mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			858 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			858 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
/*
 | 
						|
 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
 | 
						|
 *
 | 
						|
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 | 
						|
 * this file except in compliance with the License.  You can obtain a copy
 | 
						|
 * in the file LICENSE in the source distribution or at
 | 
						|
 * https://www.openssl.org/source/license.html
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef _GNU_SOURCE
 | 
						|
# define _GNU_SOURCE
 | 
						|
#endif
 | 
						|
#include "e_os.h"
 | 
						|
#include <stdio.h>
 | 
						|
#include "internal/cryptlib.h"
 | 
						|
#include <openssl/rand.h>
 | 
						|
#include <openssl/crypto.h>
 | 
						|
#include "rand_local.h"
 | 
						|
#include "crypto/rand.h"
 | 
						|
#include <stdio.h>
 | 
						|
#include "internal/dso.h"
 | 
						|
 | 
						|
#ifdef __linux
 | 
						|
# include <sys/syscall.h>
 | 
						|
# ifdef DEVRANDOM_WAIT
 | 
						|
#  include <sys/shm.h>
 | 
						|
#  include <sys/utsname.h>
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
#if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
 | 
						|
# include <sys/types.h>
 | 
						|
# include <sys/sysctl.h>
 | 
						|
# include <sys/param.h>
 | 
						|
#endif
 | 
						|
#if defined(__OpenBSD__)
 | 
						|
# include <sys/param.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
 | 
						|
     || defined(__DJGPP__)
 | 
						|
# include <sys/types.h>
 | 
						|
# include <sys/stat.h>
 | 
						|
# include <fcntl.h>
 | 
						|
# include <unistd.h>
 | 
						|
# include <sys/time.h>
 | 
						|
 | 
						|
static uint64_t get_time_stamp(void);
 | 
						|
static uint64_t get_timer_bits(void);
 | 
						|
 | 
						|
/* Macro to convert two thirty two bit values into a sixty four bit one */
 | 
						|
# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
 | 
						|
 | 
						|
/*
 | 
						|
 * Check for the existence and support of POSIX timers.  The standard
 | 
						|
 * says that the _POSIX_TIMERS macro will have a positive value if they
 | 
						|
 * are available.
 | 
						|
 *
 | 
						|
 * However, we want an additional constraint: that the timer support does
 | 
						|
 * not require an extra library dependency.  Early versions of glibc
 | 
						|
 * require -lrt to be specified on the link line to access the timers,
 | 
						|
 * so this needs to be checked for.
 | 
						|
 *
 | 
						|
 * It is worse because some libraries define __GLIBC__ but don't
 | 
						|
 * support the version testing macro (e.g. uClibc).  This means
 | 
						|
 * an extra check is needed.
 | 
						|
 *
 | 
						|
 * The final condition is:
 | 
						|
 *      "have posix timers and either not glibc or glibc without -lrt"
 | 
						|
 *
 | 
						|
 * The nested #if sequences are required to avoid using a parameterised
 | 
						|
 * macro that might be undefined.
 | 
						|
 */
 | 
						|
# undef OSSL_POSIX_TIMER_OKAY
 | 
						|
# if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
 | 
						|
#  if defined(__GLIBC__)
 | 
						|
#   if defined(__GLIBC_PREREQ)
 | 
						|
#    if __GLIBC_PREREQ(2, 17)
 | 
						|
#     define OSSL_POSIX_TIMER_OKAY
 | 
						|
#    endif
 | 
						|
#   endif
 | 
						|
#  else
 | 
						|
#   define OSSL_POSIX_TIMER_OKAY
 | 
						|
#  endif
 | 
						|
# endif
 | 
						|
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
 | 
						|
          || defined(__DJGPP__) */
 | 
						|
 | 
						|
#if defined(OPENSSL_RAND_SEED_NONE)
 | 
						|
/* none means none. this simplifies the following logic */
 | 
						|
# undef OPENSSL_RAND_SEED_OS
 | 
						|
# undef OPENSSL_RAND_SEED_GETRANDOM
 | 
						|
# undef OPENSSL_RAND_SEED_LIBRANDOM
 | 
						|
# undef OPENSSL_RAND_SEED_DEVRANDOM
 | 
						|
# undef OPENSSL_RAND_SEED_RDTSC
 | 
						|
# undef OPENSSL_RAND_SEED_RDCPU
 | 
						|
# undef OPENSSL_RAND_SEED_EGD
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
 | 
						|
# error "UEFI only supports seeding NONE"
 | 
						|
#endif
 | 
						|
 | 
						|
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
 | 
						|
    || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
 | 
						|
    || defined(OPENSSL_SYS_UEFI))
