1101 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			1101 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2020 The Prometheus Authors
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| // http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| package labels
 | |
| 
 | |
| import (
 | |
| 	"slices"
 | |
| 	"strings"
 | |
| 	"unicode"
 | |
| 	"unicode/utf8"
 | |
| 
 | |
| 	"github.com/grafana/regexp"
 | |
| 	"github.com/grafana/regexp/syntax"
 | |
| 	"golang.org/x/text/unicode/norm"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	maxSetMatches = 256
 | |
| 
 | |
| 	// The minimum number of alternate values a regex should have to trigger
 | |
| 	// the optimization done by optimizeEqualOrPrefixStringMatchers() and so use a map
 | |
| 	// to match values instead of iterating over a list. This value has
 | |
| 	// been computed running BenchmarkOptimizeEqualStringMatchers.
 | |
| 	minEqualMultiStringMatcherMapThreshold = 16
 | |
| )
 | |
| 
 | |
| type FastRegexMatcher struct {
 | |
| 	// Under some conditions, re is nil because the expression is never parsed.
 | |
| 	// We store the original string to be able to return it in GetRegexString().
 | |
| 	reString string
 | |
| 	re       *regexp.Regexp
 | |
| 
 | |
| 	setMatches    []string
 | |
| 	stringMatcher StringMatcher
 | |
| 	prefix        string
 | |
| 	suffix        string
 | |
| 	contains      []string
 | |
| 
 | |
| 	// matchString is the "compiled" function to run by MatchString().
 | |
| 	matchString func(string) bool
 | |
| }
 | |
| 
 | |
| func NewFastRegexMatcher(v string) (*FastRegexMatcher, error) {
 | |
| 	m := &FastRegexMatcher{
 | |
| 		reString: v,
 | |
| 	}
 | |
| 
 | |
| 	m.stringMatcher, m.setMatches = optimizeAlternatingLiterals(v)
 | |
| 	if m.stringMatcher != nil {
 | |
| 		// If we already have a string matcher, we don't need to parse the regex
 | |
| 		// or compile the matchString function. This also avoids the behavior in
 | |
| 		// compileMatchStringFunction where it prefers to use setMatches when
 | |
| 		// available, even if the string matcher is faster.
 | |
| 		m.matchString = m.stringMatcher.Matches
 | |
| 	} else {
 | |
| 		parsed, err := syntax.Parse(v, syntax.Perl|syntax.DotNL)
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		// Simplify the syntax tree to run faster.
 | |
| 		parsed = parsed.Simplify()
 | |
| 		m.re, err = regexp.Compile("^(?s:" + parsed.String() + ")$")
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		if parsed.Op == syntax.OpConcat {
 | |
| 			m.prefix, m.suffix, m.contains = optimizeConcatRegex(parsed)
 | |
| 		}
 | |
| 		if matches, caseSensitive := findSetMatches(parsed); caseSensitive {
 | |
| 			m.setMatches = matches
 | |
| 		}
 | |
| 		m.stringMatcher = stringMatcherFromRegexp(parsed)
 | |
| 		m.matchString = m.compileMatchStringFunction()
 | |
| 	}
 | |
| 
 | |
| 	return m, nil
 | |
| }
 | |
| 
 | |
| // compileMatchStringFunction returns the function to run by MatchString().
 | |
| func (m *FastRegexMatcher) compileMatchStringFunction() func(string) bool {
 | |
| 	// If the only optimization available is the string matcher, then we can just run it.
