mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			4258 lines
		
	
	
		
			142 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			4258 lines
		
	
	
		
			142 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <openssl/opensslconf.h>
 | |
| #include <openssl/crypto.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/err.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include <openssl/aes.h>
 | |
| #include "internal/evp_int.h"
 | |
| #include "modes_lcl.h"
 | |
| #include <openssl/rand.h>
 | |
| #include "evp_locl.h"
 | |
| 
 | |
| typedef struct {
 | |
|     union {
 | |
|         double align;
 | |
|         AES_KEY ks;
 | |
|     } ks;
 | |
|     block128_f block;
 | |
|     union {
 | |
|         cbc128_f cbc;
 | |
|         ctr128_f ctr;
 | |
|     } stream;
 | |
| } EVP_AES_KEY;
 | |
| 
 | |
| typedef struct {
 | |
|     union {
 | |
|         double align;
 | |
|         AES_KEY ks;
 | |
|     } ks;                       /* AES key schedule to use */
 | |
|     int key_set;                /* Set if key initialised */
 | |
|     int iv_set;                 /* Set if an iv is set */
 | |
|     GCM128_CONTEXT gcm;
 | |
|     unsigned char *iv;          /* Temporary IV store */
 | |
|     int ivlen;                  /* IV length */
 | |
|     int taglen;
 | |
|     int iv_gen;                 /* It is OK to generate IVs */
 | |
|     int tls_aad_len;            /* TLS AAD length */
 | |
|     uint64_t tls_enc_records;   /* Number of TLS records encrypted */
 | |
|     ctr128_f ctr;
 | |
| } EVP_AES_GCM_CTX;
 | |
| 
 | |
| typedef struct {
 | |
|     union {
 | |
|         double align;
 | |
|         AES_KEY ks;
 | |
|     } ks1, ks2;                 /* AES key schedules to use */
 | |
|     XTS128_CONTEXT xts;
 | |
|     void (*stream) (const unsigned char *in,
 | |
|                     unsigned char *out, size_t length,
 | |
|                     const AES_KEY *key1, const AES_KEY *key2,
 | |
|                     const unsigned char iv[16]);
 | |
| } EVP_AES_XTS_CTX;
 | |
| 
 | |
| typedef struct {
 | |
|     union {
 | |
|         double align;
 | |
|         AES_KEY ks;
 | |
|     } ks;                       /* AES key schedule to use */
 | |
|     int key_set;                /* Set if key initialised */
 | |
|     int iv_set;                 /* Set if an iv is set */
 | |
|     int tag_set;                /* Set if tag is valid */
 | |
|     int len_set;                /* Set if message length set */
 | |
|     int L, M;                   /* L and M parameters from RFC3610 */
 | |
|     int tls_aad_len;            /* TLS AAD length */
 | |
|     CCM128_CONTEXT ccm;
 | |
|     ccm128_f str;
 | |
| } EVP_AES_CCM_CTX;
 | |
| 
 | |
| #ifndef OPENSSL_NO_OCB
 | |
| typedef struct {
 | |
|     union {
 | |
|         double align;
 | |
|         AES_KEY ks;
 | |
|     } ksenc;                    /* AES key schedule to use for encryption */
 | |
|     union {
 | |
|         double align;
 | |
|         AES_KEY ks;
 | |
|     } ksdec;                    /* AES key schedule to use for decryption */
 | |
|     int key_set;                /* Set if key initialised */
 | |
|     int iv_set;                 /* Set if an iv is set */
 | |
|     OCB128_CONTEXT ocb;
 | |
|     unsigned char *iv;          /* Temporary IV store */
 | |
|     unsigned char tag[16];
 | |
|     unsigned char data_buf[16]; /* Store partial data blocks */
 | |
|     unsigned char aad_buf[16];  /* Store partial AAD blocks */
 | |
|     int data_buf_len;
 | |
|     int aad_buf_len;
 | |
|     int ivlen;                  /* IV length */
 | |
|     int taglen;
 | |
| } EVP_AES_OCB_CTX;
 | |
| #endif
 | |
| 
 | |
| #define MAXBITCHUNK     ((size_t)1<<(sizeof(size_t)*8-4))
 | |
| 
 | |
| #ifdef VPAES_ASM
 | |
| int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
 | |
|                           AES_KEY *key);
 | |
| int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
 | |
|                           AES_KEY *key);
 | |
| 
 | |
| void vpaes_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                    const AES_KEY *key);
 | |
| void vpaes_decrypt(const unsigned char *in, unsigned char *out,
 | |
|                    const AES_KEY *key);
 | |
| 
 | |
| void vpaes_cbc_encrypt(const unsigned char *in,
 | |
|                        unsigned char *out,
 | |
|                        size_t length,
 | |
|                        const AES_KEY *key, unsigned char *ivec, int enc);
 | |
| #endif
 | |
| #ifdef BSAES_ASM
 | |
| void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                        size_t length, const AES_KEY *key,
 | |
|                        unsigned char ivec[16], int enc);
 | |
| void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
 | |
|                                 size_t len, const AES_KEY *key,
 | |
|                                 const unsigned char ivec[16]);
 | |
| void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
 | |
|                        size_t len, const AES_KEY *key1,
 | |
|                        const AES_KEY *key2, const unsigned char iv[16]);
 | |
| void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
 | |
|                        size_t len, const AES_KEY *key1,
 | |
|                        const AES_KEY *key2, const unsigned char iv[16]);
 | |
| #endif
 | |
| #ifdef AES_CTR_ASM
 | |
| void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                        size_t blocks, const AES_KEY *key,
 | |
|                        const unsigned char ivec[AES_BLOCK_SIZE]);
 | |
| #endif
 | |
| #ifdef AES_XTS_ASM
 | |
| void AES_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len,
 | |
|                      const AES_KEY *key1, const AES_KEY *key2,
 | |
|                      const unsigned char iv[16]);
 | |
| void AES_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len,
 | |
|                      const AES_KEY *key1, const AES_KEY *key2,
 | |
|                      const unsigned char iv[16]);
 | |
| #endif
 | |
| 
 | |
| /* increment counter (64-bit int) by 1 */
 | |
| static void ctr64_inc(unsigned char *counter)
 | |
| {
 | |
|     int n = 8;
 | |
|     unsigned char c;
 | |
| 
 | |
|     do {
 | |
|         --n;
 | |
|         c = counter[n];
 | |
|         ++c;
 | |
|         counter[n] = c;
 | |
|         if (c)
 | |
|             return;
 | |
|     } while (n);
 | |
| }
 | |
| 
 | |
| #if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
 | |
| # include "ppc_arch.h"
 | |
| # ifdef VPAES_ASM
 | |
| #  define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC)
 | |
| # endif
 | |
| # define HWAES_CAPABLE  (OPENSSL_ppccap_P & PPC_CRYPTO207)
 | |
| # define HWAES_set_encrypt_key aes_p8_set_encrypt_key
 | |
| # define HWAES_set_decrypt_key aes_p8_set_decrypt_key
 | |
| # define HWAES_encrypt aes_p8_encrypt
 | |
| # define HWAES_decrypt aes_p8_decrypt
 | |
| # define HWAES_cbc_encrypt aes_p8_cbc_encrypt
 | |
| # define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks
 | |
| # define HWAES_xts_encrypt aes_p8_xts_encrypt
 | |
| # define HWAES_xts_decrypt aes_p8_xts_decrypt
 | |
| #endif
 | |
| 
 | |
| #if     defined(AES_ASM) && !defined(I386_ONLY) &&      (  \
 | |
|         ((defined(__i386)       || defined(__i386__)    || \
 | |
|           defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
 | |
|         defined(__x86_64)       || defined(__x86_64__)  || \
 | |
|         defined(_M_AMD64)       || defined(_M_X64)      )
 | |
| 
 | |
| extern unsigned int OPENSSL_ia32cap_P[];
 | |
| 
 | |
| # ifdef VPAES_ASM
 | |
| #  define VPAES_CAPABLE   (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
 | |
| # endif
 | |
| # ifdef BSAES_ASM
 | |
| #  define BSAES_CAPABLE   (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
 | |
| # endif
 | |
| /*
 | |
|  * AES-NI section
 | |
|  */
 | |
| # define AESNI_CAPABLE   (OPENSSL_ia32cap_P[1]&(1<<(57-32)))
 | |
| 
 | |
| int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
 | |
|                           AES_KEY *key);
 | |
| int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
 | |
|                           AES_KEY *key);
 | |
| 
 | |
| void aesni_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                    const AES_KEY *key);
 | |
| void aesni_decrypt(const unsigned char *in, unsigned char *out,
 | |
|                    const AES_KEY *key);
 | |
| 
 | |
| void aesni_ecb_encrypt(const unsigned char *in,
 | |
|                        unsigned char *out,
 | |
|                        size_t length, const AES_KEY *key, int enc);
 | |
| void aesni_cbc_encrypt(const unsigned char *in,
 | |
|                        unsigned char *out,
 | |
|                        size_t length,
 | |
|                        const AES_KEY *key, unsigned char *ivec, int enc);
 | |
| 
 | |
| void aesni_ctr32_encrypt_blocks(const unsigned char *in,
 | |
|                                 unsigned char *out,
 | |
|                                 size_t blocks,
 | |
|                                 const void *key, const unsigned char *ivec);
 | |
| 
 | |
| void aesni_xts_encrypt(const unsigned char *in,
 | |
|                        unsigned char *out,
 | |
|                        size_t length,
 | |
|                        const AES_KEY *key1, const AES_KEY *key2,
 | |
|                        const unsigned char iv[16]);
 | |
| 
 | |
| void aesni_xts_decrypt(const unsigned char *in,
 | |
|                        unsigned char *out,
 | |
|                        size_t length,
 | |
|                        const AES_KEY *key1, const AES_KEY *key2,
 | |
|                        const unsigned char iv[16]);
 | |
| 
 | |
| void aesni_ccm64_encrypt_blocks(const unsigned char *in,
 | |
|                                 unsigned char *out,
 | |
|                                 size_t blocks,
 | |
|                                 const void *key,
 | |
|                                 const unsigned char ivec[16],
 | |
|                                 unsigned char cmac[16]);
 | |
| 
 | |
| void aesni_ccm64_decrypt_blocks(const unsigned char *in,
 | |
|                                 unsigned char *out,
 | |
|                                 size_t blocks,
 | |
|                                 const void *key,
 | |
|                                 const unsigned char ivec[16],
 | |
|                                 unsigned char cmac[16]);
 | |
| 
 | |
| # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
 | |
| size_t aesni_gcm_encrypt(const unsigned char *in,
 | |
|                          unsigned char *out,
 | |
|                          size_t len,
 | |
|                          const void *key, unsigned char ivec[16], u64 *Xi);
 | |
| #  define AES_gcm_encrypt aesni_gcm_encrypt
 | |
| size_t aesni_gcm_decrypt(const unsigned char *in,
 | |
|                          unsigned char *out,
 | |
|                          size_t len,
 | |
|                          const void *key, unsigned char ivec[16], u64 *Xi);
 | |
| #  define AES_gcm_decrypt aesni_gcm_decrypt
 | |
| void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in,
 | |
|                    size_t len);
 | |
| #  define AES_GCM_ASM(gctx)       (gctx->ctr==aesni_ctr32_encrypt_blocks && \
 | |
|                                  gctx->gcm.ghash==gcm_ghash_avx)
 | |
| #  define AES_GCM_ASM2(gctx)      (gctx->gcm.block==(block128_f)aesni_encrypt && \
 | |
|                                  gctx->gcm.ghash==gcm_ghash_avx)
 | |
| #  undef AES_GCM_ASM2          /* minor size optimization */
 | |
| # endif
 | |
| 
 | |
| static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                           const unsigned char *iv, int enc)
 | |
| {
 | |
|     int ret, mode;
 | |
|     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
 | |
| 
 | |
|     mode = EVP_CIPHER_CTX_mode(ctx);
 | |
|     if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
 | |
|         && !enc) {
 | |
|         ret = aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                     &dat->ks.ks);
 | |
|         dat->block = (block128_f) aesni_decrypt;
 | |
|         dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
 | |
|             (cbc128_f) aesni_cbc_encrypt : NULL;
 | |
|     } else {
 | |
|         ret = aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                     &dat->ks.ks);
 | |
|         dat->block = (block128_f) aesni_encrypt;
 | |
|         if (mode == EVP_CIPH_CBC_MODE)
 | |
|             dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
 | |
|         else if (mode == EVP_CIPH_CTR_MODE)
 | |
|             dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
 | |
|         else
 | |
|             dat->stream.cbc = NULL;
 | |
|     }
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                             const unsigned char *in, size_t len)
 | |
| {
 | |
|     aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
 | |
|                       EVP_CIPHER_CTX_iv_noconst(ctx),
 | |
|                       EVP_CIPHER_CTX_encrypting(ctx));
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                             const unsigned char *in, size_t len)
 | |
| {
 | |
|     size_t bl = EVP_CIPHER_CTX_block_size(ctx);
 | |
| 
 | |
|     if (len < bl)
 | |
|         return 1;
 | |
| 
 | |
|     aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
 | |
|                       EVP_CIPHER_CTX_encrypting(ctx));
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define aesni_ofb_cipher aes_ofb_cipher
 | |
| static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                             const unsigned char *in, size_t len);
 | |
| 
 | |
| # define aesni_cfb_cipher aes_cfb_cipher
 | |
| static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                             const unsigned char *in, size_t len);
 | |
| 
 | |
| # define aesni_cfb8_cipher aes_cfb8_cipher
 | |
| static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                              const unsigned char *in, size_t len);
 | |
| 
 | |
| # define aesni_cfb1_cipher aes_cfb1_cipher
 | |
| static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                              const unsigned char *in, size_t len);
 | |
| 
 | |
| # define aesni_ctr_cipher aes_ctr_cipher
 | |
| static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                             const unsigned char *in, size_t len);
 | |
| 
 | |
| static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                               const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
|     if (key) {
 | |
|         aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                               &gctx->ks.ks);
 | |
|         CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
 | |
|         gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
 | |
|         /*
 | |
|          * If we have an iv can set it directly, otherwise use saved IV.
 | |
|          */
 | |
|         if (iv == NULL && gctx->iv_set)
 | |
|             iv = gctx->iv;
 | |
|         if (iv) {
 | |
|             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
 | |
|             gctx->iv_set = 1;
 | |
|         }
 | |
|         gctx->key_set = 1;
 | |
|     } else {
 | |
|         /* If key set use IV, otherwise copy */
 | |
|         if (gctx->key_set)
 | |
|             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
 | |
|         else
 | |
|             memcpy(gctx->iv, iv, gctx->ivlen);
 | |
|         gctx->iv_set = 1;
 | |
|         gctx->iv_gen = 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define aesni_gcm_cipher aes_gcm_cipher
 | |
| static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                             const unsigned char *in, size_t len);
 | |
| 
 | |
| static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                               const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
| 
 | |
|     if (key) {
 | |
|         /* key_len is two AES keys */
 | |
|         if (enc) {
 | |
|             aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                   &xctx->ks1.ks);
 | |
|             xctx->xts.block1 = (block128_f) aesni_encrypt;
 | |
|             xctx->stream = aesni_xts_encrypt;
 | |
|         } else {
 | |
|             aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                   &xctx->ks1.ks);
 | |
|             xctx->xts.block1 = (block128_f) aesni_decrypt;
 | |
|             xctx->stream = aesni_xts_decrypt;
 | |
|         }
 | |
| 
 | |
|         aesni_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
 | |
|                               EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                               &xctx->ks2.ks);
 | |
|         xctx->xts.block2 = (block128_f) aesni_encrypt;
 | |
| 
 | |
|         xctx->xts.key1 = &xctx->ks1;
 | |
|     }
 | |
| 
 | |
|     if (iv) {
 | |
|         xctx->xts.key2 = &xctx->ks2;
 | |
|         memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define aesni_xts_cipher aes_xts_cipher
 | |
| static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                             const unsigned char *in, size_t len);
 | |
| 
 | |
| static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                               const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
|     if (key) {
 | |
|         aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                               &cctx->ks.ks);
 | |
|         CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
 | |
|                            &cctx->ks, (block128_f) aesni_encrypt);
 | |
|         cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
 | |
|             (ccm128_f) aesni_ccm64_decrypt_blocks;
 | |
|         cctx->key_set = 1;
 | |
|     }
 | |
|     if (iv) {
 | |
|         memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
 | |
|         cctx->iv_set = 1;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define aesni_ccm_cipher aes_ccm_cipher
 | |
| static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                             const unsigned char *in, size_t len);
 | |
| 
 | |
| # ifndef OPENSSL_NO_OCB
 | |
| void aesni_ocb_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                        size_t blocks, const void *key,
 | |
|                        size_t start_block_num,
 | |
|                        unsigned char offset_i[16],
 | |
|                        const unsigned char L_[][16],
 | |
|                        unsigned char checksum[16]);
 | |
| void aesni_ocb_decrypt(const unsigned char *in, unsigned char *out,
 | |
|                        size_t blocks, const void *key,
 | |
|                        size_t start_block_num,
 | |
|                        unsigned char offset_i[16],
 | |
|                        const unsigned char L_[][16],
 | |
|                        unsigned char checksum[16]);
 | |
| 
 | |
| static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                               const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
|     if (key) {
 | |
|         do {
 | |
|             /*
 | |
|              * We set both the encrypt and decrypt key here because decrypt
 | |
|              * needs both. We could possibly optimise to remove setting the
 | |
|              * decrypt for an encryption operation.
 | |
|              */
 | |
|             aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                   &octx->ksenc.ks);
 | |
|             aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                   &octx->ksdec.ks);
 | |
|             if (!CRYPTO_ocb128_init(&octx->ocb,
 | |
|                                     &octx->ksenc.ks, &octx->ksdec.ks,
 | |
|                                     (block128_f) aesni_encrypt,
 | |
|                                     (block128_f) aesni_decrypt,
 | |
|                                     enc ? aesni_ocb_encrypt
 | |
|                                         : aesni_ocb_decrypt))
 | |
|                 return 0;
 | |
|         }
 | |
|         while (0);
 | |
| 
 | |
|         /*
 | |
|          * If we have an iv we can set it directly, otherwise use saved IV.