 | 
						|
 | 
						|
# if defined(OPENSSL_SYS_VOS)
 | 
						|
 | 
						|
#  ifndef OPENSSL_RAND_SEED_OS
 | 
						|
#   error "Unsupported seeding method configured; must be os"
 | 
						|
#  endif
 | 
						|
 | 
						|
#  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
 | 
						|
#   error "Unsupported HP-PA and IA32 at the same time."
 | 
						|
#  endif
 | 
						|
#  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
 | 
						|
#   error "Must have one of HP-PA or IA32"
 | 
						|
#  endif
 | 
						|
 | 
						|
/*
 | 
						|
 * The following algorithm repeatedly samples the real-time clock (RTC) to
 | 
						|
 * generate a sequence of unpredictable data.  The algorithm relies upon the
 | 
						|
 * uneven execution speed of the code (due to factors such as cache misses,
 | 
						|
 * interrupts, bus activity, and scheduling) and upon the rather large
 | 
						|
 * relative difference between the speed of the clock and the rate at which
 | 
						|
 * it can be read.  If it is ported to an environment where execution speed
 | 
						|
 * is more constant or where the RTC ticks at a much slower rate, or the
 | 
						|
 * clock can be read with fewer instructions, it is likely that the results
 | 
						|
 * would be far more predictable.  This should only be used for legacy
 | 
						|
 * platforms.
 | 
						|
 *
 | 
						|
 * As a precaution, we assume only 2 bits of entropy per byte.
 | 
						|
 */
 | 
						|
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
 | 
						|
{
 | 
						|
    short int code;
 | 
						|
    int i, k;
 | 
						|
    size_t bytes_needed;
 | 
						|
    struct timespec ts;
 | 
						|
    unsigned char v;
 | 
						|
#  ifdef OPENSSL_SYS_VOS_HPPA
 | 
						|
    long duration;
 | 
						|
    extern void s$sleep(long *_duration, short int *_code);
 | 
						|
#  else
 | 
						|
    long long duration;
 | 
						|
    extern void s$sleep2(long long *_duration, short int *_code);
 | 
						|
#  endif
 | 
						|
 | 
						|
    bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
 | 
						|
 | 
						|
    for (i = 0; i < bytes_needed; i++) {
 | 
						|
        /*
 | 
						|
         * burn some cpu; hope for interrupts, cache collisions, bus
 | 
						|
         * interference, etc.
 | 
						|
         */
 | 
						|
        for (k = 0; k < 99; k++)
 | 
						|
            ts.tv_nsec = random();
 | 
						|
 | 
						|
#  ifdef OPENSSL_SYS_VOS_HPPA
 | 
						|
        /* sleep for 1/1024 of a second (976 us).  */
 | 
						|
        duration = 1;
 | 
						|
        s$sleep(&duration, &code);
 | 
						|
#  else
 | 
						|
        /* sleep for 1/65536 of a second (15 us).  */
 | 
						|
        duration = 1;
 | 
						|
        s$sleep2(&duration, &code);
 | 
						|
#  endif
 | 
						|
 | 
						|
        /* Get wall clock time, take 8 bits. */
 | 
						|
        clock_gettime(CLOCK_REALTIME, &ts);
 | 
						|
        v = (unsigned char)(ts.tv_nsec & 0xFF);
 | 
						|
        rand_pool_add(pool, arg, &v, sizeof(v) , 2);
 | 
						|
    }
 | 
						|
    return rand_pool_entropy_available(pool);
 | 
						|
}
 | 
						|
 | 
						|
void rand_pool_cleanup(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void rand_pool_keep_random_devices_open(int keep)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
# else
 | 
						|
 | 
						|
#  if defined(OPENSSL_RAND_SEED_EGD) && \
 | 
						|
        (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
 | 
						|
#   error "Seeding uses EGD but EGD is turned off or no device given"
 | 
						|
#  endif
 | 
						|
 | 
						|
#  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
 | 
						|
#   error "Seeding uses urandom but DEVRANDOM is not configured"
 | 
						|
#  endif
 | 
						|
 | 
						|
#  if defined(OPENSSL_RAND_SEED_OS)
 | 
						|
#   if !defined(DEVRANDOM)
 | 
						|
#    error "OS seeding requires DEVRANDOM to be configured"
 | 
						|
#   endif
 | 
						|
#   define OPENSSL_RAND_SEED_GETRANDOM
 | 
						|
#   define OPENSSL_RAND_SEED_DEVRANDOM
 | 
						|
#  endif
 | 
						|
 | 
						|
#  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
 | 
						|
#   error "librandom not (yet) supported"
 | 
						|
#  endif
 | 
						|
 | 
						|
#  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
 | 
						|
/*
 | 
						|
 * sysctl_random(): Use sysctl() to read a random number from the kernel
 | 
						|
 * Returns the number of bytes returned in buf on success, -1 on failure.