 | |
| 	if len(m.setMatches) == 0 && m.prefix == "" && m.suffix == "" && len(m.contains) == 0 && m.stringMatcher != nil {
 | |
| 		return m.stringMatcher.Matches
 | |
| 	}
 | |
| 
 | |
| 	return func(s string) bool {
 | |
| 		if len(m.setMatches) != 0 {
 | |
| 			return slices.Contains(m.setMatches, s)
 | |
| 		}
 | |
| 		if m.prefix != "" && !strings.HasPrefix(s, m.prefix) {
 | |
| 			return false
 | |
| 		}
 | |
| 		if m.suffix != "" && !strings.HasSuffix(s, m.suffix) {
 | |
| 			return false
 | |
| 		}
 | |
| 		if len(m.contains) > 0 && !containsInOrder(s, m.contains) {
 | |
| 			return false
 | |
| 		}
 | |
| 		if m.stringMatcher != nil {
 | |
| 			return m.stringMatcher.Matches(s)
 | |
| 		}
 | |
| 		return m.re.MatchString(s)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // IsOptimized returns true if any fast-path optimization is applied to the
 | |
| // regex matcher.
 | |
| func (m *FastRegexMatcher) IsOptimized() bool {
 | |
| 	return len(m.setMatches) > 0 || m.stringMatcher != nil || m.prefix != "" || m.suffix != "" || len(m.contains) > 0
 | |
| }
 | |
| 
 | |
| // findSetMatches extract equality matches from a regexp.
 | |
| // Returns nil if we can't replace the regexp by only equality matchers or the regexp contains
 | |
| // a mix of case sensitive and case insensitive matchers.
 | |
| func findSetMatches(re *syntax.Regexp) (matches []string, caseSensitive bool) {
 | |
| 	clearBeginEndText(re)
 | |
| 
 | |
| 	return findSetMatchesInternal(re, "")
 | |
| }
 | |
| 
 | |
| func findSetMatchesInternal(re *syntax.Regexp, base string) (matches []string, caseSensitive bool) {
 | |
| 	switch re.Op {
 | |
| 	case syntax.OpBeginText:
 | |
| 		// Correctly handling the begin text operator inside a regex is tricky,
 | |
| 		// so in this case we fallback to the regex engine.
 | |
| 		return nil, false
 | |
| 	case syntax.OpEndText:
 | |
| 		// Correctly handling the end text operator inside a regex is tricky,
 | |
| 		// so in this case we fallback to the regex engine.
 | |
| 		return nil, false
 | |
| 	case syntax.OpLiteral:
 | |
| 		return []string{base + string(re.Rune)}, isCaseSensitive(re)
 | |
| 	case syntax.OpEmptyMatch:
 | |
| 		if base != "" {
 | |
| 			return []string{base}, isCaseSensitive(re)
 | |
| 		}
 | |
| 	case syntax.OpAlternate:
 | |
| 		return findSetMatchesFromAlternate(re, base)
 | |
| 	case syntax.OpCapture:
 | |
| 		clearCapture(re)
 | |
| 		return findSetMatchesInternal(re, base)
 | |
| 	case syntax.OpConcat:
 | |
| 		return findSetMatchesFromConcat(re, base)
 | |
| 	case syntax.OpCharClass:
 | |
| 		if len(re.Rune)%2 != 0 {
 | |
| 			return nil, false
 | |
| 		}
 | |
| 		var matches []string
 | |
| 		var totalSet int
 | |
| 		for i := 0; i+1 < len(re.Rune); i += 2 {
 | |
| 			totalSet += int(re.Rune[i+1]-re.Rune[i]) + 1
 | |
| 		}
 | |
| 		// limits the total characters that can be used to create matches.
 | |
| 		// In some case like negation [^0-9] a lot of possibilities exists and that
 | |
| 		// can create thousands of possible matches at which points we're better off using regexp.
 | |
| 		if totalSet > maxSetMatches {
 | |
| 			return nil, false
 | |
| 		}
 | |
| 		for i := 0; i+1 < len(re.Rune); i += 2 {
 | |
| 			lo, hi := re.Rune[i], re.Rune[i+1]
 | |
| 			for c := lo; c <= hi; c++ {
 | |
| 				matches = append(matches, base+string(c))
 | |
| 			}
 | |
| 		}
 | |
| 		return matches, isCaseSensitive(re)
 | |
| 	default:
 | |
| 		return nil, false
 | |
| 	}
 | |
| 	return nil, false
 | |
| }
 | |
| 
 | |
| func findSetMatchesFromConcat(re *syntax.Regexp, base string) (matches []string, matchesCaseSensitive bool) {
 | |
| 	if len(re.Sub) == 0 {
 | |
| 		return nil, false
 | |
| 	}
 | |
| 	clearCapture(re.Sub...)
