_done(&qrx->el_set,
 | |
|                                                      QUIC_ENC_LEVEL_1RTT))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| uint64_t ossl_qrx_get_cur_forged_pkt_count(OSSL_QRX *qrx)
 | |
| {
 | |
|     return qrx->forged_pkt_count;
 | |
| }
 | |
| 
 | |
| uint64_t ossl_qrx_get_max_forged_pkt_count(OSSL_QRX *qrx,
 | |
|                                            uint32_t enc_level)
 | |
| {
 | |
|     OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
 | |
|                                                         enc_level, 1);
 | |
| 
 | |
|     return el == NULL ? UINT64_MAX
 | |
|         : ossl_qrl_get_suite_max_forged_pkt(el->suite_id);
 | |
| }
 |