 | 
						|
 */
 | 
						|
static ssize_t sysctl_random(char *buf, size_t buflen)
 | 
						|
{
 | 
						|
    int mib[2];
 | 
						|
    size_t done = 0;
 | 
						|
    size_t len;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Note: sign conversion between size_t and ssize_t is safe even
 | 
						|
     * without a range check, see comment in syscall_random()
 | 
						|
     */
 | 
						|
 | 
						|
    /*
 | 
						|
     * On FreeBSD old implementations returned longs, newer versions support
 | 
						|
     * variable sizes up to 256 byte. The code below would not work properly
 | 
						|
     * when the sysctl returns long and we want to request something not a
 | 
						|
     * multiple of longs, which should never be the case.
 | 
						|
     */
 | 
						|
    if (!ossl_assert(buflen % sizeof(long) == 0)) {
 | 
						|
        errno = EINVAL;
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
 | 
						|
     * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
 | 
						|
     * it returns a variable number of bytes with the current version supporting
 | 
						|
     * up to 256 bytes.
 | 
						|
     * Just return an error on older NetBSD versions.
 | 
						|
     */
 | 
						|
#if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
 | 
						|
    errno = ENOSYS;
 | 
						|
    return -1;
 | 
						|
#endif
 | 
						|
 | 
						|
    mib[0] = CTL_KERN;
 | 
						|
    mib[1] = KERN_ARND;
 | 
						|
 | 
						|
    do {
 | 
						|
        len = buflen;
 | 
						|
        if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
 | 
						|
            return done > 0 ? done : -1;
 | 
						|
        done += len;
 | 
						|
        buf += len;
 | 
						|
        buflen -= len;
 | 
						|
    } while (buflen > 0);
 | 
						|
 | 
						|
    return done;
 | 
						|
}
 | 
						|
#  endif
 | 
						|
 | 
						|
#  if defined(OPENSSL_RAND_SEED_GETRANDOM)
 | 
						|
 | 
						|
#   if defined(__linux) && !defined(__NR_getrandom)
 | 
						|
#    if defined(__arm__)
 | 
						|
#     define __NR_getrandom    (__NR_SYSCALL_BASE+384)
 | 
						|
#    elif defined(__i386__)
 | 
						|
#     define __NR_getrandom    355
 | 
						|
#    elif defined(__x86_64__)
 | 
						|
#     if defined(__ILP32__)
 | 
						|
#      define __NR_getrandom   (__X32_SYSCALL_BIT + 318)
 | 
						|
#     else
 | 
						|
#      define __NR_getrandom   318
 | 
						|
#     endif
 | 
						|
#    elif defined(__xtensa__)
 | 
						|
#     define __NR_getrandom    338
 | 
						|
#    elif defined(__s390__) || defined(__s390x__)
 | 
						|
#     define __NR_getrandom    349
 | 
						|
#    elif defined(__bfin__)
 | 
						|
#     define __NR_getrandom    389
 | 
						|
#    elif defined(__powerpc__)
 | 
						|
#     define __NR_getrandom    359
 | 
						|
#    elif defined(__mips__) || defined(__mips64)
 | 
						|
#     if _MIPS_SIM == _MIPS_SIM_ABI32
 | 
						|
#      define __NR_getrandom   (__NR_Linux + 353)
 | 
						|
#     elif _MIPS_SIM == _MIPS_SIM_ABI64
 | 
						|
#      define __NR_getrandom   (__NR_Linux + 313)
 | 
						|
#     elif _MIPS_SIM == _MIPS_SIM_NABI32
 | 
						|
#      define __NR_getrandom   (__NR_Linux + 317)
 | 
						|
#     endif
 | 
						|
#    elif defined(__hppa__)
 | 
						|
#     define __NR_getrandom    (__NR_Linux + 339)
 | 
						|
#    elif defined(__sparc__)
 | 
						|
#     define __NR_getrandom    347
 | 
						|
#    elif defined(__ia64__)
 | 
						|
#     define __NR_getrandom    1339
 | 
						|
#    elif defined(__alpha__)
 | 
						|
#     define __NR_getrandom    511
 | 
						|
#    elif defined(__sh__)
 | 
						|
#     if defined(__SH5__)
 | 
						|
#      define __NR_getrandom   373
 | 
						|
#     else
 | 
						|
#      define __NR_getrandom   384
 | 
						|
#     endif
 | 
						|
#    elif defined(__avr32__)
 | 
						|
#     define __NR_getrandom    317
 | 
						|
#    elif defined(__microblaze__)
 | 
						|
#     define __NR_getrandom    385
 | 
						|
#    elif defined(__m68k__)
 | 
						|
#     define __NR_getrandom    352
 | 
						|
#    elif defined(__cris__)
 | 
						|
#     define __NR_getrandom    356
 | 
						|
#    elif defined(__aarch64__)
 | 
						|
#     define __NR_getrandom    278
 | 
						|
#    else /* generic */
 | 
						|
#     define __NR_getrandom    278
 | 
						|
#    endif
 | 
						|
#   endif
 | 
						|
 | 
						|
/*
 | 
						|
 * syscall_random(): Try to get random data using a system call
 | 
						|
 * returns the number of bytes returned in buf, or < 0 on error.
