mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			159 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
			
		
		
	
	
			159 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
| =pod
 | |
| 
 | |
| =head1 NAME
 | |
| 
 | |
| scrypt - EVP_PKEY scrypt KDF support
 | |
| 
 | |
| =head1 SYNOPSIS
 | |
| 
 | |
|  #include <openssl/kdf.h>
 | |
| 
 | |
|  int EVP_PKEY_CTX_set1_pbe_pass(EVP_PKEY_CTX *pctx, unsigned char *pass,
 | |
|                                 int passlen);
 | |
| 
 | |
|  int EVP_PKEY_CTX_set1_scrypt_salt(EVP_PKEY_CTX *pctx, unsigned char *salt,
 | |
|                                    int saltlen);
 | |
| 
 | |
|  int EVP_PKEY_CTX_set_scrypt_N(EVP_PKEY_CTX *pctx, uint64_t N);
 | |
| 
 | |
|  int EVP_PKEY_CTX_set_scrypt_r(EVP_PKEY_CTX *pctx, uint64_t r);
 | |
| 
 | |
|  int EVP_PKEY_CTX_set_scrypt_p(EVP_PKEY_CTX *pctx, uint64_t p);
 | |
| 
 | |
|  int EVP_PKEY_CTX_set_scrypt_maxmem_bytes(EVP_PKEY_CTX *pctx, uint64_t maxmem);
 | |
| 
 | |
| =head1 DESCRIPTION
 | |
| 
 | |
| The EVP_PKEY_SCRYPT algorithm implements the scrypt password based key
 | |
| derivation function, as described in RFC 7914.  It is memory-hard in the sense
 | |
| that it deliberately requires a significant amount of RAM for efficient
 | |
| computation. The intention of this is to render brute forcing of passwords on
 | |
| systems that lack large amounts of main memory (such as GPUs or ASICs)
 | |
| computationally infeasible.
 | |
| 
 | |
| scrypt provides three work factors that can be customized: N, r and p. N, which
 | |
| has to be a positive power of two, is the general work factor and scales CPU
 | |
| time in an approximately linear fashion. r is the block size of the internally
 | |
| used hash function and p is the parallelization factor. Both r and p need to be
 | |
| greater than zero. The amount of RAM that scrypt requires for its computation
 | |
| is roughly (128 * N * r * p) bytes.
 | |
| 
 | |
| In the original paper of Colin Percival ("Stronger Key Derivation via
 | |
| Sequential Memory-Hard Functions", 2009), the suggested values that give a
 | |
| computation time of less than 5 seconds on a 2.5 GHz Intel Core 2 Duo are N =
 | |
| 2^20 = 1048576, r = 8, p = 1. Consequently, the required amount of memory for
 | |
| this computation is roughly 1 GiB. On a more recent CPU (Intel i7-5930K at 3.5
 | |
| GHz), this computation takes about 3 seconds. When N, r or p are not specified,
 | |
| they default to 1048576, 8, and 1, respectively. The default amount of RAM that
 | |
| may be used by scrypt defaults to 1025 MiB.
 | |
| 
 | |
| EVP_PKEY_CTX_set1_pbe_pass() sets the B<passlen> bytes long password.
 | |
| 
 | |
| EVP_PKEY_CTX_set1_scrypt_salt() sets the B<saltlen> bytes long salt value.
 | |
| 
 | |
| EVP_PKEY_CTX_set_scrypt_N(), EVP_PKEY_CTX_set_scrypt_r() and
 | |
| EVP_PKEY_CTX_set_scrypt_p() configure the work factors N, r and p.
 | |
| 
 | |
| EVP_PKEY_CTX_set_scrypt_maxmem_bytes() sets how much RAM key derivation may
 | |
| maximally use, given in bytes. If RAM is exceeded because the load factors are
 | |
| chosen too high, the key derivation will fail.
 | |
| 
 | |
| =head1 STRING CTRLS
 | |
| 
 | |
| scrypt also supports string based control operations via
 | |
| L<EVP_PKEY_CTX_ctrl_str(3)>.
 | |
| The B<password> can be directly specified using the B<type> parameter "pass" or
 | |
| given in hex encoding using the "hexpass" parameter. Similarly, the B<salt> can