 | |
|          */
 | |
|         if (iv == NULL && octx->iv_set)
 | |
|             iv = octx->iv;
 | |
|         if (iv) {
 | |
|             if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
 | |
|                 != 1)
 | |
|                 return 0;
 | |
|             octx->iv_set = 1;
 | |
|         }
 | |
|         octx->key_set = 1;
 | |
|     } else {
 | |
|         /* If key set use IV, otherwise copy */
 | |
|         if (octx->key_set)
 | |
|             CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
 | |
|         else
 | |
|             memcpy(octx->iv, iv, octx->ivlen);
 | |
|         octx->iv_set = 1;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #  define aesni_ocb_cipher aes_ocb_cipher
 | |
| static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                             const unsigned char *in, size_t len);
 | |
| # endif                        /* OPENSSL_NO_OCB */
 | |
| 
 | |
| # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
 | |
| static const EVP_CIPHER aesni_##keylen##_##mode = { \
 | |
|         nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
 | |
|         flags|EVP_CIPH_##MODE##_MODE,   \
 | |
|         aesni_init_key,                 \
 | |
|         aesni_##mode##_cipher,          \
 | |
|         NULL,                           \
 | |
|         sizeof(EVP_AES_KEY),            \
 | |
|         NULL,NULL,NULL,NULL }; \
 | |
| static const EVP_CIPHER aes_##keylen##_##mode = { \
 | |
|         nid##_##keylen##_##nmode,blocksize,     \
 | |
|         keylen/8,ivlen, \
 | |
|         flags|EVP_CIPH_##MODE##_MODE,   \
 | |
|         aes_init_key,                   \
 | |
|         aes_##mode##_cipher,            \
 | |
|         NULL,                           \
 | |
|         sizeof(EVP_AES_KEY),            \
 | |
|         NULL,NULL,NULL,NULL }; \
 | |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
 | |
| { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
 | |
| 
 | |
| # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
 | |
| static const EVP_CIPHER aesni_##keylen##_##mode = { \
 | |
|         nid##_##keylen##_##mode,blocksize, \
 | |
|         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
 | |
|         flags|EVP_CIPH_##MODE##_MODE,   \
 | |
|         aesni_##mode##_init_key,        \
 | |
|         aesni_##mode##_cipher,          \
 | |
|         aes_##mode##_cleanup,           \
 | |
|         sizeof(EVP_AES_##MODE##_CTX),   \
 | |
|         NULL,NULL,aes_##mode##_ctrl,NULL }; \
 | |
| static const EVP_CIPHER aes_##keylen##_##mode = { \
 | |
|         nid##_##keylen##_##mode,blocksize, \
 | |
|         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
 | |
|         flags|EVP_CIPH_##MODE##_MODE,   \
 | |
|         aes_##mode##_init_key,          \
 | |
|         aes_##mode##_cipher,            \
 | |
|         aes_##mode##_cleanup,           \
 | |
|         sizeof(EVP_AES_##MODE##_CTX),   \
 | |
|         NULL,NULL,aes_##mode##_ctrl,NULL }; \
 | |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
 | |
| { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
 | |
| 
 | |
| #elif   defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
 | |
| 
 | |
| # include "sparc_arch.h"
 | |
| 
 | |
| extern unsigned int OPENSSL_sparcv9cap_P[];
 | |
| 
 | |
| /*
 | |
|  * Initial Fujitsu SPARC64 X support
 | |
|  */
 | |
| # define HWAES_CAPABLE           (OPENSSL_sparcv9cap_P[0] & SPARCV9_FJAESX)
 | |
| # define HWAES_set_encrypt_key aes_fx_set_encrypt_key
 | |
| # define HWAES_set_decrypt_key aes_fx_set_decrypt_key
 | |
| # define HWAES_encrypt aes_fx_encrypt
 | |
| # define HWAES_decrypt aes_fx_decrypt
 | |
| # define HWAES_cbc_encrypt aes_fx_cbc_encrypt
 | |
| # define HWAES_ctr32_encrypt_blocks aes_fx_ctr32_encrypt_blocks
 | |
| 
 | |
| # define SPARC_AES_CAPABLE       (OPENSSL_sparcv9cap_P[1] & CFR_AES)
 | |
| 
 | |
| void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
 | |
| void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
 | |
| void aes_t4_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                     const AES_KEY *key);
 | |
| void aes_t4_decrypt(const unsigned char *in, unsigned char *out,
 | |
|                     const AES_KEY *key);
 | |
| /*
 | |
|  * Key-length specific subroutines were chosen for following reason.
 | |
|  * Each SPARC T4 core can execute up to 8 threads which share core's
 | |
|  * resources. Loading as much key material to registers allows to
 | |
|  * minimize references to shared memory interface, as well as amount
 | |
|  * of instructions in inner loops [much needed on T4]. But then having
 | |
|  * non-key-length specific routines would require conditional branches
 | |
|  * either in inner loops or on subroutines' entries. Former is hardly
 | |
|  * acceptable, while latter means code size increase to size occupied
 | |
|  * by multiple key-length specific subroutines, so why fight?
 | |
|  */
 | |
| void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                            size_t len, const AES_KEY *key,
 | |
|                            unsigned char *ivec);
 | |
| void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
 | |
|                            size_t len, const AES_KEY *key,
 | |
|                            unsigned char *ivec);
 | |
| void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                            size_t len, const AES_KEY *key,
 | |
|                            unsigned char *ivec);
 | |
| void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
 | |
|                            size_t len, const AES_KEY *key,
 | |
|                            unsigned char *ivec);
 | |
| void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                            size_t len, const AES_KEY *key,
 | |
|                            unsigned char *ivec);
 | |
| void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
 | |
|                            size_t len, const AES_KEY *key,
 | |
|                            unsigned char *ivec);
 | |
| void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                              size_t blocks, const AES_KEY *key,
 | |
|                              unsigned char *ivec);
 | |
| void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                              size_t blocks, const AES_KEY *key,
 | |
|                              unsigned char *ivec);
 | |
| void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                              size_t blocks, const AES_KEY *key,
 | |
|                              unsigned char *ivec);
 | |
| void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                            size_t blocks, const AES_KEY *key1,
 | |
|                            const AES_KEY *key2, const unsigned char *ivec);
 | |
| void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
 | |
|                            size_t blocks, const AES_KEY *key1,
 | |
|                            const AES_KEY *key2, const unsigned char *ivec);
 | |
| void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                            size_t blocks, const AES_KEY *key1,
 | |
|                            const AES_KEY *key2, const unsigned char *ivec);
 | |
| void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
 | |
|                            size_t blocks, const AES_KEY *key1,
 | |
|                            const AES_KEY *key2, const unsigned char *ivec);
 | |
| 
 | |
| static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                            const unsigned char *iv, int enc)
 | |
| {
 | |
|     int ret, mode, bits;
 | |
|     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
 | |
| 
 | |
|     mode = EVP_CIPHER_CTX_mode(ctx);
 | |
|     bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
 | |
|     if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
 | |
|         && !enc) {
 | |
|         ret = 0;
 | |
|         aes_t4_set_decrypt_key(key, bits, &dat->ks.ks);
 | |
|         dat->block = (block128_f) aes_t4_decrypt;
 | |
|         switch (bits) {
 | |
|         case 128:
 | |
|             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
 | |
|                 (cbc128_f) aes128_t4_cbc_decrypt : NULL;
 | |
|             break;
 | |
|         case 192:
 | |
|             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
 | |
|                 (cbc128_f) aes192_t4_cbc_decrypt : NULL;
 | |
|             break;
 | |
|         case 256:
 | |
|             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
 | |
|                 (cbc128_f) aes256_t4_cbc_decrypt : NULL;
 | |
|             break;
 | |
|         default:
 | |
|             ret = -1;
 | |
|         }
 | |
|     } else {
 | |
|         ret = 0;
 | |
|         aes_t4_set_encrypt_key(key, bits, &dat->ks.ks);
 | |
|         dat->block = (block128_f) aes_t4_encrypt;
 | |
|         switch (bits) {
 | |
|         case 128:
 | |
|             if (mode == EVP_CIPH_CBC_MODE)
 | |
|                 dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;
 | |
|             else if (mode == EVP_CIPH_CTR_MODE)
 | |
|                 dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
 | |
|             else
 | |
|                 dat->stream.cbc = NULL;
 | |
|             break;
 | |
|         case 192:
 | |
|             if (mode == EVP_CIPH_CBC_MODE)
 | |
|                 dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;
 | |
|             else if (mode == EVP_CIPH_CTR_MODE)
 | |
|                 dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
 | |
|             else
 | |
|                 dat->stream.cbc = NULL;
 | |
|             break;
 | |
|         case 256:
 | |
|             if (mode == EVP_CIPH_CBC_MODE)
 | |
|                 dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;
 | |
|             else if (mode == EVP_CIPH_CTR_MODE)
 | |
|                 dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
 | |
|             else
 | |
|                 dat->stream.cbc = NULL;
 | |
|             break;
 | |
|         default:
 | |
|             ret = -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define aes_t4_cbc_cipher aes_cbc_cipher
 | |
| static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                              const unsigned char *in, size_t len);
 | |
| 
 | |
| # define aes_t4_ecb_cipher aes_ecb_cipher
 | |
| static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                              const unsigned char *in, size_t len);
 | |
| 
 | |
| # define aes_t4_ofb_cipher aes_ofb_cipher
 | |
| static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                              const unsigned char *in, size_t len);
 | |
| 
 | |
| # define aes_t4_cfb_cipher aes_cfb_cipher
 | |
| static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                              const unsigned char *in, size_t len);
 | |
| 
 | |
| # define aes_t4_cfb8_cipher aes_cfb8_cipher
 | |
| static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                               const unsigned char *in, size_t len);
 | |
| 
 | |
| # define aes_t4_cfb1_cipher aes_cfb1_cipher
 | |
| static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                               const unsigned char *in, size_t len);
 | |
| 
 | |
| # define aes_t4_ctr_cipher aes_ctr_cipher
 | |
| static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                              const unsigned char *in, size_t len);
 | |
| 
 | |
| static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                                const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
|     if (key) {
 | |
|         int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
 | |
|         aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
 | |
|         CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
 | |
|                            (block128_f) aes_t4_encrypt);
 | |
|         switch (bits) {
 | |
|         case 128:
 | |
|             gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
 | |
|             break;
 | |
|         case 192:
 | |
|             gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
 | |
|             break;
 | |
|         case 256:
 | |
|             gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
 | |
|             break;
 | |
|         default:
 | |
|             return 0;
 | |
|         }
 | |
|         /*
 | |
|          * If we have an iv can set it directly, otherwise use saved IV.
 | |
|          */
 | |
|         if (iv == NULL && gctx->iv_set)
 | |
|             iv = gctx->iv;
 | |
|         if (iv) {
 | |
|             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
 | |
|             gctx->iv_set = 1;
 | |
|         }
 | |
|         gctx->key_set = 1;
 | |
|     } else {
 | |
|         /* If key set use IV, otherwise copy */
 | |
|         if (gctx->key_set)
 | |
|             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
 | |
|         else
 | |
|             memcpy(gctx->iv, iv, gctx->ivlen);
 | |
|         gctx->iv_set = 1;
 | |
|         gctx->iv_gen = 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define aes_t4_gcm_cipher aes_gcm_cipher
 | |
| static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                              const unsigned char *in, size_t len);
 | |
| 
 | |
| static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                                const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
| 
 | |
|     if (key) {
 | |
|         int bits = EVP_CIPHER_CTX_key_length(ctx) * 4;
 | |
|         xctx->stream = NULL;
 | |
|         /* key_len is two AES keys */
 | |
|         if (enc) {
 | |
|             aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);
 | |
|             xctx->xts.block1 = (block128_f) aes_t4_encrypt;
 | |
|             switch (bits) {
 | |
|             case 128:
 | |
|                 xctx->stream = aes128_t4_xts_encrypt;
 | |
|                 break;
 | |
|             case 256:
 | |
|                 xctx->stream = aes256_t4_xts_encrypt;
 | |
|                 break;
 | |
|             default:
 | |
|                 return 0;
 | |
|             }
 | |
|         } else {
 | |
|             aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                    &xctx->ks1.ks);
 | |
|             xctx->xts.block1 = (block128_f) aes_t4_decrypt;
 | |
|             switch (bits) {
 | |
|             case 128:
 | |
|                 xctx->stream = aes128_t4_xts_decrypt;
 | |
|                 break;
 | |
|             case 256:
 | |
|                 xctx->stream = aes256_t4_xts_decrypt;
 | |
|                 break;
 | |
|             default:
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         aes_t4_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
 | |
|                                EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                &xctx->ks2.ks);
 | |
|         xctx->xts.block2 = (block128_f) aes_t4_encrypt;
 | |
| 
 | |
|         xctx->xts.key1 = &xctx->ks1;
 | |
|     }
 | |
| 
 | |
|     if (iv) {
 | |
|         xctx->xts.key2 = &xctx->ks2;
 | |
|         memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define aes_t4_xts_cipher aes_xts_cipher
 | |
| static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                              const unsigned char *in, size_t len);
 | |
| 
 | |
| static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                                const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
|     if (key) {
 | |
|         int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
 | |
|         aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
 | |
|         CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
 | |
|                            &cctx->ks, (block128_f) aes_t4_encrypt);
 | |
|         cctx->str = NULL;
 | |
|         cctx->key_set = 1;
 | |
|     }
 | |
|     if (iv) {
 | |
|         memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
 | |
|         cctx->iv_set = 1;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define aes_t4_ccm_cipher aes_ccm_cipher
 | |
| static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                              const unsigned char *in, size_t len);
 | |
| 
 | |
| # ifndef OPENSSL_NO_OCB
 | |
| static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                                const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
|     if (key) {
 | |
|         do {
 | |
|             /*
 | |
|              * We set both the encrypt and decrypt key here because decrypt
 | |
|              * needs both. We could possibly optimise to remove setting the
 | |
|              * decrypt for an encryption operation.
 | |
|              */
 | |
|             aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                    &octx->ksenc.ks);
 | |
|             aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                    &octx->ksdec.ks);
 | |
|             if (!CRYPTO_ocb128_init(&octx->ocb,
 | |
|                                     &octx->ksenc.ks, &octx->ksdec.ks,
 | |
|                                     (block128_f) aes_t4_encrypt,
 | |
|                                     (block128_f) aes_t4_decrypt,
 | |
|                                     NULL))
 | |
|                 return 0;
 | |
|         }
 | |
|         while (0);
 | |
| 
 | |
|         /*
 | |
|          * If we have an iv we can set it directly, otherwise use saved IV.
 | |
|          */
 | |
|         if (iv == NULL && octx->iv_set)
 | |
|             iv = octx->iv;
 | |
|         if (iv) {
 | |
|             if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
 | |
|                 != 1)
 | |
|                 return 0;
 | |
|             octx->iv_set = 1;
 | |
|         }
 | |
|         octx->key_set = 1;
 | |
|     } else {
 | |
|         /* If key set use IV, otherwise copy */
 | |
|         if (octx->key_set)
 | |
|             CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
 | |
|         else
 | |
|             memcpy(octx->iv, iv, octx->ivlen);
 | |
|         octx->iv_set = 1;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #  define aes_t4_ocb_cipher aes_ocb_cipher
 | |
| static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                              const unsigned char *in, size_t len);
 | |
| # endif                        /* OPENSSL_NO_OCB */
 | |
| 
 | |
| # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
 | |
| static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
 | |
|         nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
 | |
|         flags|EVP_CIPH_##MODE##_MODE,   \
 | |
|         aes_t4_init_key,                \
 | |
|         aes_t4_##mode##_cipher,         \
 | |
|         NULL,                           \
 | |
|         sizeof(EVP_AES_KEY),            \
 | |
|         NULL,NULL,NULL,NULL }; \
 | |
| static const EVP_CIPHER aes_##keylen##_##mode = { \
 | |
|         nid##_##keylen##_##nmode,blocksize,     \
 | |
|         keylen/8,ivlen, \
 | |
|         flags|EVP_CIPH_##MODE##_MODE,   \
 | |
|         aes_init_key,                   \
 | |
|         aes_##mode##_cipher,            \
 | |
|         NULL,                           \
 | |
|         sizeof(EVP_AES_KEY),            \
 | |
|         NULL,NULL,NULL,NULL }; \
 | |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
 | |
| { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
 | |
| 
 | |
| # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
 | |
| static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
 | |
|         nid##_##keylen##_##mode,blocksize, \
 | |
|         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
 | |
|         flags|EVP_CIPH_##MODE##_MODE,   \
 | |
|         aes_t4_##mode##_init_key,       \
 | |
|         aes_t4_##mode##_cipher,         \
 | |
|         aes_##mode##_cleanup,           \
 | |
|         sizeof(EVP_AES_##MODE##_CTX),   \
 | |
|         NULL,NULL,aes_##mode##_ctrl,NULL }; \
 | |
| static const EVP_CIPHER aes_##keylen##_##mode = { \
 | |
|         nid##_##keylen##_##mode,blocksize, \
 | |
|         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
 | |
|         flags|EVP_CIPH_##MODE##_MODE,   \
 | |
|         aes_##mode##_init_key,          \
 | |
|         aes_##mode##_cipher,            \
 | |
|         aes_##mode##_cleanup,           \
 | |
|         sizeof(EVP_AES_##MODE##_CTX),   \
 | |
|         NULL,NULL,aes_##mode##_ctrl,NULL }; \
 | |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
 | |
| { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
 | |
| 
 | |
| #elif defined(OPENSSL_CPUID_OBJ) && defined(__s390__)
 | |
| /*
 | |
|  * IBM S390X support
 | |
|  */
 | |
| # include "s390x_arch.h"
 | |
| 
 | |
| typedef struct {
 | |
|     union {
 | |
|         double align;
 | |
|         /*-
 | |
|          * KM-AES parameter block - begin
 | |
|          * (see z/Architecture Principles of Operation >= SA22-7832-06)
 | |
|          */
 | |
|         struct {
 | |
|             unsigned char k[32];
 | |
|         } param;
 | |
|         /* KM-AES parameter block - end */
 | |
|     } km;
 | |
|     unsigned int fc;
 | |
| } S390X_AES_ECB_CTX;
 | |
| 
 | |
| typedef struct {
 | |
|     union {
 | |
|         double align;
 | |
|         /*-
 | |
|          * KMO-AES parameter block - begin
 | |
|          * (see z/Architecture Principles of Operation >= SA22-7832-08)
 | |
|          */
 | |
|         struct {
 | |
|             unsigned char cv[16];
 | |
|             unsigned char k[32];
 | |
|         } param;
 | |
|         /* KMO-AES parameter block - end */
 | |
|     } kmo;
 | |
|     unsigned int fc;
 | |
| 
 | |
|     int res;
 | |
| } S390X_AES_OFB_CTX;
 | |
| 
 | |
| typedef struct {
 | |
|     union {
 | |
|         double align;
 | |
|         /*-
 | |
|          * KMF-AES parameter block - begin
 | |
|          * (see z/Architecture Principles of Operation >= SA22-7832-08)
 | |
|          */
 | |
|         struct {
 | |
|             unsigned char cv[16];
 | |
|             unsigned char k[32];
 | |
|         } param;
 | |
|         /* KMF-AES parameter block - end */
 | |
|     } kmf;
 | |
|     unsigned int fc;
 | |
| 
 | |
|     int res;
 | |
| } S390X_AES_CFB_CTX;
 | |
| 
 | |
| typedef struct {
 | |
|     union {
 | |
|         double align;
 | |
|         /*-
 | |
|          * KMA-GCM-AES parameter block - begin
 | |
|          * (see z/Architecture Principles of Operation >= SA22-7832-11)
 | |
|          */
 | |
|         struct {
 | |
|             unsigned char reserved[12];
 | |
|             union {
 | |
|                 unsigned int w;
 | |
|                 unsigned char b[4];
 | |
|             } cv;
 | |
|             union {
 | |
|                 unsigned long long g[2];
 | |
|                 unsigned char b[16];
 | |
|             } t;
 | |
|             unsigned char h[16];
 | |
|             unsigned long long taadl;
 | |
|             unsigned long long tpcl;
 | |
|             union {
 | |
|                 unsigned long long g[2];
 | |
|                 unsigned int w[4];
 | |
|             } j0;
 | |
|             unsigned char k[32];
 | |
|         } param;
 | |
|         /* KMA-GCM-AES parameter block - end */
 | |
|     } kma;
 | |
|     unsigned int fc;
 | |
|     int key_set;
 | |
| 
 | |
|     unsigned char *iv;
 | |
|     int ivlen;
 | |
|     int iv_set;
 | |
|     int iv_gen;
 | |
| 
 | |
|     int taglen;
 | |
| 
 | |
|     unsigned char ares[16];
 | |
|     unsigned char mres[16];
 | |
|     unsigned char kres[16];
 | |
|     int areslen;
 | |
|     int mreslen;
 | |
|     int kreslen;
 | |
| 
 | |
|     int tls_aad_len;
 | |
|     uint64_t tls_enc_records;   /* Number of TLS records encrypted */
 | |
| } S390X_AES_GCM_CTX;
 | |
| 
 | |
| typedef struct {
 | |
|     union {
 | |
|         double align;
 | |
|         /*-
 | |
|          * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and
 | |
|          * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's
 | |
|          * rounds field is used to store the function code and that the key
 | |
|          * schedule is not stored (if aes hardware support is detected).