 | |
| 
 | |
| 	matches = []string{base}
 | |
| 
 | |
| 	for i := 0; i < len(re.Sub); i++ {
 | |
| 		var newMatches []string
 | |
| 		for j, b := range matches {
 | |
| 			m, caseSensitive := findSetMatchesInternal(re.Sub[i], b)
 | |
| 			if m == nil {
 | |
| 				return nil, false
 | |
| 			}
 | |
| 			if tooManyMatches(newMatches, m...) {
 | |
| 				return nil, false
 | |
| 			}
 | |
| 
 | |
| 			// All matches must have the same case sensitivity. If it's the first set of matches
 | |
| 			// returned, we store its sensitivity as the expected case, and then we'll check all
 | |
| 			// other ones.
 | |
| 			if i == 0 && j == 0 {
 | |
| 				matchesCaseSensitive = caseSensitive
 | |
| 			}
 | |
| 			if matchesCaseSensitive != caseSensitive {
 | |
| 				return nil, false
 | |
| 			}
 | |
| 
 | |
| 			newMatches = append(newMatches, m...)
 | |
| 		}
 | |
| 		matches = newMatches
 | |
| 	}
 | |
| 
 | |
| 	return matches, matchesCaseSensitive
 | |
| }
 | |
| 
 | |
| func findSetMatchesFromAlternate(re *syntax.Regexp, base string) (matches []string, matchesCaseSensitive bool) {
 | |
| 	for i, sub := range re.Sub {
 | |
| 		found, caseSensitive := findSetMatchesInternal(sub, base)
 | |
| 		if found == nil {
 | |
| 			return nil, false
 | |
| 		}
 | |
| 		if tooManyMatches(matches, found...) {
 | |
| 			return nil, false
 | |
| 		}
 | |
| 
 | |
| 		// All matches must have the same case sensitivity. If it's the first set of matches
 | |
| 		// returned, we store its sensitivity as the expected case, and then we'll check all
 | |
| 		// other ones.
 | |
| 		if i == 0 {
 | |
| 			matchesCaseSensitive = caseSensitive
 | |
| 		}
 | |
| 		if matchesCaseSensitive != caseSensitive {
 | |
| 			return nil, false
 | |
| 		}
 | |
| 
 | |
| 		matches = append(matches, found...)
 | |
| 	}
 | |
| 
 | |
| 	return matches, matchesCaseSensitive
 | |
| }
 | |
| 
 | |
| // clearCapture removes capture operation as they are not used for matching.
 | |
| func clearCapture(regs ...*syntax.Regexp) {
 | |
| 	for _, r := range regs {
 | |
| 		// Iterate on the regexp because capture groups could be nested.
 | |
| 		for r.Op == syntax.OpCapture {
 | |
| 			*r = *r.Sub[0]
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // clearBeginEndText removes the begin and end text from the regexp. Prometheus regexp are anchored to the beginning and end of the string.
 | |
| func clearBeginEndText(re *syntax.Regexp) {
 | |
| 	// Do not clear begin/end text from an alternate operator because it could
 | |
| 	// change the actual regexp properties.
 | |
| 	if re.Op == syntax.OpAlternate {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	if len(re.Sub) == 0 {
 | |
| 		return
 | |
| 	}
 | |
| 	if len(re.Sub) == 1 {
 | |
| 		if re.Sub[0].Op == syntax.OpBeginText || re.Sub[0].Op == syntax.OpEndText {
 | |
| 			// We need to remove this element. Since it's the only one, we convert into a matcher of an empty string.
 | |
| 			// OpEmptyMatch is regexp's nop operator.