 | |
| either be specified using the B<type> parameter "salt" or in hex encoding by
 | |
| using the "hexsalt" parameter. The work factors B<N>, B<r> and B<p> as well as
 | |
| B<maxmem_bytes> can be set by using the parameters "N", "r", "p" and
 | |
| "maxmem_bytes", respectively.
 | |
| 
 | |
| =head1 NOTES
 | |
| 
 | |
| All these functions are implemented as macros.
 | |
| 
 | |
| A context for scrypt can be obtained by calling:
 | |
| 
 | |
|  EVP_PKEY_CTX *pctx = EVP_PKEY_new_id(EVP_PKEY_SCRYPT, NULL);
 | |
| 
 | |
| The output length of an scrypt key derivation is specified via the length
 | |
| parameter to the L<EVP_PKEY_derive(3)> function.
 | |
| 
 | |
| =head1 RETURN VALUES
 | |
| 
 | |
| All these functions return 1 for success and 0 or a negative value for failure.
 | |
| In particular a return value of -2 indicates the operation is not supported by
 | |
| the public key algorithm.
 | |
| 
 | |
| =head1 EXAMPLE
 | |
| 
 | |
| This example derives a 64-byte long test vector using scrypt using the password
 | |
| "password", salt "NaCl" and N = 1024, r = 8, p = 16.
 | |
| 
 | |
|  EVP_PKEY_CTX *pctx;
 | |
|  unsigned char out[64];
 | |
| 
 | |
|  size_t outlen = sizeof(out);
 | |
|  pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_SCRYPT, NULL);
 | |
| 
 | |
|  if (EVP_PKEY_derive_init(pctx) <= 0) {
 | |
|      error("EVP_PKEY_derive_init");
 | |
|  }
 | |
|  if (EVP_PKEY_CTX_set1_pbe_pass(pctx, "password", 8) <= 0) {
 | |
|      error("EVP_PKEY_CTX_set1_pbe_pass");
 | |
|  }
 | |
|  if (EVP_PKEY_CTX_set1_scrypt_salt(pctx, "NaCl", 4) <= 0) {
 | |
|      error("EVP_PKEY_CTX_set1_scrypt_salt");
 | |
|  }
 | |
|  if (EVP_PKEY_CTX_set_scrypt_N(pctx, 1024) <= 0) {
 | |
|      error("EVP_PKEY_CTX_set_scrypt_N");
 | |
|  }
 | |
|  if (EVP_PKEY_CTX_set_scrypt_r(pctx, 8) <= 0) {
 | |
|      error("EVP_PKEY_CTX_set_scrypt_r");
 | |
|  }
 | |
|  if (EVP_PKEY_CTX_set_scrypt_p(pctx, 16) <= 0) {
 | |
|      error("EVP_PKEY_CTX_set_scrypt_p");
 | |
|  }
 | |
|  if (EVP_PKEY_derive(pctx, out, &outlen) <= 0) {
 | |
|      error("EVP_PKEY_derive");
 | |
|  }
 | |
| 
 | |
|  {
 | |
|      const unsigned char expected[sizeof(out)] = {
 | |
|          0xfd, 0xba, 0xbe, 0x1c, 0x9d, 0x34, 0x72, 0x00,
 | |
|          0x78, 0x56, 0xe7, 0x19, 0x0d, 0x01, 0xe9, 0xfe,
 | |
|          0x7c, 0x6a, 0xd7, 0xcb, 0xc8, 0x23, 0x78, 0x30,
 | |
|          0xe7, 0x73, 0x76, 0x63, 0x4b, 0x37, 0x31, 0x62,
 | |
|          0x2e, 0xaf, 0x30, 0xd9, 0x2e, 0x22, 0xa3, 0x88,
 | |
|          0x6f, 0xf1, 0x09, 0x27, 0x9d, 0x98, 0x30, 0xda,
 | |
|          0xc7, 0x27, 0xaf, 0xb9, 0x4a, 0x83, 0xee, 0x6d,
 | |
|          0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40
 | |
|      };
 | |
| 
 | |
|      assert(!memcmp(out, expected, sizeof(out)));
 | |
|  }
 | |
| 
 | |
|  EVP_PKEY_CTX_free(pctx);
 | |
| 
 | |
| =head1 CONFORMING TO
 | |
| 
 | |
| RFC 7914
 | |
| 
 | |
| =head1 SEE ALSO
 | |
| 
 | |
| L<EVP_PKEY_CTX_new(3)>,
 | |
| L<EVP_PKEY_CTX_ctrl_str(3)>,
 | |
| L<EVP_PKEY_derive(3)>
 | |
| 
 | |
| =head1 COPYRIGHT
 | |
| 
 | |
| Copyright 2017 The OpenSSL Project Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the OpenSSL license (the "License").  You may not use
 | |
| this file except in compliance with the License.  You can obtain a copy
 | |
| in the file LICENSE in the source distribution or at
 | |
| L<https://www.openssl.org/source/license.html>.
 | |
| 
 | |
| =cut
 |