 | |
|          */
 | |
|         struct {
 | |
|             unsigned char pad[16];
 | |
|             AES_KEY k;
 | |
|         } key;
 | |
| 
 | |
|         struct {
 | |
|             /*-
 | |
|              * KMAC-AES parameter block - begin
 | |
|              * (see z/Architecture Principles of Operation >= SA22-7832-08)
 | |
|              */
 | |
|             struct {
 | |
|                 union {
 | |
|                     unsigned long long g[2];
 | |
|                     unsigned char b[16];
 | |
|                 } icv;
 | |
|                 unsigned char k[32];
 | |
|             } kmac_param;
 | |
|             /* KMAC-AES paramater block - end */
 | |
| 
 | |
|             union {
 | |
|                 unsigned long long g[2];
 | |
|                 unsigned char b[16];
 | |
|             } nonce;
 | |
|             union {
 | |
|                 unsigned long long g[2];
 | |
|                 unsigned char b[16];
 | |
|             } buf;
 | |
| 
 | |
|             unsigned long long blocks;
 | |
|             int l;
 | |
|             int m;
 | |
|             int tls_aad_len;
 | |
|             int iv_set;
 | |
|             int tag_set;
 | |
|             int len_set;
 | |
|             int key_set;
 | |
| 
 | |
|             unsigned char pad[140];
 | |
|             unsigned int fc;
 | |
|         } ccm;
 | |
|     } aes;
 | |
| } S390X_AES_CCM_CTX;
 | |
| 
 | |
| /* Convert key size to function code: [16,24,32] -> [18,19,20]. */
 | |
| # define S390X_AES_FC(keylen)  (S390X_AES_128 + ((((keylen) << 3) - 128) >> 6))
 | |
| 
 | |
| /* Most modes of operation need km for partial block processing. */
 | |
| # define S390X_aes_128_CAPABLE (OPENSSL_s390xcap_P.km[0] &	\
 | |
|                                 S390X_CAPBIT(S390X_AES_128))
 | |
| # define S390X_aes_192_CAPABLE (OPENSSL_s390xcap_P.km[0] &	\
 | |
|                                 S390X_CAPBIT(S390X_AES_192))
 | |
| # define S390X_aes_256_CAPABLE (OPENSSL_s390xcap_P.km[0] &	\
 | |
|                                 S390X_CAPBIT(S390X_AES_256))
 | |
| 
 | |
| # define s390x_aes_init_key aes_init_key
 | |
| static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                               const unsigned char *iv, int enc);
 | |
| 
 | |
| # define S390X_aes_128_cbc_CAPABLE	1	/* checked by callee */
 | |
| # define S390X_aes_192_cbc_CAPABLE	1
 | |
| # define S390X_aes_256_cbc_CAPABLE	1
 | |
| # define S390X_AES_CBC_CTX		EVP_AES_KEY
 | |
| 
 | |
| # define s390x_aes_cbc_init_key aes_init_key
 | |
| 
 | |
| # define s390x_aes_cbc_cipher aes_cbc_cipher
 | |
| static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                 const unsigned char *in, size_t len);
 | |
| 
 | |
| # define S390X_aes_128_ecb_CAPABLE	S390X_aes_128_CAPABLE
 | |
| # define S390X_aes_192_ecb_CAPABLE	S390X_aes_192_CAPABLE
 | |
| # define S390X_aes_256_ecb_CAPABLE	S390X_aes_256_CAPABLE
 | |
| 
 | |
| static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx,
 | |
|                                   const unsigned char *key,
 | |
|                                   const unsigned char *iv, int enc)
 | |
| {
 | |
|     S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
 | |
|     const int keylen = EVP_CIPHER_CTX_key_length(ctx);
 | |
| 
 | |
|     cctx->fc = S390X_AES_FC(keylen);
 | |
|     if (!enc)
 | |
|         cctx->fc |= S390X_DECRYPT;
 | |
| 
 | |
|     memcpy(cctx->km.param.k, key, keylen);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                 const unsigned char *in, size_t len)
 | |
| {
 | |
|     S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
 | |
| 
 | |
|     s390x_km(in, len, out, cctx->fc, &cctx->km.param);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define S390X_aes_128_ofb_CAPABLE (S390X_aes_128_CAPABLE &&		\
 | |
|                                     (OPENSSL_s390xcap_P.kmo[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_128)))
 | |
| # define S390X_aes_192_ofb_CAPABLE (S390X_aes_192_CAPABLE &&		\
 | |
|                                     (OPENSSL_s390xcap_P.kmo[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_192)))
 | |
| # define S390X_aes_256_ofb_CAPABLE (S390X_aes_256_CAPABLE &&		\
 | |
|                                     (OPENSSL_s390xcap_P.kmo[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_256)))
 | |
| 
 | |
| static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx,
 | |
|                                   const unsigned char *key,
 | |
|                                   const unsigned char *ivec, int enc)
 | |
| {
 | |
|     S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
 | |
|     const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
 | |
|     const int keylen = EVP_CIPHER_CTX_key_length(ctx);
 | |
|     const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
 | |
| 
 | |
|     memcpy(cctx->kmo.param.cv, iv, ivlen);
 | |
|     memcpy(cctx->kmo.param.k, key, keylen);
 | |
|     cctx->fc = S390X_AES_FC(keylen);
 | |
|     cctx->res = 0;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                 const unsigned char *in, size_t len)
 | |
| {
 | |
|     S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
 | |
|     int n = cctx->res;
 | |
|     int rem;
 | |
| 
 | |
|     while (n && len) {
 | |
|         *out = *in ^ cctx->kmo.param.cv[n];
 | |
|         n = (n + 1) & 0xf;
 | |
|         --len;
 | |
|         ++in;
 | |
|         ++out;
 | |
|     }
 | |
| 
 | |
|     rem = len & 0xf;
 | |
| 
 | |
|     len &= ~(size_t)0xf;
 | |
|     if (len) {
 | |
|         s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param);
 | |
| 
 | |
|         out += len;
 | |
|         in += len;
 | |
|     }
 | |
| 
 | |
|     if (rem) {
 | |
|         s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc,
 | |
|                  cctx->kmo.param.k);
 | |
| 
 | |
|         while (rem--) {
 | |
|             out[n] = in[n] ^ cctx->kmo.param.cv[n];
 | |
|             ++n;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cctx->res = n;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define S390X_aes_128_cfb_CAPABLE (S390X_aes_128_CAPABLE &&		\
 | |
|                                     (OPENSSL_s390xcap_P.kmf[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_128)))
 | |
| # define S390X_aes_192_cfb_CAPABLE (S390X_aes_192_CAPABLE &&		\
 | |
|                                     (OPENSSL_s390xcap_P.kmf[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_192)))
 | |
| # define S390X_aes_256_cfb_CAPABLE (S390X_aes_256_CAPABLE &&		\
 | |
|                                     (OPENSSL_s390xcap_P.kmf[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_256)))
 | |
| 
 | |
| static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx,
 | |
|                                   const unsigned char *key,
 | |
|                                   const unsigned char *ivec, int enc)
 | |
| {
 | |
|     S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
 | |
|     const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
 | |
|     const int keylen = EVP_CIPHER_CTX_key_length(ctx);
 | |
|     const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
 | |
| 
 | |
|     cctx->fc = S390X_AES_FC(keylen);
 | |
|     cctx->fc |= 16 << 24;   /* 16 bytes cipher feedback */
 | |
|     if (!enc)
 | |
|         cctx->fc |= S390X_DECRYPT;
 | |
| 
 | |
|     cctx->res = 0;
 | |
|     memcpy(cctx->kmf.param.cv, iv, ivlen);
 | |
|     memcpy(cctx->kmf.param.k, key, keylen);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                 const unsigned char *in, size_t len)
 | |
| {
 | |
|     S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
 | |
|     const int keylen = EVP_CIPHER_CTX_key_length(ctx);
 | |
|     const int enc = EVP_CIPHER_CTX_encrypting(ctx);
 | |
|     int n = cctx->res;
 | |
|     int rem;
 | |
|     unsigned char tmp;
 | |
| 
 | |
|     while (n && len) {
 | |
|         tmp = *in;
 | |
|         *out = cctx->kmf.param.cv[n] ^ tmp;
 | |
|         cctx->kmf.param.cv[n] = enc ? *out : tmp;
 | |
|         n = (n + 1) & 0xf;
 | |
|         --len;
 | |
|         ++in;
 | |
|         ++out;
 | |
|     }
 | |
| 
 | |
|     rem = len & 0xf;
 | |
| 
 | |
|     len &= ~(size_t)0xf;
 | |
|     if (len) {
 | |
|         s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
 | |
| 
 | |
|         out += len;
 | |
|         in += len;
 | |
|     }
 | |
| 
 | |
|     if (rem) {
 | |
|         s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv,
 | |
|                  S390X_AES_FC(keylen), cctx->kmf.param.k);
 | |
| 
 | |
|         while (rem--) {
 | |
|             tmp = in[n];
 | |
|             out[n] = cctx->kmf.param.cv[n] ^ tmp;
 | |
|             cctx->kmf.param.cv[n] = enc ? out[n] : tmp;
 | |
|             ++n;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cctx->res = n;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define S390X_aes_128_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_128))
 | |
| # define S390X_aes_192_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_192))
 | |
| # define S390X_aes_256_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_256))
 | |
| 
 | |
| static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx,
 | |
|                                    const unsigned char *key,
 | |
|                                    const unsigned char *ivec, int enc)
 | |
| {
 | |
|     S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
 | |
|     const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
 | |
|     const int keylen = EVP_CIPHER_CTX_key_length(ctx);
 | |
|     const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
 | |
| 
 | |
|     cctx->fc = S390X_AES_FC(keylen);
 | |
|     cctx->fc |= 1 << 24;   /* 1 byte cipher feedback */
 | |
|     if (!enc)
 | |
|         cctx->fc |= S390X_DECRYPT;
 | |
| 
 | |
|     memcpy(cctx->kmf.param.cv, iv, ivlen);
 | |
|     memcpy(cctx->kmf.param.k, key, keylen);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                  const unsigned char *in, size_t len)
 | |
| {
 | |
|     S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
 | |
| 
 | |
|     s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define S390X_aes_128_cfb1_CAPABLE	0
 | |
| # define S390X_aes_192_cfb1_CAPABLE	0
 | |
| # define S390X_aes_256_cfb1_CAPABLE	0
 | |
| 
 | |
| # define s390x_aes_cfb1_init_key aes_init_key
 | |
| 
 | |
| # define s390x_aes_cfb1_cipher aes_cfb1_cipher
 | |
| static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                  const unsigned char *in, size_t len);
 | |
| 
 | |
| # define S390X_aes_128_ctr_CAPABLE	1	/* checked by callee */
 | |
| # define S390X_aes_192_ctr_CAPABLE	1
 | |
| # define S390X_aes_256_ctr_CAPABLE	1
 | |
| # define S390X_AES_CTR_CTX		EVP_AES_KEY
 | |
| 
 | |
| # define s390x_aes_ctr_init_key aes_init_key
 | |
| 
 | |
| # define s390x_aes_ctr_cipher aes_ctr_cipher
 | |
| static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                 const unsigned char *in, size_t len);
 | |
| 
 | |
| # define S390X_aes_128_gcm_CAPABLE (S390X_aes_128_CAPABLE &&		\
 | |
|                                     (OPENSSL_s390xcap_P.kma[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_128)))
 | |
| # define S390X_aes_192_gcm_CAPABLE (S390X_aes_192_CAPABLE &&		\
 | |
|                                     (OPENSSL_s390xcap_P.kma[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_192)))
 | |
| # define S390X_aes_256_gcm_CAPABLE (S390X_aes_256_CAPABLE &&		\
 | |
|                                     (OPENSSL_s390xcap_P.kma[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_256)))
 | |
| 
 | |
| /* iv + padding length for iv lenghts != 12 */
 | |
| # define S390X_gcm_ivpadlen(i)	((((i) + 15) >> 4 << 4) + 16)
 | |
| 
 | |
| /*-
 | |
|  * Process additional authenticated data. Returns 0 on success. Code is
 | |
|  * big-endian.
 | |
|  */
 | |
| static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad,
 | |
|                              size_t len)
 | |
| {
 | |
|     unsigned long long alen;
 | |
|     int n, rem;
 | |
| 
 | |
|     if (ctx->kma.param.tpcl)
 | |
|         return -2;
 | |
| 
 | |
|     alen = ctx->kma.param.taadl + len;
 | |
|     if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
 | |
|         return -1;
 | |
|     ctx->kma.param.taadl = alen;
 | |
| 
 | |
|     n = ctx->areslen;
 | |
|     if (n) {
 | |
|         while (n && len) {
 | |
|             ctx->ares[n] = *aad;
 | |
|             n = (n + 1) & 0xf;
 | |
|             ++aad;
 | |
|             --len;
 | |
|         }
 | |
|         /* ctx->ares contains a complete block if offset has wrapped around */
 | |
|         if (!n) {
 | |
|             s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
 | |
|             ctx->fc |= S390X_KMA_HS;
 | |
|         }
 | |
|         ctx->areslen = n;
 | |
|     }
 | |
| 
 | |
|     rem = len & 0xf;
 | |
| 
 | |
|     len &= ~(size_t)0xf;
 | |
|     if (len) {
 | |
|         s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
 | |
|         aad += len;
 | |
|         ctx->fc |= S390X_KMA_HS;
 | |
|     }
 | |
| 
 | |
|     if (rem) {
 | |
|         ctx->areslen = rem;
 | |
| 
 | |
|         do {
 | |
|             --rem;
 | |
|             ctx->ares[rem] = aad[rem];
 | |
|         } while (rem);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for
 | |
|  * success. Code is big-endian.
 | |
|  */
 | |
| static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in,
 | |
|                          unsigned char *out, size_t len)
 | |
| {
 | |
|     const unsigned char *inptr;
 | |
|     unsigned long long mlen;
 | |
|     union {
 | |
|         unsigned int w[4];
 | |
|         unsigned char b[16];
 | |
|     } buf;
 | |
|     size_t inlen;
 | |
|     int n, rem, i;
 | |
| 
 | |
|     mlen = ctx->kma.param.tpcl + len;
 | |
|     if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
 | |
|         return -1;
 | |
|     ctx->kma.param.tpcl = mlen;
 | |
| 
 | |
|     n = ctx->mreslen;
 | |
|     if (n) {
 | |
|         inptr = in;
 | |
|         inlen = len;
 | |
|         while (n && inlen) {
 | |
|             ctx->mres[n] = *inptr;
 | |
|             n = (n + 1) & 0xf;
 | |
|             ++inptr;
 | |
|             --inlen;
 | |
|         }
 | |
|         /* ctx->mres contains a complete block if offset has wrapped around */
 | |
|         if (!n) {
 | |
|             s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b,
 | |
|                       ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
 | |
|             ctx->fc |= S390X_KMA_HS;
 | |
|             ctx->areslen = 0;
 | |
| 
 | |
|             /* previous call already encrypted/decrypted its remainder,
 | |
|              * see comment below */
 | |
|             n = ctx->mreslen;
 | |
|             while (n) {
 | |
|                 *out = buf.b[n];
 | |
|                 n = (n + 1) & 0xf;
 | |
|                 ++out;
 | |
|                 ++in;
 | |
|                 --len;
 | |
|             }
 | |
|             ctx->mreslen = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     rem = len & 0xf;
 | |
| 
 | |
|     len &= ~(size_t)0xf;
 | |
|     if (len) {
 | |
|         s390x_kma(ctx->ares, ctx->areslen, in, len, out,
 | |
|                   ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
 | |
|         in += len;
 | |
|         out += len;
 | |
|         ctx->fc |= S390X_KMA_HS;
 | |
|         ctx->areslen = 0;
 | |
|     }
 | |
| 
 | |
|     /*-
 | |
|      * If there is a remainder, it has to be saved such that it can be
 | |
|      * processed by kma later. However, we also have to do the for-now
 | |
|      * unauthenticated encryption/decryption part here and now...
 | |
|      */
 | |
|     if (rem) {
 | |
|         if (!ctx->mreslen) {
 | |
|             buf.w[0] = ctx->kma.param.j0.w[0];
 | |
|             buf.w[1] = ctx->kma.param.j0.w[1];
 | |
|             buf.w[2] = ctx->kma.param.j0.w[2];
 | |
|             buf.w[3] = ctx->kma.param.cv.w + 1;
 | |
|             s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k);
 | |
|         }
 | |
| 
 | |
|         n = ctx->mreslen;
 | |
|         for (i = 0; i < rem; i++) {
 | |
|             ctx->mres[n + i] = in[i];
 | |
|             out[i] = in[i] ^ ctx->kres[n + i];
 | |
|         }
 | |
| 
 | |
|         ctx->mreslen += rem;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Initialize context structure. Code is big-endian.
 | |
|  */
 | |
| static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx,
 | |
|                                 const unsigned char *iv)
 | |
| {
 | |
|     ctx->kma.param.t.g[0] = 0;
 | |
|     ctx->kma.param.t.g[1] = 0;
 | |
|     ctx->kma.param.tpcl = 0;
 | |
|     ctx->kma.param.taadl = 0;
 | |
|     ctx->mreslen = 0;
 | |
|     ctx->areslen = 0;
 | |
|     ctx->kreslen = 0;
 | |
| 
 | |
|     if (ctx->ivlen == 12) {
 | |
|         memcpy(&ctx->kma.param.j0, iv, ctx->ivlen);
 | |
|         ctx->kma.param.j0.w[3] = 1;
 | |
|         ctx->kma.param.cv.w = 1;
 | |
|     } else {
 | |
|         /* ctx->iv has the right size and is already padded. */
 | |
|         memcpy(ctx->iv, iv, ctx->ivlen);
 | |
|         s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL,
 | |
|                   ctx->fc, &ctx->kma.param);
 | |
|         ctx->fc |= S390X_KMA_HS;
 | |
| 
 | |
|         ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0];
 | |
|         ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1];
 | |
|         ctx->kma.param.cv.w = ctx->kma.param.j0.w[3];
 | |
|         ctx->kma.param.t.g[0] = 0;
 | |
|         ctx->kma.param.t.g[1] = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Performs various operations on the context structure depending on control
 | |
|  * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
 | |
|  * Code is big-endian.