 | 
						|
 */
 | 
						|
static ssize_t syscall_random(void *buf, size_t buflen)
 | 
						|
{
 | 
						|
    /*
 | 
						|
     * Note: 'buflen' equals the size of the buffer which is used by the
 | 
						|
     * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
 | 
						|
     *
 | 
						|
     *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
 | 
						|
     *
 | 
						|
     * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
 | 
						|
     * between size_t and ssize_t is safe even without a range check.
 | 
						|
     */
 | 
						|
 | 
						|
    /*
 | 
						|
     * Do runtime detection to find getentropy().
 | 
						|
     *
 | 
						|
     * Known OSs that should support this:
 | 
						|
     * - Darwin since 16 (OSX 10.12, IOS 10.0).
 | 
						|
     * - Solaris since 11.3
 | 
						|
     * - OpenBSD since 5.6
 | 
						|
     * - Linux since 3.17 with glibc 2.25
 | 
						|
     * - FreeBSD since 12.0 (1200061)
 | 
						|
     */
 | 
						|
#  if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
 | 
						|
    extern int getentropy(void *buffer, size_t length) __attribute__((weak));
 | 
						|
 | 
						|
    if (getentropy != NULL)
 | 
						|
        return getentropy(buf, buflen) == 0 ? (ssize_t)buflen : -1;
 | 
						|
#  elif !defined(FIPS_MODULE)
 | 
						|
    union {
 | 
						|
        void *p;
 | 
						|
        int (*f)(void *buffer, size_t length);
 | 
						|
    } p_getentropy;
 | 
						|
 | 
						|
    /*
 | 
						|
     * We could cache the result of the lookup, but we normally don't
 | 
						|
     * call this function often.
 | 
						|
     */
 | 
						|
    ERR_set_mark();
 | 
						|
    p_getentropy.p = DSO_global_lookup("getentropy");
 | 
						|
    ERR_pop_to_mark();
 | 
						|
    if (p_getentropy.p != NULL)
 | 
						|
        return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
 | 
						|
#  endif
 | 
						|
 | 
						|
    /* Linux supports this since version 3.17 */
 | 
						|
#  if defined(__linux) && defined(__NR_getrandom)
 | 
						|
    return syscall(__NR_getrandom, buf, buflen, 0);
 | 
						|
#  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
 | 
						|
    return sysctl_random(buf, buflen);
 | 
						|
#  else
 | 
						|
    errno = ENOSYS;
 | 
						|
    return -1;
 | 
						|
#  endif
 | 
						|
}
 | 
						|
#  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
 | 
						|
 | 
						|
#  if defined(OPENSSL_RAND_SEED_DEVRANDOM)
 | 
						|
static const char *random_device_paths[] = { DEVRANDOM };
 | 
						|
static struct random_device {
 | 
						|
    int fd;
 | 
						|
    dev_t dev;
 | 
						|
    ino_t ino;
 | 
						|
    mode_t mode;
 | 
						|
    dev_t rdev;
 | 
						|
} random_devices[OSSL_NELEM(random_device_paths)];
 | 
						|
static int keep_random_devices_open = 1;
 | 
						|
 | 
						|
#   if defined(__linux) && defined(DEVRANDOM_WAIT)
 | 
						|
static void *shm_addr;
 | 
						|
 | 
						|
#    if !defined(FIPS_MODULE)
 | 
						|
static void cleanup_shm(void)
 | 
						|
{
 | 
						|
    shmdt(shm_addr);
 | 
						|
}
 | 
						|
#    endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Ensure that the system randomness source has been adequately seeded.
