mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			266 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			266 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include "internal/cryptlib.h"
 | |
| # include <openssl/x509.h>
 | |
| # include <openssl/evp.h>
 | |
| # include <openssl/hmac.h>
 | |
| # include "evp_locl.h"
 | |
| 
 | |
| /* set this to print out info about the keygen algorithm */
 | |
| /* #define OPENSSL_DEBUG_PKCS5V2 */
 | |
| 
 | |
| # ifdef OPENSSL_DEBUG_PKCS5V2
 | |
| static void h__dump(const unsigned char *p, int len);
 | |
| # endif
 | |
| 
 | |
| /*
 | |
|  * This is an implementation of PKCS#5 v2.0 password based encryption key
 | |
|  * derivation function PBKDF2. SHA1 version verified against test vectors
 | |
|  * posted by Peter Gutmann to the PKCS-TNG mailing list.
 | |
|  */
 | |
| 
 | |
| int PKCS5_PBKDF2_HMAC(const char *pass, int passlen,
 | |
|                       const unsigned char *salt, int saltlen, int iter,
 | |
|                       const EVP_MD *digest, int keylen, unsigned char *out)
 | |
| {
 | |
|     const char *empty = "";
 | |
|     unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4];
 | |
|     int cplen, j, k, tkeylen, mdlen;
 | |
|     unsigned long i = 1;
 | |
|     HMAC_CTX *hctx_tpl = NULL, *hctx = NULL;
 | |
| 
 | |
|     mdlen = EVP_MD_size(digest);
 | |
|     if (mdlen < 0)
 | |
|         return 0;
 | |
| 
 | |
|     hctx_tpl = HMAC_CTX_new();
 | |
|     if (hctx_tpl == NULL)
 | |
|         return 0;
 | |
|     p = out;
 | |
|     tkeylen = keylen;
 | |
|     if (pass == NULL) {
 | |
|         pass = empty;
 | |
|         passlen = 0;
 | |
|     } else if (passlen == -1) {
 | |
|         passlen = strlen(pass);
 | |
|     }
 | |
|     if (!HMAC_Init_ex(hctx_tpl, pass, passlen, digest, NULL)) {
 | |
|         HMAC_CTX_free(hctx_tpl);
 | |
|         return 0;
 | |
|     }
 | |
|     hctx = HMAC_CTX_new();
 | |
|     if (hctx == NULL) {
 | |
|         HMAC_CTX_free(hctx_tpl);
 | |
|         return 0;
 | |
|     }
 | |
|     while (tkeylen) {
 | |
|         if (tkeylen > mdlen)
 | |
|             cplen = mdlen;
 | |
|         else
 | |
|             cplen = tkeylen;
 | |
|         /*
 | |
|          * We are unlikely to ever use more than 256 blocks (5120 bits!) but
 | |
|          * just in case...
 | |
|          */
 | |
|         itmp[0] = (unsigned char)((i >> 24) & 0xff);
 | |
|         itmp[1] = (unsigned char)((i >> 16) & 0xff);
 | |
|         itmp[2] = (unsigned char)((i >> 8) & 0xff);
 | |
|         itmp[3] = (unsigned char)(i & 0xff);
 | |
|         if (!HMAC_CTX_copy(hctx, hctx_tpl)) {
 | |
|             HMAC_CTX_free(hctx);
 | |
|             HMAC_CTX_free(hctx_tpl);
 | |
|             return 0;
 | |
|         }
 | |
|         if (!HMAC_Update(hctx, salt, saltlen)
 | |
|             || !HMAC_Update(hctx, itmp, 4)
 | |
|             || !HMAC_Final(hctx, digtmp, NULL)) {
 | |
|             HMAC_CTX_free(hctx);
 | |
|             HMAC_CTX_free(hctx_tpl);
 | |
|             return 0;
 | |
|         }
 | |
|         memcpy(p, digtmp, cplen);
 | |
|         for (j = 1; j < iter; j++) {
 | |
|             if (!HMAC_CTX_copy(hctx, hctx_tpl)) {
 | |
|                 HMAC_CTX_free(hctx);
 | |
|                 HMAC_CTX_free(hctx_tpl);
 | |
|                 return 0;
 | |
|             }
 | |
|             if (!HMAC_Update(hctx, digtmp, mdlen)
 | |
|                 || !HMAC_Final(hctx, digtmp, NULL)) {
 | |
|                 HMAC_CTX_free(hctx);
 | |
|                 HMAC_CTX_free(hctx_tpl);
 | |
|                 return 0;
 | |
|             }
 | |
|             for (k = 0; k < cplen; k++)
 | |
|                 p[k] ^= digtmp[k];
 | |
|         }
 | |
|         tkeylen -= cplen;
 | |
|         i++;
 | |
|         p += cplen;
 | |
|     }
 | |
|     HMAC_CTX_free(hctx);
 | |
|     HMAC_CTX_free(hctx_tpl);
 | |
| # ifdef OPENSSL_DEBUG_PKCS5V2
 | |
|     fprintf(stderr, "Password:\n");
 | |
|     h__dump(pass, passlen);
 | |
|     fprintf(stderr, "Salt:\n");
 | |
|     h__dump(salt, saltlen);
 | |
|     fprintf(stderr, "Iteration count %d\n", iter);
 | |
|     fprintf(stderr, "Key:\n");
 | |
|     h__dump(out, keylen);
 | |
| # endif
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int PKCS5_PBKDF2_HMAC_SHA1(const char *pass, int passlen,
 | |
|                            const unsigned char *salt, int saltlen, int iter,
 | |
|                            int keylen, unsigned char *out)
 | |
| {
 | |
|     return PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, EVP_sha1(),
 | |
|                              keylen, out);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Now the key derivation function itself. This is a bit evil because it has
 | |
|  * to check the ASN1 parameters are valid: and there are quite a few of
 | |
|  * them...