 | |
|  */
 | |
| static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
 | |
| {
 | |
|     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
 | |
|     S390X_AES_GCM_CTX *gctx_out;
 | |
|     EVP_CIPHER_CTX *out;
 | |
|     unsigned char *buf, *iv;
 | |
|     int ivlen, enc, len;
 | |
| 
 | |
|     switch (type) {
 | |
|     case EVP_CTRL_INIT:
 | |
|         ivlen = EVP_CIPHER_CTX_iv_length(c);
 | |
|         iv = EVP_CIPHER_CTX_iv_noconst(c);
 | |
|         gctx->key_set = 0;
 | |
|         gctx->iv_set = 0;
 | |
|         gctx->ivlen = ivlen;
 | |
|         gctx->iv = iv;
 | |
|         gctx->taglen = -1;
 | |
|         gctx->iv_gen = 0;
 | |
|         gctx->tls_aad_len = -1;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_SET_IVLEN:
 | |
|         if (arg <= 0)
 | |
|             return 0;
 | |
| 
 | |
|         if (arg != 12) {
 | |
|             iv = EVP_CIPHER_CTX_iv_noconst(c);
 | |
|             len = S390X_gcm_ivpadlen(arg);
 | |
| 
 | |
|             /* Allocate memory for iv if needed. */
 | |
|             if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) {
 | |
|                 if (gctx->iv != iv)
 | |
|                     OPENSSL_free(gctx->iv);
 | |
| 
 | |
|                 if ((gctx->iv = OPENSSL_malloc(len)) == NULL) {
 | |
|                     EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
 | |
|                     return 0;
 | |
|                 }
 | |
|             }
 | |
|             /* Add padding. */
 | |
|             memset(gctx->iv + arg, 0, len - arg - 8);
 | |
|             *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3;
 | |
|         }
 | |
|         gctx->ivlen = arg;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_SET_TAG:
 | |
|         buf = EVP_CIPHER_CTX_buf_noconst(c);
 | |
|         enc = EVP_CIPHER_CTX_encrypting(c);
 | |
|         if (arg <= 0 || arg > 16 || enc)
 | |
|             return 0;
 | |
| 
 | |
|         memcpy(buf, ptr, arg);
 | |
|         gctx->taglen = arg;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_GET_TAG:
 | |
|         enc = EVP_CIPHER_CTX_encrypting(c);
 | |
|         if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0)
 | |
|             return 0;
 | |
| 
 | |
|         memcpy(ptr, gctx->kma.param.t.b, arg);
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_GCM_SET_IV_FIXED:
 | |
|         /* Special case: -1 length restores whole iv */
 | |
|         if (arg == -1) {
 | |
|             memcpy(gctx->iv, ptr, gctx->ivlen);
 | |
|             gctx->iv_gen = 1;
 | |
|             return 1;
 | |
|         }
 | |
|         /*
 | |
|          * Fixed field must be at least 4 bytes and invocation field at least
 | |
|          * 8.
 | |
|          */
 | |
|         if ((arg < 4) || (gctx->ivlen - arg) < 8)
 | |
|             return 0;
 | |
| 
 | |
|         if (arg)
 | |
|             memcpy(gctx->iv, ptr, arg);
 | |
| 
 | |
|         enc = EVP_CIPHER_CTX_encrypting(c);
 | |
|         if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
 | |
|             return 0;
 | |
| 
 | |
|         gctx->iv_gen = 1;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_GCM_IV_GEN:
 | |
|         if (gctx->iv_gen == 0 || gctx->key_set == 0)
 | |
|             return 0;
 | |
| 
 | |
|         s390x_aes_gcm_setiv(gctx, gctx->iv);
 | |
| 
 | |
|         if (arg <= 0 || arg > gctx->ivlen)
 | |
|             arg = gctx->ivlen;
 | |
| 
 | |
|         memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
 | |
|         /*
 | |
|          * Invocation field will be at least 8 bytes in size and so no need
 | |
|          * to check wrap around or increment more than last 8 bytes.
 | |
|          */
 | |
|         ctr64_inc(gctx->iv + gctx->ivlen - 8);
 | |
|         gctx->iv_set = 1;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_GCM_SET_IV_INV:
 | |
|         enc = EVP_CIPHER_CTX_encrypting(c);
 | |
|         if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc)
 | |
|             return 0;
 | |
| 
 | |
|         memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
 | |
|         s390x_aes_gcm_setiv(gctx, gctx->iv);
 | |
|         gctx->iv_set = 1;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_TLS1_AAD:
 | |
|         /* Save the aad for later use. */
 | |
|         if (arg != EVP_AEAD_TLS1_AAD_LEN)
 | |
|             return 0;
 | |
| 
 | |
|         buf = EVP_CIPHER_CTX_buf_noconst(c);
 | |
|         memcpy(buf, ptr, arg);
 | |
|         gctx->tls_aad_len = arg;
 | |
|         gctx->tls_enc_records = 0;
 | |
| 
 | |
|         len = buf[arg - 2] << 8 | buf[arg - 1];
 | |
|         /* Correct length for explicit iv. */
 | |
|         if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
 | |
|             return 0;
 | |
|         len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
 | |
| 
 | |
|         /* If decrypting correct for tag too. */
 | |
|         enc = EVP_CIPHER_CTX_encrypting(c);
 | |
|         if (!enc) {
 | |
|             if (len < EVP_GCM_TLS_TAG_LEN)
 | |
|                 return 0;
 | |
|             len -= EVP_GCM_TLS_TAG_LEN;
 | |
|         }
 | |
|         buf[arg - 2] = len >> 8;
 | |
|         buf[arg - 1] = len & 0xff;
 | |
|         /* Extra padding: tag appended to record. */
 | |
|         return EVP_GCM_TLS_TAG_LEN;
 | |
| 
 | |
|     case EVP_CTRL_COPY:
 | |
|         out = ptr;
 | |
|         gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out);
 | |
|         iv = EVP_CIPHER_CTX_iv_noconst(c);
 | |
| 
 | |
|         if (gctx->iv == iv) {
 | |
|             gctx_out->iv = EVP_CIPHER_CTX_iv_noconst(out);
 | |
|         } else {
 | |
|             len = S390X_gcm_ivpadlen(gctx->ivlen);
 | |
| 
 | |
|             if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) {
 | |
|                 EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
 | |
|                 return 0;
 | |
|             }
 | |
| 
 | |
|             memcpy(gctx_out->iv, gctx->iv, len);
 | |
|         }
 | |
|         return 1;
 | |
| 
 | |
|     default:
 | |
|         return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned.
 | |
|  */
 | |
| static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx,
 | |
|                                   const unsigned char *key,
 | |
|                                   const unsigned char *iv, int enc)
 | |
| {
 | |
|     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
 | |
|     int keylen;
 | |
| 
 | |
|     if (iv == NULL && key == NULL)
 | |
|         return 1;
 | |
| 
 | |
|     if (key != NULL) {
 | |
|         keylen = EVP_CIPHER_CTX_key_length(ctx);
 | |
|         memcpy(&gctx->kma.param.k, key, keylen);
 | |
| 
 | |
|         gctx->fc = S390X_AES_FC(keylen);
 | |
|         if (!enc)
 | |
|             gctx->fc |= S390X_DECRYPT;
 | |
| 
 | |
|         if (iv == NULL && gctx->iv_set)
 | |
|             iv = gctx->iv;
 | |
| 
 | |
|         if (iv != NULL) {
 | |
|             s390x_aes_gcm_setiv(gctx, iv);
 | |
|             gctx->iv_set = 1;
 | |
|         }
 | |
|         gctx->key_set = 1;
 | |
|     } else {
 | |
|         if (gctx->key_set)
 | |
|             s390x_aes_gcm_setiv(gctx, iv);
 | |
|         else
 | |
|             memcpy(gctx->iv, iv, gctx->ivlen);
 | |
| 
 | |
|         gctx->iv_set = 1;
 | |
|         gctx->iv_gen = 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
 | |
|  * if successful. Otherwise -1 is returned. Code is big-endian.
 | |
|  */
 | |
| static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                     const unsigned char *in, size_t len)
 | |
| {
 | |
|     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
 | |
|     const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
 | |
|     const int enc = EVP_CIPHER_CTX_encrypting(ctx);
 | |
|     int rv = -1;
 | |
| 
 | |
|     if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
 | |
|         return -1;
 | |
| 
 | |
|     /*
 | |
|      * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness
 | |
|      * Requirements from SP 800-38D".  The requirements is for one party to the
 | |
|      * communication to fail after 2^64 - 1 keys.  We do this on the encrypting
 | |
|      * side only.
 | |
|      */
 | |
|     if (ctx->encrypt && ++gctx->tls_enc_records == 0) {
 | |
|         EVPerr(EVP_F_S390X_AES_GCM_TLS_CIPHER, EVP_R_TOO_MANY_RECORDS);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN
 | |
|                                      : EVP_CTRL_GCM_SET_IV_INV,
 | |
|                             EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
 | |
|         goto err;
 | |
| 
 | |
|     in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
 | |
|     out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
 | |
|     len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
 | |
| 
 | |
|     gctx->kma.param.taadl = gctx->tls_aad_len << 3;
 | |
|     gctx->kma.param.tpcl = len << 3;
 | |
|     s390x_kma(buf, gctx->tls_aad_len, in, len, out,
 | |
|               gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
 | |
| 
 | |
|     if (enc) {
 | |
|         memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN);
 | |
|         rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
 | |
|     } else {
 | |
|         if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len,
 | |
|                           EVP_GCM_TLS_TAG_LEN)) {
 | |
|             OPENSSL_cleanse(out, len);
 | |
|             goto err;
 | |
|         }
 | |
|         rv = len;
 | |
|     }
 | |
| err:
 | |
|     gctx->iv_set = 0;
 | |
|     gctx->tls_aad_len = -1;
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Called from EVP layer to initialize context, process additional
 | |
|  * authenticated data, en/de-crypt plain/cipher-text and authenticate
 | |
|  * ciphertext or process a TLS packet, depending on context. Returns bytes
 | |
|  * written on success. Otherwise -1 is returned. Code is big-endian.
 | |
|  */
 | |
| static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                 const unsigned char *in, size_t len)
 | |
| {
 | |
|     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
 | |
|     unsigned char *buf, tmp[16];
 | |
|     int enc;
 | |
| 
 | |
|     if (!gctx->key_set)
 | |
|         return -1;
 | |
| 
 | |
|     if (gctx->tls_aad_len >= 0)
 | |
|         return s390x_aes_gcm_tls_cipher(ctx, out, in, len);
 | |
| 
 | |
|     if (!gctx->iv_set)
 | |
|         return -1;
 | |
| 
 | |
|     if (in != NULL) {
 | |
|         if (out == NULL) {
 | |
|             if (s390x_aes_gcm_aad(gctx, in, len))
 | |
|                 return -1;
 | |
|         } else {
 | |
|             if (s390x_aes_gcm(gctx, in, out, len))
 | |
|                 return -1;
 | |
|         }
 | |
|         return len;
 | |
|     } else {
 | |
|         gctx->kma.param.taadl <<= 3;
 | |
|         gctx->kma.param.tpcl <<= 3;
 | |
|         s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp,
 | |
|                   gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
 | |
|         /* recall that we already did en-/decrypt gctx->mres
 | |
|          * and returned it to caller... */
 | |
|         OPENSSL_cleanse(tmp, gctx->mreslen);
 | |
|         gctx->iv_set = 0;
 | |
| 
 | |
|         enc = EVP_CIPHER_CTX_encrypting(ctx);
 | |
|         if (enc) {
 | |
|             gctx->taglen = 16;
 | |
|         } else {
 | |
|             if (gctx->taglen < 0)
 | |
|                 return -1;
 | |
| 
 | |
|             buf = EVP_CIPHER_CTX_buf_noconst(ctx);
 | |
|             if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen))
 | |
|                 return -1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c)
 | |
| {
 | |
|     S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
 | |
|     const unsigned char *iv;
 | |
| 
 | |
|     if (gctx == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     iv = EVP_CIPHER_CTX_iv(c);
 | |
|     if (iv != gctx->iv)
 | |
|         OPENSSL_free(gctx->iv);
 | |
| 
 | |
|     OPENSSL_cleanse(gctx, sizeof(*gctx));
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # define S390X_AES_XTS_CTX		EVP_AES_XTS_CTX
 | |
| # define S390X_aes_128_xts_CAPABLE	1	/* checked by callee */
 | |
| # define S390X_aes_256_xts_CAPABLE	1
 | |
| 
 | |
| # define s390x_aes_xts_init_key aes_xts_init_key
 | |
| static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx,
 | |
|                                   const unsigned char *key,
 | |
|                                   const unsigned char *iv, int enc);
 | |
| # define s390x_aes_xts_cipher aes_xts_cipher
 | |
| static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                 const unsigned char *in, size_t len);
 | |
| # define s390x_aes_xts_ctrl aes_xts_ctrl
 | |
| static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
 | |
| # define s390x_aes_xts_cleanup aes_xts_cleanup
 | |
| 
 | |
| # define S390X_aes_128_ccm_CAPABLE (S390X_aes_128_CAPABLE &&		\
 | |
|                                     (OPENSSL_s390xcap_P.kmac[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_128)))
 | |
| # define S390X_aes_192_ccm_CAPABLE (S390X_aes_192_CAPABLE &&		\
 | |
|                                     (OPENSSL_s390xcap_P.kmac[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_192)))
 | |
| # define S390X_aes_256_ccm_CAPABLE (S390X_aes_256_CAPABLE &&		\
 | |
|                                     (OPENSSL_s390xcap_P.kmac[0] &	\
 | |
|                                      S390X_CAPBIT(S390X_AES_256)))
 | |
| 
 | |
| # define S390X_CCM_AAD_FLAG	0x40
 | |
| 
 | |
| /*-
 | |
|  * Set nonce and length fields. Code is big-endian.
 | |
|  */
 | |
| static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx,
 | |
|                                           const unsigned char *nonce,
 | |
|                                           size_t mlen)
 | |
| {
 | |
|     ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG;
 | |
|     ctx->aes.ccm.nonce.g[1] = mlen;
 | |
|     memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l);
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Process additional authenticated data. Code is big-endian.
 | |
|  */
 | |
| static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad,
 | |
|                               size_t alen)
 | |
| {
 | |
|     unsigned char *ptr;
 | |
|     int i, rem;
 | |
| 
 | |
|     if (!alen)
 | |
|         return;
 | |
| 
 | |
|     ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG;
 | |
| 
 | |
|     /* Suppress 'type-punned pointer dereference' warning. */
 | |
|     ptr = ctx->aes.ccm.buf.b;
 | |
| 
 | |
|     if (alen < ((1 << 16) - (1 << 8))) {
 | |
|         *(uint16_t *)ptr = alen;
 | |
|         i = 2;
 | |
|     } else if (sizeof(alen) == 8
 | |
|                && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) {
 | |
|         *(uint16_t *)ptr = 0xffff;
 | |
|         *(uint64_t *)(ptr + 2) = alen;
 | |
|         i = 10;
 | |
|     } else {
 | |
|         *(uint16_t *)ptr = 0xfffe;
 | |
|         *(uint32_t *)(ptr + 2) = alen;
 | |
|         i = 6;
 | |
|     }
 | |
| 
 | |
|     while (i < 16 && alen) {
 | |
|         ctx->aes.ccm.buf.b[i] = *aad;
 | |
|         ++aad;
 | |
|         --alen;
 | |
|         ++i;
 | |
|     }
 | |
|     while (i < 16) {
 | |
|         ctx->aes.ccm.buf.b[i] = 0;
 | |
|         ++i;
 | |
|     }
 | |
| 
 | |
|     ctx->aes.ccm.kmac_param.icv.g[0] = 0;
 | |
|     ctx->aes.ccm.kmac_param.icv.g[1] = 0;
 | |
|     s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc,
 | |
|                &ctx->aes.ccm.kmac_param);
 | |
|     ctx->aes.ccm.blocks += 2;
 | |
| 
 | |
|     rem = alen & 0xf;
 | |
|     alen &= ~(size_t)0xf;
 | |
|     if (alen) {
 | |
|         s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
 | |
|         ctx->aes.ccm.blocks += alen >> 4;
 | |
|         aad += alen;
 | |
|     }
 | |
|     if (rem) {
 | |
|         for (i = 0; i < rem; i++)
 | |
|             ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i];
 | |
| 
 | |
|         s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
 | |
|                  ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
 | |
|                  ctx->aes.ccm.kmac_param.k);
 | |
|         ctx->aes.ccm.blocks++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for
 | |
|  * success.
 | |
|  */
 | |
| static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in,
 | |
|                          unsigned char *out, size_t len, int enc)
 | |
| {
 | |
|     size_t n, rem;
 | |
|     unsigned int i, l, num;
 | |
|     unsigned char flags;
 | |
| 
 | |
|     flags = ctx->aes.ccm.nonce.b[0];
 | |
|     if (!(flags & S390X_CCM_AAD_FLAG)) {
 | |
|         s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b,
 | |
|                  ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k);
 | |
|         ctx->aes.ccm.blocks++;
 | |
|     }
 | |
|     l = flags & 0x7;
 | |
|     ctx->aes.ccm.nonce.b[0] = l;
 | |
| 
 | |
|     /*-
 | |
|      * Reconstruct length from encoded length field
 | |
|      * and initialize it with counter value.
 | |
|      */
 | |
|     n = 0;
 | |
|     for (i = 15 - l; i < 15; i++) {
 | |
|         n |= ctx->aes.ccm.nonce.b[i];
 | |
|         ctx->aes.ccm.nonce.b[i] = 0;
 | |
|         n <<= 8;
 | |
|     }
 | |
|     n |= ctx->aes.ccm.nonce.b[15];
 | |
|     ctx->aes.ccm.nonce.b[15] = 1;
 | |
| 
 | |
|     if (n != len)
 | |
|         return -1;		/* length mismatch */
 | |
| 
 | |
|     if (enc) {
 | |
|         /* Two operations per block plus one for tag encryption */
 | |
|         ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1;
 | |
|         if (ctx->aes.ccm.blocks > (1ULL << 61))
 | |
|             return -2;		/* too much data */
 | |
|     }
 | |
| 
 | |
|     num = 0;
 | |
|     rem = len & 0xf;
 | |
|     len &= ~(size_t)0xf;
 | |
| 
 | |
|     if (enc) {
 | |
|         /* mac-then-encrypt */
 | |
|         if (len)
 | |
|             s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
 | |
|         if (rem) {
 | |
|             for (i = 0; i < rem; i++)
 | |
|                 ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i];
 | |
| 
 | |
|             s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
 | |
|                      ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
 | |
|                      ctx->aes.ccm.kmac_param.k);
 | |
|         }
 | |
| 
 | |
|         CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
 | |
|                                     ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
 | |
|                                     &num, (ctr128_f)AES_ctr32_encrypt);
 | |
|     } else {
 | |
|         /* decrypt-then-mac */
 | |
|         CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
 | |
|                                     ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
 | |
|                                     &num, (ctr128_f)AES_ctr32_encrypt);
 | |
| 
 | |
|         if (len)
 | |
|             s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
 | |
|         if (rem) {
 | |
|             for (i = 0; i < rem; i++)
 | |
|                 ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i];
 | |
| 
 | |
|             s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
 | |
|                      ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
 | |
|                      ctx->aes.ccm.kmac_param.k);
 | |
|         }
 | |
|     }
 | |
|     /* encrypt tag */
 | |
|     for (i = 15 - l; i < 16; i++)
 | |
|         ctx->aes.ccm.nonce.b[i] = 0;
 | |
| 
 | |
|     s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc,
 | |
|              ctx->aes.ccm.kmac_param.k);
 | |
|     ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0];
 | |
|     ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1];
 | |
| 
 | |
|     ctx->aes.ccm.nonce.b[0] = flags;	/* restore flags field */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
 | |
|  * if successful. Otherwise -1 is returned.
 | |
|  */
 | |
| static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                     const unsigned char *in, size_t len)
 | |
| {
 | |
|     S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
 | |
|     unsigned char *ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
 | |
|     unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
 | |
|     const int enc = EVP_CIPHER_CTX_encrypting(ctx);
 | |
| 
 | |
|     if (out != in
 | |
|             || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m))
 | |
|         return -1;
 | |
| 
 | |
|     if (enc) {
 | |
|         /* Set explicit iv (sequence number). */
 | |
|         memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN);
 | |
|     }
 | |
| 
 | |
|     len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
 | |
|     /*-
 | |
|      * Get explicit iv (sequence number). We already have fixed iv
 | |
|      * (server/client_write_iv) here.