 | 
						|
 * This is done by having the first start of libcrypto, wait until the device
 | 
						|
 * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
 | 
						|
 * of the library and later reseedings do not need to do this.
 | 
						|
 */
 | 
						|
static int wait_random_seeded(void)
 | 
						|
{
 | 
						|
    static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
 | 
						|
    static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
 | 
						|
    int kernel[2];
 | 
						|
    int shm_id, fd, r;
 | 
						|
    char c, *p;
 | 
						|
    struct utsname un;
 | 
						|
    fd_set fds;
 | 
						|
 | 
						|
    if (!seeded) {
 | 
						|
        /* See if anything has created the global seeded indication */
 | 
						|
        if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
 | 
						|
            /*
 | 
						|
             * Check the kernel's version and fail if it is too recent.
 | 
						|
             *
 | 
						|
             * Linux kernels from 4.8 onwards do not guarantee that
 | 
						|
             * /dev/urandom is properly seeded when /dev/random becomes
 | 
						|
             * readable.  However, such kernels support the getentropy(2)
 | 
						|
             * system call and this should always succeed which renders
 | 
						|
             * this alternative but essentially identical source moot.
 | 
						|
             */
 | 
						|
            if (uname(&un) == 0) {
 | 
						|
                kernel[0] = atoi(un.release);
 | 
						|
                p = strchr(un.release, '.');
 | 
						|
                kernel[1] = p == NULL ? 0 : atoi(p + 1);
 | 
						|
                if (kernel[0] > kernel_version[0]
 | 
						|
                    || (kernel[0] == kernel_version[0]
 | 
						|
                        && kernel[1] >= kernel_version[1])) {
 | 
						|
                    return 0;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            /* Open /dev/random and wait for it to be readable */
 | 
						|
            if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
 | 
						|
                if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
 | 
						|
                    FD_ZERO(&fds);
 | 
						|
                    FD_SET(fd, &fds);
 | 
						|
                    while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
 | 
						|
                           && errno == EINTR);
 | 
						|
                } else {
 | 
						|
                    while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
 | 
						|
                }
 | 
						|
                close(fd);
 | 
						|
                if (r == 1) {
 | 
						|
                    seeded = 1;
 | 
						|
                    /* Create the shared memory indicator */
 | 
						|
                    shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
 | 
						|
                                    IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (shm_id != -1) {
 | 
						|
            seeded = 1;
 | 
						|
            /*
 | 
						|
             * Map the shared memory to prevent its premature destruction.
 | 
						|
             * If this call fails, it isn't a big problem.
 | 
						|
             */
 | 
						|
            shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
 | 
						|
#    ifndef FIPS_MODULE
 | 
						|
            /* TODO 3.0: The FIPS provider doesn't have OPENSSL_atexit */
 | 
						|
            if (shm_addr != (void *)-1)
 | 
						|
                OPENSSL_atexit(&cleanup_shm);
 | 
						|
#    endif
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return seeded;
 | 
						|
}
 | 
						|
#   else /* defined __linux */
 | 
						|
static int wait_random_seeded(void)
 | 
						|
{
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
#   endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Verify that the file descriptor associated with the random source is
 | 
						|
 * still valid. The rationale for doing this is the fact that it is not
 | 
						|
 * uncommon for daemons to close all open file handles when daemonizing.
 | 
						|
 * So the handle might have been closed or even reused for opening
 | 
						|
 * another file.