 | |
|  */
 | |
| 
 | |
| int PKCS5_v2_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen,
 | |
|                           ASN1_TYPE *param, const EVP_CIPHER *c,
 | |
|                           const EVP_MD *md, int en_de)
 | |
| {
 | |
|     PBE2PARAM *pbe2 = NULL;
 | |
|     const EVP_CIPHER *cipher;
 | |
|     EVP_PBE_KEYGEN *kdf;
 | |
| 
 | |
|     int rv = 0;
 | |
| 
 | |
|     pbe2 = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(PBE2PARAM), param);
 | |
|     if (pbe2 == NULL) {
 | |
|         EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_DECODE_ERROR);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* See if we recognise the key derivation function */
 | |
|     if (!EVP_PBE_find(EVP_PBE_TYPE_KDF, OBJ_obj2nid(pbe2->keyfunc->algorithm),
 | |
|                         NULL, NULL, &kdf)) {
 | |
|         EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,
 | |
|                EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * lets see if we recognise the encryption algorithm.
 | |
|      */
 | |
| 
 | |
|     cipher = EVP_get_cipherbyobj(pbe2->encryption->algorithm);
 | |
| 
 | |
|     if (!cipher) {
 | |
|         EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_UNSUPPORTED_CIPHER);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* Fixup cipher based on AlgorithmIdentifier */
 | |
|     if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, en_de))
 | |
|         goto err;
 | |
|     if (EVP_CIPHER_asn1_to_param(ctx, pbe2->encryption->parameter) < 0) {
 | |
|         EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_CIPHER_PARAMETER_ERROR);
 | |
|         goto err;
 | |
|     }
 | |
|     rv = kdf(ctx, pass, passlen, pbe2->keyfunc->parameter, NULL, NULL, en_de);
 | |
|  err:
 | |
|     PBE2PARAM_free(pbe2);
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass,
 | |
|                              int passlen, ASN1_TYPE *param,
 | |
|                              const EVP_CIPHER *c, const EVP_MD *md, int en_de)
 | |
| {
 | |
|     unsigned char *salt, key[EVP_MAX_KEY_LENGTH];
 | |
|     int saltlen, iter;
 | |
|     int rv = 0;
 | |
|     unsigned int keylen = 0;
 | |
|     int prf_nid, hmac_md_nid;
 | |
|     PBKDF2PARAM *kdf = NULL;
 | |
|     const EVP_MD *prfmd;
 | |
| 
 | |
|     if (EVP_CIPHER_CTX_cipher(ctx) == NULL) {
 | |
|         EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_NO_CIPHER_SET);
 | |
|         goto err;
 | |
|     }
 | |
|     keylen = EVP_CIPHER_CTX_key_length(ctx);
 | |
|     OPENSSL_assert(keylen <= sizeof(key));
 | |
| 
 | |
|     /* Decode parameter */
 | |
| 
 | |
|     kdf = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(PBKDF2PARAM), param);
 | |
| 
 | |
|     if (kdf == NULL) {
 | |
|         EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_DECODE_ERROR);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     keylen = EVP_CIPHER_CTX_key_length(ctx);
 | |
| 
 | |
|     /* Now check the parameters of the kdf */
 | |
| 
 | |
|     if (kdf->keylength && (ASN1_INTEGER_get(kdf->keylength) != (int)keylen)) {
 | |
|         EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_KEYLENGTH);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (kdf->prf)
 | |
|         prf_nid = OBJ_obj2nid(kdf->prf->algorithm);
 | |
|     else
 | |
|         prf_nid = NID_hmacWithSHA1;
 | |
| 
 | |
|     if (!EVP_PBE_find(EVP_PBE_TYPE_PRF, prf_nid, NULL, &hmac_md_nid, 0)) {
 | |
|         EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     prfmd = EVP_get_digestbynid(hmac_md_nid);
 | |
|     if (prfmd == NULL) {
 | |
|         EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (kdf->salt->type != V_ASN1_OCTET_STRING) {
 | |
|         EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_SALT_TYPE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* it seems that its all OK */
 | |
|     salt = kdf->salt->value.octet_string->data;
 | |
|     saltlen = kdf->salt->value.octet_string->length;
 | |
|     iter = ASN1_INTEGER_get(kdf->iter);
 | |
|     if (!PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, prfmd,
 | |
|                            keylen, key))
 | |
|         goto err;
 | |
|     rv = EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, en_de);
 | |
|  err:
 | |
|     OPENSSL_cleanse(key, keylen);
 | |
|     PBKDF2PARAM_free(kdf);
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| # ifdef OPENSSL_DEBUG_PKCS5V2
 | |
| static void h__dump(const unsigned char *p, int len)
 | |
| {
 | |
|     for (; len--; p++)
 | |
|         fprintf(stderr, "%02X ", *p);
 | |
|     fprintf(stderr, "\n");
 | |
| }
 | |
| # endif
 |