 | |
|      */
 | |
|     memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN);
 | |
|     s390x_aes_ccm_setiv(cctx, ivec, len);
 | |
| 
 | |
|     /* Process aad (sequence number|type|version|length) */
 | |
|     s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len);
 | |
| 
 | |
|     in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
 | |
|     out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
 | |
| 
 | |
|     if (enc) {
 | |
|         if (s390x_aes_ccm(cctx, in, out, len, enc))
 | |
|             return -1;
 | |
| 
 | |
|         memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
 | |
|         return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
 | |
|     } else {
 | |
|         if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
 | |
|             if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len,
 | |
|                                cctx->aes.ccm.m))
 | |
|                 return len;
 | |
|         }
 | |
| 
 | |
|         OPENSSL_cleanse(out, len);
 | |
|         return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is
 | |
|  * returned.
 | |
|  */
 | |
| static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx,
 | |
|                                   const unsigned char *key,
 | |
|                                   const unsigned char *iv, int enc)
 | |
| {
 | |
|     S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
 | |
|     unsigned char *ivec;
 | |
|     int keylen;
 | |
| 
 | |
|     if (iv == NULL && key == NULL)
 | |
|         return 1;
 | |
| 
 | |
|     if (key != NULL) {
 | |
|         keylen = EVP_CIPHER_CTX_key_length(ctx);
 | |
|         cctx->aes.ccm.fc = S390X_AES_FC(keylen);
 | |
|         memcpy(cctx->aes.ccm.kmac_param.k, key, keylen);
 | |
| 
 | |
|         /* Store encoded m and l. */
 | |
|         cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7)
 | |
|                                  | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3;
 | |
|         memset(cctx->aes.ccm.nonce.b + 1, 0,
 | |
|                sizeof(cctx->aes.ccm.nonce.b));
 | |
|         cctx->aes.ccm.blocks = 0;
 | |
| 
 | |
|         cctx->aes.ccm.key_set = 1;
 | |
|     }
 | |
| 
 | |
|     if (iv != NULL) {
 | |
|         ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
 | |
|         memcpy(ivec, iv, 15 - cctx->aes.ccm.l);
 | |
| 
 | |
|         cctx->aes.ccm.iv_set = 1;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Called from EVP layer to initialize context, process additional
 | |
|  * authenticated data, en/de-crypt plain/cipher-text and authenticate
 | |
|  * plaintext or process a TLS packet, depending on context. Returns bytes
 | |
|  * written on success. Otherwise -1 is returned.
 | |
|  */
 | |
| static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                 const unsigned char *in, size_t len)
 | |
| {
 | |
|     S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
 | |
|     const int enc = EVP_CIPHER_CTX_encrypting(ctx);
 | |
|     int rv;
 | |
|     unsigned char *buf, *ivec;
 | |
| 
 | |
|     if (!cctx->aes.ccm.key_set)
 | |
|         return -1;
 | |
| 
 | |
|     if (cctx->aes.ccm.tls_aad_len >= 0)
 | |
|         return s390x_aes_ccm_tls_cipher(ctx, out, in, len);
 | |
| 
 | |
|     /*-
 | |
|      * Final(): Does not return any data. Recall that ccm is mac-then-encrypt
 | |
|      * so integrity must be checked already at Update() i.e., before
 | |
|      * potentially corrupted data is output.
 | |
|      */
 | |
|     if (in == NULL && out != NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (!cctx->aes.ccm.iv_set)
 | |
|         return -1;
 | |
| 
 | |
|     if (!enc && !cctx->aes.ccm.tag_set)
 | |
|         return -1;
 | |
| 
 | |
|     if (out == NULL) {
 | |
|         /* Update(): Pass message length. */
 | |
|         if (in == NULL) {
 | |
|             ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
 | |
|             s390x_aes_ccm_setiv(cctx, ivec, len);
 | |
| 
 | |
|             cctx->aes.ccm.len_set = 1;
 | |
|             return len;
 | |
|         }
 | |
| 
 | |
|         /* Update(): Process aad. */
 | |
|         if (!cctx->aes.ccm.len_set && len)
 | |
|             return -1;
 | |
| 
 | |
|         s390x_aes_ccm_aad(cctx, in, len);
 | |
|         return len;
 | |
|     }
 | |
| 
 | |
|     /* Update(): Process message. */
 | |
| 
 | |
|     if (!cctx->aes.ccm.len_set) {
 | |
|         /*-
 | |
|          * In case message length was not previously set explicitly via
 | |
|          * Update(), set it now.
 | |
|          */
 | |
|         ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
 | |
|         s390x_aes_ccm_setiv(cctx, ivec, len);
 | |
| 
 | |
|         cctx->aes.ccm.len_set = 1;
 | |
|     }
 | |
| 
 | |
|     if (enc) {
 | |
|         if (s390x_aes_ccm(cctx, in, out, len, enc))
 | |
|             return -1;
 | |
| 
 | |
|         cctx->aes.ccm.tag_set = 1;
 | |
|         return len;
 | |
|     } else {
 | |
|         rv = -1;
 | |
| 
 | |
|         if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
 | |
|             buf = EVP_CIPHER_CTX_buf_noconst(ctx);
 | |
|             if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf,
 | |
|                                cctx->aes.ccm.m))
 | |
|                 rv = len;
 | |
|         }
 | |
| 
 | |
|         if (rv == -1)
 | |
|             OPENSSL_cleanse(out, len);
 | |
| 
 | |
|         cctx->aes.ccm.iv_set = 0;
 | |
|         cctx->aes.ccm.tag_set = 0;
 | |
|         cctx->aes.ccm.len_set = 0;
 | |
|         return rv;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Performs various operations on the context structure depending on control
 | |
|  * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
 | |
|  * Code is big-endian.
 | |
|  */
 | |
| static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
 | |
| {
 | |
|     S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c);
 | |
|     unsigned char *buf, *iv;
 | |
|     int enc, len;
 | |
| 
 | |
|     switch (type) {
 | |
|     case EVP_CTRL_INIT:
 | |
|         cctx->aes.ccm.key_set = 0;
 | |
|         cctx->aes.ccm.iv_set = 0;
 | |
|         cctx->aes.ccm.l = 8;
 | |
|         cctx->aes.ccm.m = 12;
 | |
|         cctx->aes.ccm.tag_set = 0;
 | |
|         cctx->aes.ccm.len_set = 0;
 | |
|         cctx->aes.ccm.tls_aad_len = -1;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_TLS1_AAD:
 | |
|         if (arg != EVP_AEAD_TLS1_AAD_LEN)
 | |
|             return 0;
 | |
| 
 | |
|         /* Save the aad for later use. */
 | |
|         buf = EVP_CIPHER_CTX_buf_noconst(c);
 | |
|         memcpy(buf, ptr, arg);
 | |
|         cctx->aes.ccm.tls_aad_len = arg;
 | |
| 
 | |
|         len = buf[arg - 2] << 8 | buf[arg - 1];
 | |
|         if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
 | |
|             return 0;
 | |
| 
 | |
|         /* Correct length for explicit iv. */
 | |
|         len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
 | |
| 
 | |
|         enc = EVP_CIPHER_CTX_encrypting(c);
 | |
|         if (!enc) {
 | |
|             if (len < cctx->aes.ccm.m)
 | |
|                 return 0;
 | |
| 
 | |
|             /* Correct length for tag. */
 | |
|             len -= cctx->aes.ccm.m;
 | |
|         }
 | |
| 
 | |
|         buf[arg - 2] = len >> 8;
 | |
|         buf[arg - 1] = len & 0xff;
 | |
| 
 | |
|         /* Extra padding: tag appended to record. */
 | |
|         return cctx->aes.ccm.m;
 | |
| 
 | |
|     case EVP_CTRL_CCM_SET_IV_FIXED:
 | |
|         if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
 | |
|             return 0;
 | |
| 
 | |
|         /* Copy to first part of the iv. */
 | |
|         iv = EVP_CIPHER_CTX_iv_noconst(c);
 | |
|         memcpy(iv, ptr, arg);
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_SET_IVLEN:
 | |
|         arg = 15 - arg;
 | |
|         /* fall-through */
 | |
| 
 | |
|     case EVP_CTRL_CCM_SET_L:
 | |
|         if (arg < 2 || arg > 8)
 | |
|             return 0;
 | |
| 
 | |
|         cctx->aes.ccm.l = arg;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_SET_TAG:
 | |
|         if ((arg & 1) || arg < 4 || arg > 16)
 | |
|             return 0;
 | |
| 
 | |
|         enc = EVP_CIPHER_CTX_encrypting(c);
 | |
|         if (enc && ptr)
 | |
|             return 0;
 | |
| 
 | |
|         if (ptr) {
 | |
|             cctx->aes.ccm.tag_set = 1;
 | |
|             buf = EVP_CIPHER_CTX_buf_noconst(c);
 | |
|             memcpy(buf, ptr, arg);
 | |
|         }
 | |
| 
 | |
|         cctx->aes.ccm.m = arg;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_GET_TAG:
 | |
|         enc = EVP_CIPHER_CTX_encrypting(c);
 | |
|         if (!enc || !cctx->aes.ccm.tag_set)
 | |
|             return 0;
 | |
| 
 | |
|         if(arg < cctx->aes.ccm.m)
 | |
|             return 0;
 | |
| 
 | |
|         memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
 | |
|         cctx->aes.ccm.tag_set = 0;
 | |
|         cctx->aes.ccm.iv_set = 0;
 | |
|         cctx->aes.ccm.len_set = 0;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_COPY:
 | |
|         return 1;
 | |
| 
 | |
|     default:
 | |
|         return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| # define s390x_aes_ccm_cleanup aes_ccm_cleanup
 | |
| 
 | |
| # ifndef OPENSSL_NO_OCB
 | |
| #  define S390X_AES_OCB_CTX		EVP_AES_OCB_CTX
 | |
| #  define S390X_aes_128_ocb_CAPABLE	0
 | |
| #  define S390X_aes_192_ocb_CAPABLE	0
 | |
| #  define S390X_aes_256_ocb_CAPABLE	0
 | |
| 
 | |
| #  define s390x_aes_ocb_init_key aes_ocb_init_key
 | |
| static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                                   const unsigned char *iv, int enc);
 | |
| #  define s390x_aes_ocb_cipher aes_ocb_cipher
 | |
| static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                                 const unsigned char *in, size_t len);
 | |
| #  define s390x_aes_ocb_cleanup aes_ocb_cleanup
 | |
| static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *);
 | |
| #  define s390x_aes_ocb_ctrl aes_ocb_ctrl
 | |
| static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
 | |
| # endif
 | |
| 
 | |
| # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,	\
 | |
|                               MODE,flags)				\
 | |
| static const EVP_CIPHER s390x_aes_##keylen##_##mode = {			\
 | |
|     nid##_##keylen##_##nmode,blocksize,					\
 | |
|     keylen / 8,								\
 | |
|     ivlen,								\
 | |
|     flags | EVP_CIPH_##MODE##_MODE,					\
 | |
|     s390x_aes_##mode##_init_key,					\
 | |
|     s390x_aes_##mode##_cipher,						\
 | |
|     NULL,								\
 | |
|     sizeof(S390X_AES_##MODE##_CTX),					\
 | |
|     NULL,								\
 | |
|     NULL,								\
 | |
|     NULL,								\
 | |
|     NULL								\
 | |
| };									\
 | |
| static const EVP_CIPHER aes_##keylen##_##mode = {			\
 | |
|     nid##_##keylen##_##nmode,						\
 | |
|     blocksize,								\
 | |
|     keylen / 8,								\
 | |
|     ivlen,								\
 | |
|     flags | EVP_CIPH_##MODE##_MODE,					\
 | |
|     aes_init_key,							\
 | |
|     aes_##mode##_cipher,						\
 | |
|     NULL,								\
 | |
|     sizeof(EVP_AES_KEY),						\
 | |
|     NULL,								\
 | |
|     NULL,								\
 | |
|     NULL,								\
 | |
|     NULL								\
 | |
| };									\
 | |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void)			\
 | |
| {									\
 | |
|     return S390X_aes_##keylen##_##mode##_CAPABLE ?			\
 | |
|            &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode;	\
 | |
| }
 | |
| 
 | |
| # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\
 | |
| static const EVP_CIPHER s390x_aes_##keylen##_##mode = {			\
 | |
|     nid##_##keylen##_##mode,						\
 | |
|     blocksize,								\
 | |
|     (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8,	\
 | |
|     ivlen,								\
 | |
|     flags | EVP_CIPH_##MODE##_MODE,					\
 | |
|     s390x_aes_##mode##_init_key,					\
 | |
|     s390x_aes_##mode##_cipher,						\
 | |
|     s390x_aes_##mode##_cleanup,						\
 | |
|     sizeof(S390X_AES_##MODE##_CTX),					\
 | |
|     NULL,								\
 | |
|     NULL,								\
 | |
|     s390x_aes_##mode##_ctrl,						\
 | |
|     NULL								\
 | |
| };									\
 | |
| static const EVP_CIPHER aes_##keylen##_##mode = {			\
 | |
|     nid##_##keylen##_##mode,blocksize,					\
 | |
|     (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8,	\
 | |
|     ivlen,								\
 | |
|     flags | EVP_CIPH_##MODE##_MODE,					\
 | |
|     aes_##mode##_init_key,						\
 | |
|     aes_##mode##_cipher,						\
 | |
|     aes_##mode##_cleanup,						\
 | |
|     sizeof(EVP_AES_##MODE##_CTX),					\
 | |
|     NULL,								\
 | |
|     NULL,								\
 | |
|     aes_##mode##_ctrl,							\
 | |
|     NULL								\
 | |
| };									\
 | |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void)			\
 | |
| {									\
 | |
|     return S390X_aes_##keylen##_##mode##_CAPABLE ?			\
 | |
|            &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode;	\
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
 | |
| static const EVP_CIPHER aes_##keylen##_##mode = { \
 | |
|         nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
 | |
|         flags|EVP_CIPH_##MODE##_MODE,   \
 | |
|         aes_init_key,                   \
 | |
|         aes_##mode##_cipher,            \
 | |
|         NULL,                           \
 | |
|         sizeof(EVP_AES_KEY),            \
 | |
|         NULL,NULL,NULL,NULL }; \
 | |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
 | |
| { return &aes_##keylen##_##mode; }
 | |
| 
 | |
| # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
 | |
| static const EVP_CIPHER aes_##keylen##_##mode = { \
 | |
|         nid##_##keylen##_##mode,blocksize, \
 | |
|         (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
 | |
|         flags|EVP_CIPH_##MODE##_MODE,   \
 | |
|         aes_##mode##_init_key,          \
 | |
|         aes_##mode##_cipher,            \
 | |
|         aes_##mode##_cleanup,           \
 | |
|         sizeof(EVP_AES_##MODE##_CTX),   \
 | |
|         NULL,NULL,aes_##mode##_ctrl,NULL }; \
 | |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
 | |
| { return &aes_##keylen##_##mode; }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__))
 | |
| # include "arm_arch.h"
 | |
| # if __ARM_MAX_ARCH__>=7
 | |
| #  if defined(BSAES_ASM)
 | |
| #   define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
 | |
| #  endif
 | |
| #  if defined(VPAES_ASM)
 | |
| #   define VPAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
 | |
| #  endif
 | |
| #  define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES)
 | |
| #  define HWAES_set_encrypt_key aes_v8_set_encrypt_key
 | |
| #  define HWAES_set_decrypt_key aes_v8_set_decrypt_key
 | |
| #  define HWAES_encrypt aes_v8_encrypt
 | |
| #  define HWAES_decrypt aes_v8_decrypt
 | |
| #  define HWAES_cbc_encrypt aes_v8_cbc_encrypt
 | |
| #  define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #if defined(HWAES_CAPABLE)
 | |
| int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits,
 | |
|                           AES_KEY *key);
 | |
| int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits,
 | |
|                           AES_KEY *key);
 | |
| void HWAES_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                    const AES_KEY *key);
 | |
| void HWAES_decrypt(const unsigned char *in, unsigned char *out,
 | |
|                    const AES_KEY *key);
 | |
| void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                        size_t length, const AES_KEY *key,
 | |
|                        unsigned char *ivec, const int enc);
 | |
| void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
 | |
|                                 size_t len, const AES_KEY *key,
 | |
|                                 const unsigned char ivec[16]);
 | |
| void HWAES_xts_encrypt(const unsigned char *inp, unsigned char *out,
 | |
|                        size_t len, const AES_KEY *key1,
 | |
|                        const AES_KEY *key2, const unsigned char iv[16]);
 | |
| void HWAES_xts_decrypt(const unsigned char *inp, unsigned char *out,
 | |
|                        size_t len, const AES_KEY *key1,
 | |
|                        const AES_KEY *key2, const unsigned char iv[16]);
 | |
| #endif
 | |
| 
 | |
| #define BLOCK_CIPHER_generic_pack(nid,keylen,flags)             \
 | |
|         BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)     \
 | |
|         BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)      \
 | |
|         BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)   \
 | |
|         BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)   \
 | |
|         BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags)       \
 | |
|         BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags)       \
 | |
|         BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
 | |
| 
 | |
| static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                         const unsigned char *iv, int enc)
 | |
| {
 | |
|     int ret, mode;
 | |
|     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
 | |
| 
 | |
|     mode = EVP_CIPHER_CTX_mode(ctx);
 | |
|     if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
 | |
|         && !enc) {
 | |
| #ifdef HWAES_CAPABLE
 | |
|         if (HWAES_CAPABLE) {
 | |
|             ret = HWAES_set_decrypt_key(key,
 | |
|                                         EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                         &dat->ks.ks);
 | |
|             dat->block = (block128_f) HWAES_decrypt;
 | |
|             dat->stream.cbc = NULL;
 | |
| # ifdef HWAES_cbc_encrypt
 | |
|             if (mode == EVP_CIPH_CBC_MODE)
 | |
|                 dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
 | |
| # endif
 | |
|         } else
 | |
| #endif
 | |
| #ifdef BSAES_CAPABLE
 | |
|         if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