 | 
						|
 */
 | 
						|
static int check_random_device(struct random_device * rd)
 | 
						|
{
 | 
						|
    struct stat st;
 | 
						|
 | 
						|
    return rd->fd != -1
 | 
						|
           && fstat(rd->fd, &st) != -1
 | 
						|
           && rd->dev == st.st_dev
 | 
						|
           && rd->ino == st.st_ino
 | 
						|
           && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
 | 
						|
           && rd->rdev == st.st_rdev;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Open a random device if required and return its file descriptor or -1 on error
 | 
						|
 */
 | 
						|
static int get_random_device(size_t n)
 | 
						|
{
 | 
						|
    struct stat st;
 | 
						|
    struct random_device * rd = &random_devices[n];
 | 
						|
 | 
						|
    /* reuse existing file descriptor if it is (still) valid */
 | 
						|
    if (check_random_device(rd))
 | 
						|
        return rd->fd;
 | 
						|
 | 
						|
    /* open the random device ... */
 | 
						|
    if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
 | 
						|
        return rd->fd;
 | 
						|
 | 
						|
    /* ... and cache its relevant stat(2) data */
 | 
						|
    if (fstat(rd->fd, &st) != -1) {
 | 
						|
        rd->dev = st.st_dev;
 | 
						|
        rd->ino = st.st_ino;
 | 
						|
        rd->mode = st.st_mode;
 | 
						|
        rd->rdev = st.st_rdev;
 | 
						|
    } else {
 | 
						|
        close(rd->fd);
 | 
						|
        rd->fd = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    return rd->fd;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Close a random device making sure it is a random device
 | 
						|
 */
 | 
						|
static void close_random_device(size_t n)
 | 
						|
{
 | 
						|
    struct random_device * rd = &random_devices[n];
 | 
						|
 | 
						|
    if (check_random_device(rd))
 | 
						|
        close(rd->fd);
 | 
						|
    rd->fd = -1;
 | 
						|
}
 | 
						|
 | 
						|
int rand_pool_init(void)
 | 
						|
{
 | 
						|
    size_t i;
 | 
						|
 | 
						|
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
 | 
						|
        random_devices[i].fd = -1;
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
void rand_pool_cleanup(void)
 | 
						|
{
 | 
						|
    size_t i;
 | 
						|
 | 
						|
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
 | 
						|
        close_random_device(i);
 | 
						|
}
 | 
						|
 | 
						|
void rand_pool_keep_random_devices_open(int keep)
 | 
						|
{
 | 
						|
    if (!keep)
 | 
						|
        rand_pool_cleanup();
 | 
						|
 | 
						|
    keep_random_devices_open = keep;
 | 
						|
}
 | 
						|
 | 
						|
#  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
 | 
						|
 | 
						|
int rand_pool_init(void)
 | 
						|
{
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
void rand_pool_cleanup(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void rand_pool_keep_random_devices_open(int keep)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
#  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
 | 
						|
 | 
						|
/*
 | 
						|
 * Try the various seeding methods in turn, exit when successful.
 | 
						|
 *
 | 
						|
 * TODO(DRBG): If more than one entropy source is available, is it
 | 
						|
 * preferable to stop as soon as enough entropy has been collected
 | 
						|
 * (as favored by @rsalz) or should one rather be defensive and add
 | 
						|
 * more entropy than requested and/or from different sources?
 | 
						|
 *
 | 
						|
 * Currently, the user can select multiple entropy sources in the
 | 
						|
 * configure step, yet in practice only the first available source
 | 
						|
 * will be used. A more flexible solution has been requested, but
 | 
						|
 * currently it is not clear how this can be achieved without
 | 
						|
 * overengineering the problem. There are many parameters which
 | 
						|
 * could be taken into account when selecting the order and amount
 | 
						|
 * of input from the different entropy sources (trust, quality,
 | 
						|
 * possibility of blocking).
 | 
						|
 */
 | 
						|
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
 | 
						|
{
 | 
						|
#  if defined(OPENSSL_RAND_SEED_NONE)
 | 
						|
    return rand_pool_entropy_available(pool);
 | 
						|
#  else
 | 
						|
    size_t entropy_available;
 | 
						|
 | 
						|
#   if defined(OPENSSL_RAND_SEED_GETRANDOM)
 | 
						|
    {
 | 
						|
        size_t bytes_needed;
 | 
						|
        unsigned char *buffer;
 | 
						|
        ssize_t bytes;
 | 
						|
        /* Maximum allowed number of consecutive unsuccessful attempts */
 | 
						|
        int attempts = 3;
 | 
						|
 | 
						|
        bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
 | 
						|
        while (bytes_needed != 0 && attempts-- > 0) {
 | 
						|
            buffer = rand_pool_add_begin(pool, bytes_needed);
 | 
						|
            bytes = syscall_random(buffer, bytes_needed);
 | 