 | |
|             ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                       &dat->ks.ks);
 | |
|             dat->block = (block128_f) AES_decrypt;
 | |
|             dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt;
 | |
|         } else
 | |
| #endif
 | |
| #ifdef VPAES_CAPABLE
 | |
|         if (VPAES_CAPABLE) {
 | |
|             ret = vpaes_set_decrypt_key(key,
 | |
|                                         EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                         &dat->ks.ks);
 | |
|             dat->block = (block128_f) vpaes_decrypt;
 | |
|             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
 | |
|                 (cbc128_f) vpaes_cbc_encrypt : NULL;
 | |
|         } else
 | |
| #endif
 | |
|         {
 | |
|             ret = AES_set_decrypt_key(key,
 | |
|                                       EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                       &dat->ks.ks);
 | |
|             dat->block = (block128_f) AES_decrypt;
 | |
|             dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
 | |
|                 (cbc128_f) AES_cbc_encrypt : NULL;
 | |
|         }
 | |
|     } else
 | |
| #ifdef HWAES_CAPABLE
 | |
|     if (HWAES_CAPABLE) {
 | |
|         ret = HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                     &dat->ks.ks);
 | |
|         dat->block = (block128_f) HWAES_encrypt;
 | |
|         dat->stream.cbc = NULL;
 | |
| # ifdef HWAES_cbc_encrypt
 | |
|         if (mode == EVP_CIPH_CBC_MODE)
 | |
|             dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
 | |
|         else
 | |
| # endif
 | |
| # ifdef HWAES_ctr32_encrypt_blocks
 | |
|         if (mode == EVP_CIPH_CTR_MODE)
 | |
|             dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
 | |
|         else
 | |
| # endif
 | |
|             (void)0;            /* terminate potentially open 'else' */
 | |
|     } else
 | |
| #endif
 | |
| #ifdef BSAES_CAPABLE
 | |
|     if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
 | |
|         ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                   &dat->ks.ks);
 | |
|         dat->block = (block128_f) AES_encrypt;
 | |
|         dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
 | |
|     } else
 | |
| #endif
 | |
| #ifdef VPAES_CAPABLE
 | |
|     if (VPAES_CAPABLE) {
 | |
|         ret = vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                     &dat->ks.ks);
 | |
|         dat->block = (block128_f) vpaes_encrypt;
 | |
|         dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
 | |
|             (cbc128_f) vpaes_cbc_encrypt : NULL;
 | |
|     } else
 | |
| #endif
 | |
|     {
 | |
|         ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                   &dat->ks.ks);
 | |
|         dat->block = (block128_f) AES_encrypt;
 | |
|         dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
 | |
|             (cbc128_f) AES_cbc_encrypt : NULL;
 | |
| #ifdef AES_CTR_ASM
 | |
|         if (mode == EVP_CIPH_CTR_MODE)
 | |
|             dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                           const unsigned char *in, size_t len)
 | |
| {
 | |
|     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
 | |
| 
 | |
|     if (dat->stream.cbc)
 | |
|         (*dat->stream.cbc) (in, out, len, &dat->ks,
 | |
|                             EVP_CIPHER_CTX_iv_noconst(ctx),
 | |
|                             EVP_CIPHER_CTX_encrypting(ctx));
 | |
|     else if (EVP_CIPHER_CTX_encrypting(ctx))
 | |
|         CRYPTO_cbc128_encrypt(in, out, len, &dat->ks,
 | |
|                               EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
 | |
|     else
 | |
|         CRYPTO_cbc128_decrypt(in, out, len, &dat->ks,
 | |
|                               EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                           const unsigned char *in, size_t len)
 | |
| {
 | |
|     size_t bl = EVP_CIPHER_CTX_block_size(ctx);
 | |
|     size_t i;
 | |
|     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
 | |
| 
 | |
|     if (len < bl)
 | |
|         return 1;
 | |
| 
 | |
|     for (i = 0, len -= bl; i <= len; i += bl)
 | |
|         (*dat->block) (in + i, out + i, &dat->ks);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                           const unsigned char *in, size_t len)
 | |
| {
 | |
|     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
 | |
| 
 | |
|     int num = EVP_CIPHER_CTX_num(ctx);
 | |
|     CRYPTO_ofb128_encrypt(in, out, len, &dat->ks,
 | |
|                           EVP_CIPHER_CTX_iv_noconst(ctx), &num, dat->block);
 | |
|     EVP_CIPHER_CTX_set_num(ctx, num);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                           const unsigned char *in, size_t len)
 | |
| {
 | |
|     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
 | |
| 
 | |
|     int num = EVP_CIPHER_CTX_num(ctx);
 | |
|     CRYPTO_cfb128_encrypt(in, out, len, &dat->ks,
 | |
|                           EVP_CIPHER_CTX_iv_noconst(ctx), &num,
 | |
|                           EVP_CIPHER_CTX_encrypting(ctx), dat->block);
 | |
|     EVP_CIPHER_CTX_set_num(ctx, num);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                            const unsigned char *in, size_t len)
 | |
| {
 | |
|     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
 | |
| 
 | |
|     int num = EVP_CIPHER_CTX_num(ctx);
 | |
|     CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks,
 | |
|                             EVP_CIPHER_CTX_iv_noconst(ctx), &num,
 | |
|                             EVP_CIPHER_CTX_encrypting(ctx), dat->block);
 | |
|     EVP_CIPHER_CTX_set_num(ctx, num);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                            const unsigned char *in, size_t len)
 | |
| {
 | |
|     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
 | |
| 
 | |
|     if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) {
 | |
|         int num = EVP_CIPHER_CTX_num(ctx);
 | |
|         CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks,
 | |
|                                 EVP_CIPHER_CTX_iv_noconst(ctx), &num,
 | |
|                                 EVP_CIPHER_CTX_encrypting(ctx), dat->block);
 | |
|         EVP_CIPHER_CTX_set_num(ctx, num);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     while (len >= MAXBITCHUNK) {
 | |
|         int num = EVP_CIPHER_CTX_num(ctx);
 | |
|         CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks,
 | |
|                                 EVP_CIPHER_CTX_iv_noconst(ctx), &num,
 | |
|                                 EVP_CIPHER_CTX_encrypting(ctx), dat->block);
 | |
|         EVP_CIPHER_CTX_set_num(ctx, num);
 | |
|         len -= MAXBITCHUNK;
 | |
|         out += MAXBITCHUNK;
 | |
|         in  += MAXBITCHUNK;
 | |
|     }
 | |
|     if (len) {
 | |
|         int num = EVP_CIPHER_CTX_num(ctx);
 | |
|         CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks,
 | |
|                                 EVP_CIPHER_CTX_iv_noconst(ctx), &num,
 | |
|                                 EVP_CIPHER_CTX_encrypting(ctx), dat->block);
 | |
|         EVP_CIPHER_CTX_set_num(ctx, num);
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                           const unsigned char *in, size_t len)
 | |
| {
 | |
|     unsigned int num = EVP_CIPHER_CTX_num(ctx);
 | |
|     EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
 | |
| 
 | |
|     if (dat->stream.ctr)
 | |
|         CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
 | |
|                                     EVP_CIPHER_CTX_iv_noconst(ctx),
 | |
|                                     EVP_CIPHER_CTX_buf_noconst(ctx),
 | |
|                                     &num, dat->stream.ctr);
 | |
|     else
 | |
|         CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
 | |
|                               EVP_CIPHER_CTX_iv_noconst(ctx),
 | |
|                               EVP_CIPHER_CTX_buf_noconst(ctx), &num,
 | |
|                               dat->block);
 | |
|     EVP_CIPHER_CTX_set_num(ctx, num);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| BLOCK_CIPHER_generic_pack(NID_aes, 128, 0)
 | |
|     BLOCK_CIPHER_generic_pack(NID_aes, 192, 0)
 | |
|     BLOCK_CIPHER_generic_pack(NID_aes, 256, 0)
 | |
| 
 | |
| static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
 | |
| {
 | |
|     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
 | |
|     if (gctx == NULL)
 | |
|         return 0;
 | |
|     OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
 | |
|     if (gctx->iv != EVP_CIPHER_CTX_iv_noconst(c))
 | |
|         OPENSSL_free(gctx->iv);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
 | |
| {
 | |
|     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
 | |
|     switch (type) {
 | |
|     case EVP_CTRL_INIT:
 | |
|         gctx->key_set = 0;
 | |
|         gctx->iv_set = 0;
 | |
|         gctx->ivlen = c->cipher->iv_len;
 | |
|         gctx->iv = c->iv;
 | |
|         gctx->taglen = -1;
 | |
|         gctx->iv_gen = 0;
 | |
|         gctx->tls_aad_len = -1;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_SET_IVLEN:
 | |
|         if (arg <= 0)
 | |
|             return 0;
 | |
|         /* Allocate memory for IV if needed */
 | |
|         if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
 | |
|             if (gctx->iv != c->iv)
 | |
|                 OPENSSL_free(gctx->iv);
 | |
|             if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) {
 | |
|                 EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
|         gctx->ivlen = arg;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_SET_TAG:
 | |
|         if (arg <= 0 || arg > 16 || c->encrypt)
 | |
|             return 0;
 | |
|         memcpy(c->buf, ptr, arg);
 | |
|         gctx->taglen = arg;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_GET_TAG:
 | |
|         if (arg <= 0 || arg > 16 || !c->encrypt
 | |
|             || gctx->taglen < 0)
 | |
|             return 0;
 | |
|         memcpy(ptr, c->buf, arg);
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_GCM_SET_IV_FIXED:
 | |
|         /* Special case: -1 length restores whole IV */
 | |
|         if (arg == -1) {
 | |
|             memcpy(gctx->iv, ptr, gctx->ivlen);
 | |
|             gctx->iv_gen = 1;
 | |
|             return 1;
 | |
|         }
 | |
|         /*
 | |
|          * Fixed field must be at least 4 bytes and invocation field at least
 | |
|          * 8.
 | |
|          */
 | |
|         if ((arg < 4) || (gctx->ivlen - arg) < 8)
 | |
|             return 0;
 | |
|         if (arg)
 | |
|             memcpy(gctx->iv, ptr, arg);
 | |
|         if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
 | |
|             return 0;
 | |
|         gctx->iv_gen = 1;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_GCM_IV_GEN:
 | |
|         if (gctx->iv_gen == 0 || gctx->key_set == 0)
 | |
|             return 0;
 | |
|         CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
 | |
|         if (arg <= 0 || arg > gctx->ivlen)
 | |
|             arg = gctx->ivlen;
 | |
|         memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
 | |
|         /*
 | |
|          * Invocation field will be at least 8 bytes in size and so no need
 | |
|          * to check wrap around or increment more than last 8 bytes.
 | |
|          */
 | |
|         ctr64_inc(gctx->iv + gctx->ivlen - 8);
 | |
|         gctx->iv_set = 1;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_GCM_SET_IV_INV:
 | |
|         if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
 | |
|             return 0;
 | |
|         memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
 | |
|         CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
 | |
|         gctx->iv_set = 1;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_TLS1_AAD:
 | |
|         /* Save the AAD for later use */
 | |
|         if (arg != EVP_AEAD_TLS1_AAD_LEN)
 | |
|             return 0;
 | |
|         memcpy(c->buf, ptr, arg);
 | |
|         gctx->tls_aad_len = arg;
 | |
|         gctx->tls_enc_records = 0;
 | |
|         {
 | |
|             unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1];
 | |
|             /* Correct length for explicit IV */
 | |
|             if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
 | |
|                 return 0;
 | |
|             len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
 | |
|             /* If decrypting correct for tag too */
 | |
|             if (!c->encrypt) {
 | |
|                 if (len < EVP_GCM_TLS_TAG_LEN)
 | |
|                     return 0;
 | |
|                 len -= EVP_GCM_TLS_TAG_LEN;
 | |
|             }
 | |
|             c->buf[arg - 2] = len >> 8;
 | |
|             c->buf[arg - 1] = len & 0xff;
 | |
|         }
 | |
|         /* Extra padding: tag appended to record */
 | |
|         return EVP_GCM_TLS_TAG_LEN;
 | |
| 
 | |
|     case EVP_CTRL_COPY:
 | |
|         {
 | |
|             EVP_CIPHER_CTX *out = ptr;
 | |
|             EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out);
 | |
|             if (gctx->gcm.key) {
 | |
|                 if (gctx->gcm.key != &gctx->ks)
 | |
|                     return 0;
 | |
|                 gctx_out->gcm.key = &gctx_out->ks;
 | |
|             }
 | |
|             if (gctx->iv == c->iv)
 | |
|                 gctx_out->iv = out->iv;
 | |
|             else {
 | |
|                 if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) {
 | |
|                     EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
 | |
|                     return 0;
 | |
|                 }
 | |
|                 memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
 | |
|             }
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|     default:
 | |
|         return -1;
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                             const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
|     if (key) {
 | |
|         do {
 | |
| #ifdef HWAES_CAPABLE
 | |
|             if (HWAES_CAPABLE) {
 | |
|                 HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
 | |
|                 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
 | |
|                                    (block128_f) HWAES_encrypt);
 | |
| # ifdef HWAES_ctr32_encrypt_blocks
 | |
|                 gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
 | |
| # else
 | |
|                 gctx->ctr = NULL;
 | |
| # endif
 | |
|                 break;
 | |
|             } else
 | |
| #endif
 | |
| #ifdef BSAES_CAPABLE
 | |
|             if (BSAES_CAPABLE) {
 | |
|                 AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
 | |
|                 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
 | |
|                                    (block128_f) AES_encrypt);
 | |
|                 gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
 | |
|                 break;
 | |
|             } else
 | |
| #endif
 | |
| #ifdef VPAES_CAPABLE
 | |
|             if (VPAES_CAPABLE) {
 | |
|                 vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
 | |
|                 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
 | |
|                                    (block128_f) vpaes_encrypt);
 | |
|                 gctx->ctr = NULL;
 | |
|                 break;
 | |
|             } else
 | |
| #endif
 | |
|                 (void)0;        /* terminate potentially open 'else' */
 | |
| 
 | |
|             AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
 | |
|             CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
 | |
|                                (block128_f) AES_encrypt);
 | |
| #ifdef AES_CTR_ASM
 | |
|             gctx->ctr = (ctr128_f) AES_ctr32_encrypt;
 | |
| #else
 | |
|             gctx->ctr = NULL;
 | |
| #endif
 | |
|         } while (0);
 | |
| 
 | |
|         /*
 | |
|          * If we have an iv can set it directly, otherwise use saved IV.
 | |
|          */
 | |
|         if (iv == NULL && gctx->iv_set)
 | |
|             iv = gctx->iv;
 | |
|         if (iv) {
 | |
|             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
 | |
|             gctx->iv_set = 1;
 | |
|         }
 | |
|         gctx->key_set = 1;
 | |
|     } else {
 | |
|         /* If key set use IV, otherwise copy */
 | |
|         if (gctx->key_set)
 | |
|             CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
 | |
|         else
 | |
|             memcpy(gctx->iv, iv, gctx->ivlen);
 | |
|         gctx->iv_set = 1;
 | |
|         gctx->iv_gen = 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle TLS GCM packet format. This consists of the last portion of the IV
 | |
|  * followed by the payload and finally the tag. On encrypt generate IV,
 | |
|  * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
 | |
|  * and verify tag.
 | |
|  */
 | |
| 
 | |
| static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                               const unsigned char *in, size_t len)
 | |
| {
 | |
|     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
 | |
|     int rv = -1;
 | |
|     /* Encrypt/decrypt must be performed in place */
 | |
|     if (out != in
 | |
|         || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
 | |
|         return -1;
 | |
|     
 | |
|     /*
 | |
|      * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness
 | |
|      * Requirements from SP 800-38D".  The requirements is for one party to the
 | |
|      * communication to fail after 2^64 - 1 keys.  We do this on the encrypting
 | |
|      * side only.
 | |
|      */
 | |
|     if (ctx->encrypt && ++gctx->tls_enc_records == 0) {
 | |
|         EVPerr(EVP_F_AES_GCM_TLS_CIPHER, EVP_R_TOO_MANY_RECORDS);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Set IV from start of buffer or generate IV and write to start of
 | |
|      * buffer.
 | |
|      */
 | |
|     if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN
 | |
|                                               : EVP_CTRL_GCM_SET_IV_INV,
 | |
|                             EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
 | |
|         goto err;
 | |
|     /* Use saved AAD */
 | |
|     if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
 | |
|         goto err;
 | |
|     /* Fix buffer and length to point to payload */
 | |
|     in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
 | |
|     out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
 | |
|     len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
 | |
|     if (ctx->encrypt) {
 | |
|         /* Encrypt payload */
 | |
|         if (gctx->ctr) {
 | |
|             size_t bulk = 0;
 | |
| #if defined(AES_GCM_ASM)
 | |
|             if (len >= 32 && AES_GCM_ASM(gctx)) {
 | |
|                 if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
 | |
|                     return -1;
 | |
| 
 | |
|                 bulk = AES_gcm_encrypt(in, out, len,
 | |
|                                        gctx->gcm.key,
 | |
|                                        gctx->gcm.Yi.c, gctx->gcm.Xi.u);
 | |
|                 gctx->gcm.len.u[1] += bulk;
 | |
|             }
 | |
| #endif
 | |
|             if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
 | |
|                                             in + bulk,
 | |
|                                             out + bulk,
 | |
|                                             len - bulk, gctx->ctr))
 | |
|                 goto err;
 | |
|         } else {
 | |
|             size_t bulk = 0;
 | |
| #if defined(AES_GCM_ASM2)
 | |
|             if (len >= 32 && AES_GCM_ASM2(gctx)) {
 | |
|                 if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
 | |
|                     return -1;
 | |
| 
 | |
|                 bulk = AES_gcm_encrypt(in, out, len,
 | |
|                                        gctx->gcm.key,
 | |
|                                        gctx->gcm.Yi.c, gctx->gcm.Xi.u);
 | |
|                 gctx->gcm.len.u[1] += bulk;
 | |
|             }
 | |
| #endif
 | |
|             if (CRYPTO_gcm128_encrypt(&gctx->gcm,
 | |
|                                       in + bulk, out + bulk, len - bulk))
 | |
|                 goto err;
 | |
|         }
 | |
|         out += len;
 | |
|         /* Finally write tag */
 | |
|         CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
 | |
|         rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
 | |
|     } else {
 | |
|         /* Decrypt */
 | |
|         if (gctx->ctr) {
 | |
|             size_t bulk = 0;
 | |
| #if defined(AES_GCM_ASM)
 | |
|             if (len >= 16 && AES_GCM_ASM(gctx)) {
 | |
|                 if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
 | |
|                     return -1;
 | |
| 
 | |
|                 bulk = AES_gcm_decrypt(in, out, len,
 | |
|                                        gctx->gcm.key,
 | |
|                                        gctx->gcm.Yi.c, gctx->gcm.Xi.u);
 | |
|                 gctx->gcm.len.u[1] += bulk;
 | |
|             }
 | |
| #endif
 | |
|             if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
 | |
|                                             in + bulk,
 | |
|                                             out + bulk,
 | |
|                                             len - bulk, gctx->ctr))
 | |
|                 goto err;
 | |
|         } else {
 | |
|             size_t bulk = 0;
 | |
| #if defined(AES_GCM_ASM2)
 | |
|             if (len >= 16 && AES_GCM_ASM2(gctx)) {
 | |
|                 if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
 | |
|                     return -1;
 | |
| 
 | |
|                 bulk = AES_gcm_decrypt(in, out, len,
 | |
|                                        gctx->gcm.key,
 | |
|                                        gctx->gcm.Yi.c, gctx->gcm.Xi.u);
 | |
|                 gctx->gcm.len.u[1] += bulk;
 | |
|             }
 | |
| #endif
 | |
|             if (CRYPTO_gcm128_decrypt(&gctx->gcm,
 | |
|                                       in + bulk, out + bulk, len - bulk))
 | |
|                 goto err;
 | |
|         }
 | |
|         /* Retrieve tag */
 | |
|         CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
 | |
|         /* If tag mismatch wipe buffer */
 | |
|         if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
 | |
|             OPENSSL_cleanse(out, len);
 | |
|             goto err;
 | |
|         }
 | |
|         rv = len;
 | |
|     }
 | |
| 
 | |
|  err:
 | |
|     gctx->iv_set = 0;
 | |
|     gctx->tls_aad_len = -1;
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                           const unsigned char *in, size_t len)
 | |
| {
 | |
|     EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
 | |
|     /* If not set up, return error */
 | |
|     if (!gctx->key_set)
 | |
|         return -1;
 | |
| 
 | |
|     if (gctx->tls_aad_len >= 0)
 | |
|         return aes_gcm_tls_cipher(ctx, out, in, len);
 | |
| 
 | |
|     if (!gctx->iv_set)
 | |
|         return -1;
 | |
|     if (in) {
 | |
|         if (out == NULL) {
 | |
|             if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
 | |
|                 return -1;
 | |
|         } else if (ctx->encrypt) {
 | |
|             if (gctx->ctr) {
 | |
|                 size_t bulk = 0;
 | |
| #if defined(AES_GCM_ASM)
 | |
|                 if (len >= 32 && AES_GCM_ASM(gctx)) {
 | |
|                     size_t res = (16 - gctx->gcm.mres) % 16;
 | |
| 
 | |
|                     if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
 | |
|                         return -1;
 | |
| 
 | |
|                     bulk = AES_gcm_encrypt(in + res,
 | |
|                                            out + res, len - res,
 | |
|                                            gctx->gcm.key, gctx->gcm.Yi.c,
 | |
|                                            gctx->gcm.Xi.u);
 | |
|                     gctx->gcm.len.u[1] += bulk;
 | |
|                     bulk += res;
 | |
|                 }
 | |
| #endif
 | |
|                 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
 | |
|                                                 in + bulk,
 | |
|                                                 out + bulk,
 | |
|                                                 len - bulk, gctx->ctr))
 | |
|                     return -1;
 | |
|             } else {
 | |
|                 size_t bulk = 0;
 | |
| #if defined(AES_GCM_ASM2)
 | |
|                 if (len >= 32 && AES_GCM_ASM2(gctx)) {
 | |
|                     size_t res = (16 - gctx->gcm.mres) % 16;
 | |
| 
 | |
|                     if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
 | |
|                         return -1;
 | |
| 
 | |
|                     bulk = AES_gcm_encrypt(in + res,
 | |
|                                            out + res, len - res,
 | |
|                                            gctx->gcm.key, gctx->gcm.Yi.c,
 | |
|                                            gctx->gcm.Xi.u);
 | |
|                     gctx->gcm.len.u[1] += bulk;
 | |
|                     bulk += res;
 | |
|                 }
 | |
| #endif
 | |
|                 if (CRYPTO_gcm128_encrypt(&gctx->gcm,
 | |
|                                           in + bulk, out + bulk, len - bulk))
 | |
|                     return -1;
 | |
|             }
 | |
|         } else {
 | |
|             if (gctx->ctr) {
 | |
|                 size_t bulk = 0;
 | |
| #if defined(AES_GCM_ASM)
 | |
|                 if (len >= 16 && AES_GCM_ASM(gctx)) {
 | |
|                     size_t res = (16 - gctx->gcm.mres) % 16;
 | |
| 
 | |
|                     if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
 | |
|                         return -1;
 | |
| 
 | |
|                     bulk = AES_gcm_decrypt(in + res,
 | |
|                                            out + res, len - res,
 | |
|                                            gctx->gcm.key,
 | |
|                                            gctx->gcm.Yi.c, gctx->gcm.Xi.u);
 | |
|                     gctx->gcm.len.u[1] += bulk;
 | |
|                     bulk += res;
 | |
|                 }
 | |
| #endif
 | |
|                 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
 | |
|                                                 in + bulk,
 | |
|                                                 out + bulk,
 | |
|                                                 len - bulk, gctx->ctr))
 | |
|                     return -1;
 | |
|             } else {
 | |
|                 size_t bulk = 0;
 | |
| #if defined(AES_GCM_ASM2)
 | |
|                 if (len >= 16 && AES_GCM_ASM2(gctx)) {
 | |
|                     size_t res = (16 - gctx->gcm.mres) % 16;
 | |
| 
 | |
|                     if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
 | |
|                         return -1;
 | |
| 
 | |
|                     bulk = AES_gcm_decrypt(in + res,
 | |
|                                            out + res, len - res,
 | |
|                                            gctx->gcm.key,
 | |
|                                            gctx->gcm.Yi.c, gctx->gcm.Xi.u);
 | |
|                     gctx->gcm.len.u[1] += bulk;
 | |
|                     bulk += res;
 | |
|                 }
 | |
| #endif
 | |
|                 if (CRYPTO_gcm128_decrypt(&gctx->gcm,
 | |
|                                           in + bulk, out + bulk, len - bulk))
 | |
|                     return -1;
 | |
|             }
 | |
|         }
 | |
|         return len;
 | |
|     } else {
 | |
|         if (!ctx->encrypt) {
 | |
|             if (gctx->taglen < 0)
 | |
|                 return -1;
 | |
|             if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0)
 | |
|                 return -1;
 | |
|             gctx->iv_set = 0;
 | |
|             return 0;
 | |
|         }
 | |
|         CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
 | |
|         gctx->taglen = 16;
 | |
|         /* Don't reuse the IV */
 | |
|         gctx->iv_set = 0;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| #define CUSTOM_FLAGS    (EVP_CIPH_FLAG_DEFAULT_ASN1 \
 | |
|                 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
 | |
|                 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
 | |
|                 | EVP_CIPH_CUSTOM_COPY)
 | |
| 
 | |
| BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
 | |
|                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
 | |
|     BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
 | |
|                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
 | |
|     BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
 | |
|                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
 | |
| 
 | |
| static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
 | |
| {
 | |
|     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,c);
 | |
|     if (type == EVP_CTRL_COPY) {
 | |
|         EVP_CIPHER_CTX *out = ptr;
 | |
|         EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out);
 | |
|         if (xctx->xts.key1) {
 | |
|             if (xctx->xts.key1 != &xctx->ks1)
 | |
|                 return 0;
 | |
|             xctx_out->xts.key1 = &xctx_out->ks1;
 | |
|         }
 | |
|         if (xctx->xts.key2) {
 | |
|             if (xctx->xts.key2 != &xctx->ks2)
 | |
|                 return 0;
 | |
|             xctx_out->xts.key2 = &xctx_out->ks2;
 | |
|         }
 | |
|         return 1;
 | |
|     } else if (type != EVP_CTRL_INIT)
 | |
|         return -1;
 | |
|     /* key1 and key2 are used as an indicator both key and IV are set */
 | |
|     xctx->xts.key1 = NULL;
 | |
|     xctx->xts.key2 = NULL;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                             const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
| 
 | |
|     if (key)
 | |
|         do {
 | |
| #ifdef AES_XTS_ASM
 | |
|             xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
 | |
| #else
 | |
|             xctx->stream = NULL;
 | |
| #endif
 | |
|             /* key_len is two AES keys */
 | |
| #ifdef HWAES_CAPABLE
 | |
|             if (HWAES_CAPABLE) {
 | |
|                 if (enc) {
 | |
|                     HWAES_set_encrypt_key(key,
 | |
|                                           EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                           &xctx->ks1.ks);
 | |
|                     xctx->xts.block1 = (block128_f) HWAES_encrypt;
 | |
| # ifdef HWAES_xts_encrypt
 | |
|                     xctx->stream = HWAES_xts_encrypt;
 | |
| # endif
 | |
|                 } else {
 | |
|                     HWAES_set_decrypt_key(key,
 | |
|                                           EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                           &xctx->ks1.ks);
 | |
|                     xctx->xts.block1 = (block128_f) HWAES_decrypt;
 | |
| # ifdef HWAES_xts_decrypt
 | |
|                     xctx->stream = HWAES_xts_decrypt;
 | |
| #endif
 | |
|                 }
 | |
| 
 | |
|                 HWAES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
 | |
|                                       EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                       &xctx->ks2.ks);
 | |
|                 xctx->xts.block2 = (block128_f) HWAES_encrypt;
 | |
| 
 | |
|                 xctx->xts.key1 = &xctx->ks1;
 | |
|                 break;
 | |
|             } else
 | |
| #endif
 | |
| #ifdef BSAES_CAPABLE
 | |
|             if (BSAES_CAPABLE)
 | |
|                 xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt;
 | |
|             else
 | |
| #endif
 | |
| #ifdef VPAES_CAPABLE
 | |
|             if (VPAES_CAPABLE) {
 | |
|                 if (enc) {
 | |
|                     vpaes_set_encrypt_key(key,
 | |
|                                           EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                           &xctx->ks1.ks);
 | |
|                     xctx->xts.block1 = (block128_f) vpaes_encrypt;
 | |
|                 } else {
 | |
|                     vpaes_set_decrypt_key(key,
 | |
|                                           EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                           &xctx->ks1.ks);
 | |
|                     xctx->xts.block1 = (block128_f) vpaes_decrypt;
 | |
|                 }
 | |
| 
 | |
|                 vpaes_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
 | |
|                                       EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                       &xctx->ks2.ks);
 | |
|                 xctx->xts.block2 = (block128_f) vpaes_encrypt;
 | |
| 
 | |
|                 xctx->xts.key1 = &xctx->ks1;
 | |
|                 break;
 | |
|             } else
 | |
| #endif
 | |
|                 (void)0;        /* terminate potentially open 'else' */
 | |
| 
 | |
|             if (enc) {
 | |
|                 AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                     &xctx->ks1.ks);
 | |
|                 xctx->xts.block1 = (block128_f) AES_encrypt;
 | |
|             } else {
 | |
|                 AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                     &xctx->ks1.ks);
 | |
|                 xctx->xts.block1 = (block128_f) AES_decrypt;
 | |
|             }
 | |
| 
 | |
|             AES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
 | |
|                                 EVP_CIPHER_CTX_key_length(ctx) * 4,
 | |
|                                 &xctx->ks2.ks);
 | |
|             xctx->xts.block2 = (block128_f) AES_encrypt;
 | |
| 
 | |
|             xctx->xts.key1 = &xctx->ks1;
 | |
|         } while (0);
 | |
| 
 | |
|     if (iv) {
 | |
|         xctx->xts.key2 = &xctx->ks2;
 | |
|         memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                           const unsigned char *in, size_t len)
 | |
| {
 | |
|     EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
 | |
| 
 | |
|     if (xctx->xts.key1 == NULL
 | |
|             || xctx->xts.key2 == NULL
 | |
|             || out == NULL
 | |
|             || in == NULL
 | |
|             || len < AES_BLOCK_SIZE)
 | |
|         return 0;
 | |
| 
 | |
|     /*
 | |
|      * Verify that the two keys are different.
 | |
|      *
 | |
|      * This addresses the vulnerability described in Rogaway's September 2004
 | |
|      * paper (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf):
 | |
|      *      "Efficient Instantiations of Tweakable Blockciphers and Refinements
 | |
|      *       to Modes OCB and PMAC".
 | |
|      *
 | |
|      * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states that:
 | |
|      *      "The check for Key_1 != Key_2 shall be done at any place BEFORE
 | |
|      *       using the keys in the XTS-AES algorithm to process data with them."
 | |
|     */
 | |
|     if (CRYPTO_memcmp(xctx->xts.key1, xctx->xts.key2,
 | |
|                       EVP_CIPHER_CTX_key_length(ctx) / 2) == 0)
 | |
|         return 0;
 | |
| 
 | |
|     if (xctx->stream)
 | |
|         (*xctx->stream) (in, out, len,
 | |
|                          xctx->xts.key1, xctx->xts.key2,
 | |
|                          EVP_CIPHER_CTX_iv_noconst(ctx));
 | |
|     else if (CRYPTO_xts128_encrypt(&xctx->xts, EVP_CIPHER_CTX_iv_noconst(ctx),
 | |
|                                    in, out, len,
 | |
|                                    EVP_CIPHER_CTX_encrypting(ctx)))
 | |
|         return 0;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #define aes_xts_cleanup NULL
 | |
| 
 | |
| #define XTS_FLAGS       (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \
 | |
|                          | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
 | |
|                          | EVP_CIPH_CUSTOM_COPY)
 | |
| 
 | |
| BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS)
 | |
|     BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS)
 | |
| 
 | |
| static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
 | |
| {
 | |
|     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c);
 | |
|     switch (type) {
 | |
|     case EVP_CTRL_INIT:
 | |
|         cctx->key_set = 0;
 | |
|         cctx->iv_set = 0;
 | |
|         cctx->L = 8;
 | |
|         cctx->M = 12;
 | |
|         cctx->tag_set = 0;
 | |
|         cctx->len_set = 0;
 | |
|         cctx->tls_aad_len = -1;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_TLS1_AAD:
 | |
|         /* Save the AAD for later use */
 | |
|         if (arg != EVP_AEAD_TLS1_AAD_LEN)
 | |
|             return 0;
 | |
|         memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
 | |
|         cctx->tls_aad_len = arg;
 | |
|         {
 | |
|             uint16_t len =
 | |
|                 EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8
 | |
|                 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1];
 | |
|             /* Correct length for explicit IV */
 | |
|             if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
 | |
|                 return 0;
 | |
|             len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
 | |
|             /* If decrypting correct for tag too */
 | |
|             if (!EVP_CIPHER_CTX_encrypting(c)) {
 | |
|                 if (len < cctx->M)
 | |
|                     return 0;
 | |
|                 len -= cctx->M;
 | |
|             }
 | |
|             EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8;
 | |
|             EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff;
 | |
|         }
 | |
|         /* Extra padding: tag appended to record */
 | |
|         return cctx->M;
 | |
| 
 | |
|     case EVP_CTRL_CCM_SET_IV_FIXED:
 | |
|         /* Sanity check length */
 | |
|         if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
 | |
|             return 0;
 | |
|         /* Just copy to first part of IV */
 | |
|         memcpy(EVP_CIPHER_CTX_iv_noconst(c), ptr, arg);
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_SET_IVLEN:
 | |
|         arg = 15 - arg;
 | |
|         /* fall thru */
 | |
|     case EVP_CTRL_CCM_SET_L:
 | |
|         if (arg < 2 || arg > 8)
 | |
|             return 0;
 | |
|         cctx->L = arg;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_SET_TAG:
 | |
|         if ((arg & 1) || arg < 4 || arg > 16)
 | |
|             return 0;
 | |
|         if (EVP_CIPHER_CTX_encrypting(c) && ptr)
 | |
|             return 0;
 | |
|         if (ptr) {
 | |
|             cctx->tag_set = 1;
 | |
|             memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
 | |
|         }
 | |
|         cctx->M = arg;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_GET_TAG:
 | |
|         if (!EVP_CIPHER_CTX_encrypting(c) || !cctx->tag_set)
 | |
|             return 0;
 | |
|         if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
 | |
|             return 0;
 | |
|         cctx->tag_set = 0;
 | |
|         cctx->iv_set = 0;
 | |
|         cctx->len_set = 0;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_COPY:
 | |
|         {
 | |
|             EVP_CIPHER_CTX *out = ptr;
 | |
|             EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out);
 | |
|             if (cctx->ccm.key) {
 | |
|                 if (cctx->ccm.key != &cctx->ks)
 | |
|                     return 0;
 | |
|                 cctx_out->ccm.key = &cctx_out->ks;
 | |
|             }
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|     default:
 | |
|         return -1;
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                             const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
|     if (key)
 | |
|         do {
 | |
| #ifdef HWAES_CAPABLE
 | |
|             if (HWAES_CAPABLE) {
 | |
|                 HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                       &cctx->ks.ks);
 | |
| 
 | |
|                 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
 | |
|                                    &cctx->ks, (block128_f) HWAES_encrypt);
 | |
|                 cctx->str = NULL;
 | |
|                 cctx->key_set = 1;
 | |
|                 break;
 | |
|             } else
 | |
| #endif
 | |
| #ifdef VPAES_CAPABLE
 | |
|             if (VPAES_CAPABLE) {
 | |
|                 vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                       &cctx->ks.ks);
 | |
|                 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
 | |
|                                    &cctx->ks, (block128_f) vpaes_encrypt);
 | |
|                 cctx->str = NULL;
 | |
|                 cctx->key_set = 1;
 | |
|                 break;
 | |
|             }
 | |
| #endif
 | |
|             AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                 &cctx->ks.ks);
 | |
|             CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
 | |
|                                &cctx->ks, (block128_f) AES_encrypt);
 | |
|             cctx->str = NULL;
 | |
|             cctx->key_set = 1;
 | |
|         } while (0);
 | |
|     if (iv) {
 | |
|         memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
 | |
|         cctx->iv_set = 1;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                               const unsigned char *in, size_t len)
 | |
| {
 | |
|     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
 | |
|     CCM128_CONTEXT *ccm = &cctx->ccm;
 | |
|     /* Encrypt/decrypt must be performed in place */
 | |
|     if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M))
 | |
|         return -1;
 | |
|     /* If encrypting set explicit IV from sequence number (start of AAD) */
 | |
|     if (EVP_CIPHER_CTX_encrypting(ctx))
 | |
|         memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx),
 | |
|                EVP_CCM_TLS_EXPLICIT_IV_LEN);
 | |
|     /* Get rest of IV from explicit IV */
 | |
|     memcpy(EVP_CIPHER_CTX_iv_noconst(ctx) + EVP_CCM_TLS_FIXED_IV_LEN, in,
 | |
|            EVP_CCM_TLS_EXPLICIT_IV_LEN);
 | |
|     /* Correct length value */
 | |
|     len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
 | |
|     if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L,
 | |
|                             len))
 | |
|             return -1;
 | |
|     /* Use saved AAD */
 | |
|     CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->tls_aad_len);
 | |
|     /* Fix buffer to point to payload */
 | |
|     in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
 | |
|     out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
 | |
|     if (EVP_CIPHER_CTX_encrypting(ctx)) {
 | |
|         if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
 | |
|                                                     cctx->str) :
 | |
|             CRYPTO_ccm128_encrypt(ccm, in, out, len))
 | |
|             return -1;
 | |
|         if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M))
 | |
|             return -1;
 | |
|         return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
 | |
|     } else {
 | |
|         if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
 | |
|                                                      cctx->str) :
 | |
|             !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
 | |
|             unsigned char tag[16];
 | |
|             if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
 | |
|                 if (!CRYPTO_memcmp(tag, in + len, cctx->M))
 | |
|                     return len;
 | |
|             }
 | |
|         }
 | |
|         OPENSSL_cleanse(out, len);
 | |
|         return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                           const unsigned char *in, size_t len)
 | |
| {
 | |
|     EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
 | |
|     CCM128_CONTEXT *ccm = &cctx->ccm;
 | |
|     /* If not set up, return error */
 | |
|     if (!cctx->key_set)
 | |
|         return -1;
 | |
| 
 | |
|     if (cctx->tls_aad_len >= 0)
 | |
|         return aes_ccm_tls_cipher(ctx, out, in, len);
 | |
| 
 | |
|     /* EVP_*Final() doesn't return any data */
 | |
|     if (in == NULL && out != NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (!cctx->iv_set)
 | |
|         return -1;
 | |
| 
 | |
|     if (!EVP_CIPHER_CTX_encrypting(ctx) && !cctx->tag_set)
 | |
|         return -1;
 | |
|     if (!out) {
 | |
|         if (!in) {
 | |
|             if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
 | |
|                                     15 - cctx->L, len))
 | |
|                 return -1;
 | |
|             cctx->len_set = 1;
 | |
|             return len;
 | |
|         }
 | |
|         /* If have AAD need message length */
 | |
|         if (!cctx->len_set && len)
 | |
|             return -1;
 | |
|         CRYPTO_ccm128_aad(ccm, in, len);
 | |
|         return len;
 | |
|     }
 | |
|     /* If not set length yet do it */
 | |
|     if (!cctx->len_set) {
 | |
|         if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
 | |
|                                 15 - cctx->L, len))
 | |
|             return -1;
 | |
|         cctx->len_set = 1;
 | |
|     }
 | |
|     if (EVP_CIPHER_CTX_encrypting(ctx)) {
 | |
|         if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
 | |
|                                                     cctx->str) :
 | |
|             CRYPTO_ccm128_encrypt(ccm, in, out, len))
 | |
|             return -1;
 | |
|         cctx->tag_set = 1;
 | |
|         return len;
 | |
|     } else {
 | |
|         int rv = -1;
 | |
|         if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
 | |
|                                                      cctx->str) :
 | |
|             !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
 | |
|             unsigned char tag[16];
 | |
|             if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
 | |
|                 if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx),
 | |
|                                    cctx->M))
 | |
|                     rv = len;
 | |
|             }
 | |
|         }
 | |
|         if (rv == -1)
 | |
|             OPENSSL_cleanse(out, len);
 | |
|         cctx->iv_set = 0;
 | |
|         cctx->tag_set = 0;
 | |
|         cctx->len_set = 0;
 | |
|         return rv;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define aes_ccm_cleanup NULL
 | |
| 
 | |
| BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
 | |
|                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
 | |
|     BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
 | |
|                         EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
 | |
|     BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
 | |
|                         EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
 | |
| 
 | |
| typedef struct {
 | |
|     union {
 | |
|         double align;
 | |
|         AES_KEY ks;
 | |
|     } ks;
 | |
|     /* Indicates if IV has been set */
 | |
|     unsigned char *iv;
 | |
| } EVP_AES_WRAP_CTX;
 | |
| 
 | |
| static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                              const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
|     if (key) {
 | |
|         if (EVP_CIPHER_CTX_encrypting(ctx))
 | |
|             AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                 &wctx->ks.ks);
 | |
|         else
 | |
|             AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                 &wctx->ks.ks);
 | |
|         if (!iv)
 | |
|             wctx->iv = NULL;
 | |
|     }
 | |
|     if (iv) {
 | |
|         memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, EVP_CIPHER_CTX_iv_length(ctx));
 | |
|         wctx->iv = EVP_CIPHER_CTX_iv_noconst(ctx);
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                            const unsigned char *in, size_t inlen)
 | |
| {
 | |
|     EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
 | |
|     size_t rv;
 | |
|     /* AES wrap with padding has IV length of 4, without padding 8 */
 | |
|     int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4;
 | |
|     /* No final operation so always return zero length */
 | |
|     if (!in)
 | |
|         return 0;
 | |
|     /* Input length must always be non-zero */
 | |
|     if (!inlen)
 | |
|         return -1;
 | |
|     /* If decrypting need at least 16 bytes and multiple of 8 */
 | |
|     if (!EVP_CIPHER_CTX_encrypting(ctx) && (inlen < 16 || inlen & 0x7))
 | |
|         return -1;
 | |
|     /* If not padding input must be multiple of 8 */
 | |
|     if (!pad && inlen & 0x7)
 | |
|         return -1;
 | |
|     if (is_partially_overlapping(out, in, inlen)) {
 | |
|         EVPerr(EVP_F_AES_WRAP_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
 | |
|         return 0;
 | |
|     }
 | |
|     if (!out) {
 | |
|         if (EVP_CIPHER_CTX_encrypting(ctx)) {
 | |
|             /* If padding round up to multiple of 8 */
 | |
|             if (pad)
 | |
|                 inlen = (inlen + 7) / 8 * 8;
 | |
|             /* 8 byte prefix */
 | |
|             return inlen + 8;
 | |
|         } else {
 | |
|             /*
 | |
|              * If not padding output will be exactly 8 bytes smaller than
 | |
|              * input. If padding it will be at least 8 bytes smaller but we
 | |
|              * don't know how much.