						|
            if (bytes > 0) {
 | 
						|
                rand_pool_add_end(pool, bytes, 8 * bytes);
 | 
						|
                bytes_needed -= bytes;
 | 
						|
                attempts = 3; /* reset counter after successful attempt */
 | 
						|
            } else if (bytes < 0 && errno != EINTR) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    entropy_available = rand_pool_entropy_available(pool);
 | 
						|
    if (entropy_available > 0)
 | 
						|
        return entropy_available;
 | 
						|
#   endif
 | 
						|
 | 
						|
#   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
 | 
						|
    {
 | 
						|
        /* Not yet implemented. */
 | 
						|
    }
 | 
						|
#   endif
 | 
						|
 | 
						|
#   if defined(OPENSSL_RAND_SEED_DEVRANDOM)
 | 
						|
    if (wait_random_seeded()) {
 | 
						|
        size_t bytes_needed;
 | 
						|
        unsigned char *buffer;
 | 
						|
        size_t i;
 | 
						|
 | 
						|
        bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
 | 
						|
        for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
 | 
						|
             i++) {
 | 
						|
            ssize_t bytes = 0;
 | 
						|
            /* Maximum number of consecutive unsuccessful attempts */
 | 
						|
            int attempts = 3;
 | 
						|
            const int fd = get_random_device(i);
 | 
						|
 | 
						|
            if (fd == -1)
 | 
						|
                continue;
 | 
						|
 | 
						|
            while (bytes_needed != 0 && attempts-- > 0) {
 | 
						|
                buffer = rand_pool_add_begin(pool, bytes_needed);
 | 
						|
                bytes = read(fd, buffer, bytes_needed);
 | 
						|
 | 
						|
                if (bytes > 0) {
 | 
						|
                    rand_pool_add_end(pool, bytes, 8 * bytes);
 | 
						|
                    bytes_needed -= bytes;
 | 
						|
                    attempts = 3; /* reset counter on successful attempt */
 | 
						|
                } else if (bytes < 0 && errno != EINTR) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (bytes < 0 || !keep_random_devices_open)
 | 
						|
                close_random_device(i);
 | 
						|
 | 
						|
            bytes_needed = rand_pool_bytes_needed(pool, 1);
 | 
						|
        }
 | 
						|
        entropy_available = rand_pool_entropy_available(pool);
 | 
						|
        if (entropy_available > 0)
 | 
						|
            return entropy_available;
 | 
						|
    }
 | 
						|
#   endif
 | 
						|
 | 
						|
#   if defined(OPENSSL_RAND_SEED_RDTSC)
 | 
						|
    entropy_available = rand_acquire_entropy_from_tsc(pool);
 | 
						|
    if (entropy_available > 0)
 | 
						|
        return entropy_available;
 | 
						|
#   endif
 | 
						|
 | 
						|
#   if defined(OPENSSL_RAND_SEED_RDCPU)
 | 
						|
    entropy_available = rand_acquire_entropy_from_cpu(pool);
 | 
						|
    if (entropy_available > 0)
 | 
						|
        return entropy_available;
 | 
						|
#   endif
 | 
						|
 | 
						|
#   if defined(OPENSSL_RAND_SEED_EGD)
 | 
						|
    {
 | 
						|
        static const char *paths[] = { DEVRANDOM_EGD, NULL };
 | 
						|
        size_t bytes_needed;
 | 
						|
        unsigned char *buffer;
 | 
						|
        int i;
 | 
						|
 | 
						|
        bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
 | 
						|
        for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
 | 
						|
            size_t bytes = 0;
 | 
						|
            int num;
 | 
						|
 | 
						|
            buffer = rand_pool_add_begin(pool, bytes_needed);
 | 
						|
            num = RAND_query_egd_bytes(paths[i],
 | 
						|
                                       buffer, (int)bytes_needed);
 | 
						|
            if (num == (int)bytes_needed)
 | 
						|
                bytes = bytes_needed;
 | 
						|
 | 
						|
            rand_pool_add_end(pool, bytes, 8 * bytes);
 | 
						|
            bytes_needed = rand_pool_bytes_needed(pool, 1);
 | 
						|
        }
 | 
						|
        entropy_available = rand_pool_entropy_available(pool);
 | 
						|
        if (entropy_available > 0)
 | 
						|
            return entropy_available;
 | 
						|
    }
 | 
						|
#   endif
 | 
						|
 | 
						|
    return rand_pool_entropy_available(pool);
 | 
						|
#  endif
 | 
						|
}
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
 | 
						|
     || defined(__DJGPP__)
 | 
						|
int rand_pool_add_nonce_data(RAND_POOL *pool)
 | 
						|
{
 | 
						|
    struct {
 | 
						|
        pid_t pid;
 | 
						|
        CRYPTO_THREAD_ID tid;
 | 
						|
        uint64_t time;
 | 
						|
    } data;
 | 
						|
 | 
						|
    /* Erase the entire structure including any padding */
 | 
						|
    memset(&data, 0, sizeof(data));
 | 
						|
 | 
						|
    /*
 | 
						|
     * Add process id, thread id, and a high resolution timestamp to
 | 
						|
     * ensure that the nonce is unique with high probability for
 | 
						|
     * different process instances.