 | |
|              */
 | |
|             return inlen - 8;
 | |
|         }
 | |
|     }
 | |
|     if (pad) {
 | |
|         if (EVP_CIPHER_CTX_encrypting(ctx))
 | |
|             rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv,
 | |
|                                      out, in, inlen,
 | |
|                                      (block128_f) AES_encrypt);
 | |
|         else
 | |
|             rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv,
 | |
|                                        out, in, inlen,
 | |
|                                        (block128_f) AES_decrypt);
 | |
|     } else {
 | |
|         if (EVP_CIPHER_CTX_encrypting(ctx))
 | |
|             rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv,
 | |
|                                  out, in, inlen, (block128_f) AES_encrypt);
 | |
|         else
 | |
|             rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv,
 | |
|                                    out, in, inlen, (block128_f) AES_decrypt);
 | |
|     }
 | |
|     return rv ? (int)rv : -1;
 | |
| }
 | |
| 
 | |
| #define WRAP_FLAGS      (EVP_CIPH_WRAP_MODE \
 | |
|                 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
 | |
|                 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1)
 | |
| 
 | |
| static const EVP_CIPHER aes_128_wrap = {
 | |
|     NID_id_aes128_wrap,
 | |
|     8, 16, 8, WRAP_FLAGS,
 | |
|     aes_wrap_init_key, aes_wrap_cipher,
 | |
|     NULL,
 | |
|     sizeof(EVP_AES_WRAP_CTX),
 | |
|     NULL, NULL, NULL, NULL
 | |
| };
 | |
| 
 | |
| const EVP_CIPHER *EVP_aes_128_wrap(void)
 | |
| {
 | |
|     return &aes_128_wrap;
 | |
| }
 | |
| 
 | |
| static const EVP_CIPHER aes_192_wrap = {
 | |
|     NID_id_aes192_wrap,
 | |
|     8, 24, 8, WRAP_FLAGS,
 | |
|     aes_wrap_init_key, aes_wrap_cipher,
 | |
|     NULL,
 | |
|     sizeof(EVP_AES_WRAP_CTX),
 | |
|     NULL, NULL, NULL, NULL
 | |
| };
 | |
| 
 | |
| const EVP_CIPHER *EVP_aes_192_wrap(void)
 | |
| {
 | |
|     return &aes_192_wrap;
 | |
| }
 | |
| 
 | |
| static const EVP_CIPHER aes_256_wrap = {
 | |
|     NID_id_aes256_wrap,
 | |
|     8, 32, 8, WRAP_FLAGS,
 | |
|     aes_wrap_init_key, aes_wrap_cipher,
 | |
|     NULL,
 | |
|     sizeof(EVP_AES_WRAP_CTX),
 | |
|     NULL, NULL, NULL, NULL
 | |
| };
 | |
| 
 | |
| const EVP_CIPHER *EVP_aes_256_wrap(void)
 | |
| {
 | |
|     return &aes_256_wrap;
 | |
| }
 | |
| 
 | |
| static const EVP_CIPHER aes_128_wrap_pad = {
 | |
|     NID_id_aes128_wrap_pad,
 | |
|     8, 16, 4, WRAP_FLAGS,
 | |
|     aes_wrap_init_key, aes_wrap_cipher,
 | |
|     NULL,
 | |
|     sizeof(EVP_AES_WRAP_CTX),
 | |
|     NULL, NULL, NULL, NULL
 | |
| };
 | |
| 
 | |
| const EVP_CIPHER *EVP_aes_128_wrap_pad(void)
 | |
| {
 | |
|     return &aes_128_wrap_pad;
 | |
| }
 | |
| 
 | |
| static const EVP_CIPHER aes_192_wrap_pad = {
 | |
|     NID_id_aes192_wrap_pad,
 | |
|     8, 24, 4, WRAP_FLAGS,
 | |
|     aes_wrap_init_key, aes_wrap_cipher,
 | |
|     NULL,
 | |
|     sizeof(EVP_AES_WRAP_CTX),
 | |
|     NULL, NULL, NULL, NULL
 | |
| };
 | |
| 
 | |
| const EVP_CIPHER *EVP_aes_192_wrap_pad(void)
 | |
| {
 | |
|     return &aes_192_wrap_pad;
 | |
| }
 | |
| 
 | |
| static const EVP_CIPHER aes_256_wrap_pad = {
 | |
|     NID_id_aes256_wrap_pad,
 | |
|     8, 32, 4, WRAP_FLAGS,
 | |
|     aes_wrap_init_key, aes_wrap_cipher,
 | |
|     NULL,
 | |
|     sizeof(EVP_AES_WRAP_CTX),
 | |
|     NULL, NULL, NULL, NULL
 | |
| };
 | |
| 
 | |
| const EVP_CIPHER *EVP_aes_256_wrap_pad(void)
 | |
| {
 | |
|     return &aes_256_wrap_pad;
 | |
| }
 | |
| 
 | |
| #ifndef OPENSSL_NO_OCB
 | |
| static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
 | |
| {
 | |
|     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
 | |
|     EVP_CIPHER_CTX *newc;
 | |
|     EVP_AES_OCB_CTX *new_octx;
 | |
| 
 | |
|     switch (type) {
 | |
|     case EVP_CTRL_INIT:
 | |
|         octx->key_set = 0;
 | |
|         octx->iv_set = 0;
 | |
|         octx->ivlen = EVP_CIPHER_CTX_iv_length(c);
 | |
|         octx->iv = EVP_CIPHER_CTX_iv_noconst(c);
 | |
|         octx->taglen = 16;
 | |
|         octx->data_buf_len = 0;
 | |
|         octx->aad_buf_len = 0;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_SET_IVLEN:
 | |
|         /* IV len must be 1 to 15 */
 | |
|         if (arg <= 0 || arg > 15)
 | |
|             return 0;
 | |
| 
 | |
|         octx->ivlen = arg;
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_SET_TAG:
 | |
|         if (!ptr) {
 | |
|             /* Tag len must be 0 to 16 */
 | |
|             if (arg < 0 || arg > 16)
 | |
|                 return 0;
 | |
| 
 | |
|             octx->taglen = arg;
 | |
|             return 1;
 | |
|         }
 | |
|         if (arg != octx->taglen || EVP_CIPHER_CTX_encrypting(c))
 | |
|             return 0;
 | |
|         memcpy(octx->tag, ptr, arg);
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_AEAD_GET_TAG:
 | |
|         if (arg != octx->taglen || !EVP_CIPHER_CTX_encrypting(c))
 | |
|             return 0;
 | |
| 
 | |
|         memcpy(ptr, octx->tag, arg);
 | |
|         return 1;
 | |
| 
 | |
|     case EVP_CTRL_COPY:
 | |
|         newc = (EVP_CIPHER_CTX *)ptr;
 | |
|         new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc);
 | |
|         return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb,
 | |
|                                       &new_octx->ksenc.ks,
 | |
|                                       &new_octx->ksdec.ks);
 | |
| 
 | |
|     default:
 | |
|         return -1;
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| # ifdef HWAES_CAPABLE
 | |
| #  ifdef HWAES_ocb_encrypt
 | |
| void HWAES_ocb_encrypt(const unsigned char *in, unsigned char *out,
 | |
|                        size_t blocks, const void *key,
 | |
|                        size_t start_block_num,
 | |
|                        unsigned char offset_i[16],
 | |
|                        const unsigned char L_[][16],
 | |
|                        unsigned char checksum[16]);
 | |
| #  else
 | |
| #    define HWAES_ocb_encrypt ((ocb128_f)NULL)
 | |
| #  endif
 | |
| #  ifdef HWAES_ocb_decrypt
 | |
| void HWAES_ocb_decrypt(const unsigned char *in, unsigned char *out,
 | |
|                        size_t blocks, const void *key,
 | |
|                        size_t start_block_num,
 | |
|                        unsigned char offset_i[16],
 | |
|                        const unsigned char L_[][16],
 | |
|                        unsigned char checksum[16]);
 | |
| #  else
 | |
| #    define HWAES_ocb_decrypt ((ocb128_f)NULL)
 | |
| #  endif
 | |
| # endif
 | |
| 
 | |
| static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
 | |
|                             const unsigned char *iv, int enc)
 | |
| {
 | |
|     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
 | |
|     if (!iv && !key)
 | |
|         return 1;
 | |
|     if (key) {
 | |
|         do {
 | |
|             /*
 | |
|              * We set both the encrypt and decrypt key here because decrypt
 | |
|              * needs both. We could possibly optimise to remove setting the
 | |
|              * decrypt for an encryption operation.
 | |
|              */
 | |
| # ifdef HWAES_CAPABLE
 | |
|             if (HWAES_CAPABLE) {
 | |
|                 HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                       &octx->ksenc.ks);
 | |
|                 HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                       &octx->ksdec.ks);
 | |
|                 if (!CRYPTO_ocb128_init(&octx->ocb,
 | |
|                                         &octx->ksenc.ks, &octx->ksdec.ks,
 | |
|                                         (block128_f) HWAES_encrypt,
 | |
|                                         (block128_f) HWAES_decrypt,
 | |
|                                         enc ? HWAES_ocb_encrypt
 | |
|                                             : HWAES_ocb_decrypt))
 | |
|                     return 0;
 | |
|                 break;
 | |
|             }
 | |
| # endif
 | |
| # ifdef VPAES_CAPABLE
 | |
|             if (VPAES_CAPABLE) {
 | |
|                 vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                       &octx->ksenc.ks);
 | |
|                 vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                       &octx->ksdec.ks);
 | |
|                 if (!CRYPTO_ocb128_init(&octx->ocb,
 | |
|                                         &octx->ksenc.ks, &octx->ksdec.ks,
 | |
|                                         (block128_f) vpaes_encrypt,
 | |
|                                         (block128_f) vpaes_decrypt,
 | |
|                                         NULL))
 | |
|                     return 0;
 | |
|                 break;
 | |
|             }
 | |
| # endif
 | |
|             AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                 &octx->ksenc.ks);
 | |
|             AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
 | |
|                                 &octx->ksdec.ks);
 | |
|             if (!CRYPTO_ocb128_init(&octx->ocb,
 | |
|                                     &octx->ksenc.ks, &octx->ksdec.ks,
 | |
|                                     (block128_f) AES_encrypt,
 | |
|                                     (block128_f) AES_decrypt,
 | |
|                                     NULL))
 | |
|                 return 0;
 | |
|         }
 | |
|         while (0);
 | |
| 
 | |
|         /*
 | |
|          * If we have an iv we can set it directly, otherwise use saved IV.
 | |
|          */
 | |
|         if (iv == NULL && octx->iv_set)
 | |
|             iv = octx->iv;
 | |
|         if (iv) {
 | |
|             if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
 | |
|                 != 1)
 | |
|                 return 0;
 | |
|             octx->iv_set = 1;
 | |
|         }
 | |
|         octx->key_set = 1;
 | |
|     } else {
 | |
|         /* If key set use IV, otherwise copy */
 | |
|         if (octx->key_set)
 | |
|             CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
 | |
|         else
 | |
|             memcpy(octx->iv, iv, octx->ivlen);
 | |
|         octx->iv_set = 1;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
 | |
|                           const unsigned char *in, size_t len)
 | |
| {
 | |
|     unsigned char *buf;
 | |
|     int *buf_len;
 | |
|     int written_len = 0;
 | |
|     size_t trailing_len;
 | |
|     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
 | |
| 
 | |
|     /* If IV or Key not set then return error */
 | |
|     if (!octx->iv_set)
 | |
|         return -1;
 | |
| 
 | |
|     if (!octx->key_set)
 | |
|         return -1;
 | |
| 
 | |
|     if (in != NULL) {
 | |
|         /*
 | |
|          * Need to ensure we are only passing full blocks to low level OCB
 | |
|          * routines. We do it here rather than in EVP_EncryptUpdate/
 | |
|          * EVP_DecryptUpdate because we need to pass full blocks of AAD too
 | |
|          * and those routines don't support that
 | |
|          */
 | |
| 
 | |
|         /* Are we dealing with AAD or normal data here? */
 | |
|         if (out == NULL) {
 | |
|             buf = octx->aad_buf;
 | |
|             buf_len = &(octx->aad_buf_len);
 | |
|         } else {
 | |
|             buf = octx->data_buf;
 | |
|             buf_len = &(octx->data_buf_len);
 | |
| 
 | |
|             if (is_partially_overlapping(out + *buf_len, in, len)) {
 | |
|                 EVPerr(EVP_F_AES_OCB_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * If we've got a partially filled buffer from a previous call then
 | |
|          * use that data first
 | |
|          */
 | |
|         if (*buf_len > 0) {
 | |
|             unsigned int remaining;
 | |
| 
 | |
|             remaining = AES_BLOCK_SIZE - (*buf_len);
 | |
|             if (remaining > len) {
 | |
|                 memcpy(buf + (*buf_len), in, len);
 | |
|                 *(buf_len) += len;
 | |
|                 return 0;
 | |
|             }
 | |
|             memcpy(buf + (*buf_len), in, remaining);
 | |
| 
 | |
|             /*
 | |
|              * If we get here we've filled the buffer, so process it
 | |
|              */
 | |
|             len -= remaining;
 | |
|             in += remaining;
 | |
|             if (out == NULL) {
 | |
|                 if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE))
 | |
|                     return -1;
 | |
|             } else if (EVP_CIPHER_CTX_encrypting(ctx)) {
 | |
|                 if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out,
 | |
|                                            AES_BLOCK_SIZE))
 | |
|                     return -1;
 | |
|             } else {
 | |
|                 if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out,
 | |
|                                            AES_BLOCK_SIZE))
 | |
|                     return -1;
 | |
|             }
 | |
|             written_len = AES_BLOCK_SIZE;
 | |
|             *buf_len = 0;
 | |
|             if (out != NULL)
 | |
|                 out += AES_BLOCK_SIZE;
 | |
|         }
 | |
| 
 | |
|         /* Do we have a partial block to handle at the end? */
 | |
|         trailing_len = len % AES_BLOCK_SIZE;
 | |
| 
 | |
|         /*
 | |
|          * If we've got some full blocks to handle, then process these first
 | |
|          */
 | |
|         if (len != trailing_len) {
 | |
|             if (out == NULL) {
 | |
|                 if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len))
 | |
|                     return -1;
 | |
|             } else if (EVP_CIPHER_CTX_encrypting(ctx)) {
 | |
|                 if (!CRYPTO_ocb128_encrypt
 | |
|                     (&octx->ocb, in, out, len - trailing_len))
 | |
|                     return -1;
 | |
|             } else {
 | |
|                 if (!CRYPTO_ocb128_decrypt
 | |
|                     (&octx->ocb, in, out, len - trailing_len))
 | |
|                     return -1;
 | |
|             }
 | |
|             written_len += len - trailing_len;
 | |
|             in += len - trailing_len;
 | |
|         }
 | |
| 
 | |
|         /* Handle any trailing partial block */
 | |
|         if (trailing_len > 0) {
 | |
|             memcpy(buf, in, trailing_len);
 | |
|             *buf_len = trailing_len;
 | |
|         }
 | |
| 
 | |
|         return written_len;
 | |
|     } else {
 | |
|         /*
 | |
|          * First of all empty the buffer of any partial block that we might
 | |
|          * have been provided - both for data and AAD
 | |
|          */
 | |
|         if (octx->data_buf_len > 0) {
 | |
|             if (EVP_CIPHER_CTX_encrypting(ctx)) {
 | |
|                 if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out,
 | |
|                                            octx->data_buf_len))
 | |
|                     return -1;
 | |
|             } else {
 | |
|                 if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out,
 | |
|                                            octx->data_buf_len))
 | |
|                     return -1;
 | |
|             }
 | |
|             written_len = octx->data_buf_len;
 | |
|             octx->data_buf_len = 0;
 | |
|         }
 | |
|         if (octx->aad_buf_len > 0) {
 | |
|             if (!CRYPTO_ocb128_aad
 | |
|                 (&octx->ocb, octx->aad_buf, octx->aad_buf_len))
 | |
|                 return -1;
 | |
|             octx->aad_buf_len = 0;
 | |
|         }
 | |
|         /* If decrypting then verify */
 | |
|         if (!EVP_CIPHER_CTX_encrypting(ctx)) {
 | |
|             if (octx->taglen < 0)
 | |
|                 return -1;
 | |
|             if (CRYPTO_ocb128_finish(&octx->ocb,
 | |
|                                      octx->tag, octx->taglen) != 0)
 | |
|                 return -1;
 | |
|             octx->iv_set = 0;
 | |
|             return written_len;
 | |
|         }
 | |
|         /* If encrypting then just get the tag */
 | |
|         if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1)
 | |
|             return -1;
 | |
|         /* Don't reuse the IV */
 | |
|         octx->iv_set = 0;
 | |
|         return written_len;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int aes_ocb_cleanup(EVP_CIPHER_CTX *c)
 | |
| {
 | |
|     EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
 | |
|     CRYPTO_ocb128_cleanup(&octx->ocb);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB,
 | |
|                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
 | |
| BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB,
 | |
|                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
 | |
| BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB,
 | |
|                     EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
 | |
| #endif                         /* OPENSSL_NO_OCB */
 |