 | 
						|
     */
 | 
						|
    data.pid = getpid();
 | 
						|
    data.tid = CRYPTO_THREAD_get_current_id();
 | 
						|
    data.time = get_time_stamp();
 | 
						|
 | 
						|
    return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
 | 
						|
}
 | 
						|
 | 
						|
int rand_pool_add_additional_data(RAND_POOL *pool)
 | 
						|
{
 | 
						|
    struct {
 | 
						|
        int fork_id;
 | 
						|
        CRYPTO_THREAD_ID tid;
 | 
						|
        uint64_t time;
 | 
						|
    } data;
 | 
						|
 | 
						|
    /* Erase the entire structure including any padding */
 | 
						|
    memset(&data, 0, sizeof(data));
 | 
						|
 | 
						|
    /*
 | 
						|
     * Add some noise from the thread id and a high resolution timer.
 | 
						|
     * The fork_id adds some extra fork-safety.
 | 
						|
     * The thread id adds a little randomness if the drbg is accessed
 | 
						|
     * concurrently (which is the case for the <master> drbg).
 | 
						|
     */
 | 
						|
    data.fork_id = openssl_get_fork_id();
 | 
						|
    data.tid = CRYPTO_THREAD_get_current_id();
 | 
						|
    data.time = get_timer_bits();
 | 
						|
 | 
						|
    return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the current time with the highest possible resolution
 | 
						|
 *
 | 
						|
 * The time stamp is added to the nonce, so it is optimized for not repeating.
 | 
						|
 * The current time is ideal for this purpose, provided the computer's clock
 | 
						|
 * is synchronized.
 | 
						|
 */
 | 
						|
static uint64_t get_time_stamp(void)
 | 
						|
{
 | 
						|
# if defined(OSSL_POSIX_TIMER_OKAY)
 | 
						|
    {
 | 
						|
        struct timespec ts;
 | 
						|
 | 
						|
        if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
 | 
						|
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# if defined(__unix__) \
 | 
						|
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
 | 
						|
    {
 | 
						|
        struct timeval tv;
 | 
						|
 | 
						|
        if (gettimeofday(&tv, NULL) == 0)
 | 
						|
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
 | 
						|
    }
 | 
						|
# endif
 | 
						|
    return time(NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get an arbitrary timer value of the highest possible resolution
 | 
						|
 *
 | 
						|
 * The timer value is added as random noise to the additional data,
 | 
						|
 * which is not considered a trusted entropy sourec, so any result
 | 
						|
 * is acceptable.
 | 
						|
 */
 | 
						|
static uint64_t get_timer_bits(void)
 | 
						|
{
 | 
						|
    uint64_t res = OPENSSL_rdtsc();
 | 
						|
 | 
						|
    if (res != 0)
 | 
						|
        return res;
 | 
						|
 | 
						|
# if defined(__sun) || defined(__hpux)
 | 
						|
    return gethrtime();
 | 
						|
# elif defined(_AIX)
 | 
						|
    {
 | 
						|
        timebasestruct_t t;
 | 
						|
 | 
						|
        read_wall_time(&t, TIMEBASE_SZ);
 | 
						|
        return TWO32TO64(t.tb_high, t.tb_low);
 | 
						|
    }
 | 
						|
# elif defined(OSSL_POSIX_TIMER_OKAY)
 | 
						|
    {
 | 
						|
        struct timespec ts;
 | 
						|
 | 
						|
#  ifdef CLOCK_BOOTTIME
 | 
						|
#   define CLOCK_TYPE CLOCK_BOOTTIME
 | 
						|
#  elif defined(_POSIX_MONOTONIC_CLOCK)
 | 
						|
#   define CLOCK_TYPE CLOCK_MONOTONIC
 | 
						|
#  else
 | 
						|
#   define CLOCK_TYPE CLOCK_REALTIME
 | 
						|
#  endif
 | 
						|
 | 
						|
        if (clock_gettime(CLOCK_TYPE, &ts) == 0)
 | 
						|
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# if defined(__unix__) \
 | 
						|
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
 | 
						|
    {
 | 
						|
        struct timeval tv;
 | 
						|
 | 
						|
        if (gettimeofday(&tv, NULL) == 0)
 | 
						|
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
 | 
						|
    }
 | 
						|
# endif
 | 
						|
    return time(NULL);
 | 
						|
}
 | 
						|
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
 | 
						|
          || defined(__DJGPP__) */
 |