 | |
| 			re.Op = syntax.OpEmptyMatch
 | |
| 			re.Sub = nil
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	if re.Sub[0].Op == syntax.OpBeginText {
 | |
| 		re.Sub = re.Sub[1:]
 | |
| 	}
 | |
| 	if re.Sub[len(re.Sub)-1].Op == syntax.OpEndText {
 | |
| 		re.Sub = re.Sub[:len(re.Sub)-1]
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // isCaseInsensitive tells if a regexp is case insensitive.
 | |
| // The flag should be check at each level of the syntax tree.
 | |
| func isCaseInsensitive(reg *syntax.Regexp) bool {
 | |
| 	return (reg.Flags & syntax.FoldCase) != 0
 | |
| }
 | |
| 
 | |
| // isCaseSensitive tells if a regexp is case sensitive.
 | |
| // The flag should be check at each level of the syntax tree.
 | |
| func isCaseSensitive(reg *syntax.Regexp) bool {
 | |
| 	return !isCaseInsensitive(reg)
 | |
| }
 | |
| 
 | |
| // tooManyMatches guards against creating too many set matches.
 | |
| func tooManyMatches(matches []string, added ...string) bool {
 | |
| 	return len(matches)+len(added) > maxSetMatches
 | |
| }
 | |
| 
 | |
| func (m *FastRegexMatcher) MatchString(s string) bool {
 | |
| 	return m.matchString(s)
 | |
| }
 | |
| 
 | |
| func (m *FastRegexMatcher) SetMatches() []string {
 | |
| 	// IMPORTANT: always return a copy, otherwise if the caller manipulate this slice it will
 | |
| 	// also get manipulated in the cached FastRegexMatcher instance.
 | |
| 	return slices.Clone(m.setMatches)
 | |
| }
 | |
| 
 | |
| func (m *FastRegexMatcher) GetRegexString() string {
 | |
| 	return m.reString
 | |
| }
 | |
| 
 | |
| // optimizeAlternatingLiterals optimizes a regex of the form
 | |
| //
 | |
| //	`literal1|literal2|literal3|...`
 | |
| //
 | |
| // this function returns an optimized StringMatcher or nil if the regex
 | |
| // cannot be optimized in this way, and a list of setMatches up to maxSetMatches.
 | |
| func optimizeAlternatingLiterals(s string) (StringMatcher, []string) {
 | |
| 	if len(s) == 0 {
 | |
| 		return emptyStringMatcher{}, nil
 | |
| 	}
 | |
| 
 | |
| 	estimatedAlternates := strings.Count(s, "|") + 1
 | |
| 
 | |
| 	// If there are no alternates, check if the string is a literal
 | |
| 	if estimatedAlternates == 1 {
 | |
| 		if regexp.QuoteMeta(s) == s {
 | |
| 			return &equalStringMatcher{s: s, caseSensitive: true}, []string{s}
 | |
| 		}
 | |
| 		return nil, nil
 | |
| 	}
 | |
| 
 | |
| 	multiMatcher := newEqualMultiStringMatcher(true, estimatedAlternates, 0, 0)
 | |
| 
 | |
| 	for end := strings.IndexByte(s, '|'); end > -1; end = strings.IndexByte(s, '|') {
 | |
| 		// Split the string into the next literal and the remainder
 | |
| 		subMatch := s[:end]
 | |
| 		s = s[end+1:]
 | |
| 
 | |
| 		// break if any of the submatches are not literals
 | |
| 		if regexp.QuoteMeta(subMatch) != subMatch {
 | |
| 			return nil, nil
 | |
| 		}
 | |
| 
 | |
| 		multiMatcher.add(subMatch)
 | |
| 	}
 | |
| 
 | |
| 	// break if the remainder is not a literal
 | |
| 	if regexp.QuoteMeta(s) != s {
 | |
| 		return nil, nil
 | |
| 	}
 | |
| 	multiMatcher.add(s)
 | |
| 
 | |
| 	return multiMatcher, multiMatcher.setMatches()
 | |
| }
 | |
| 
 | |
| // optimizeConcatRegex returns literal prefix/suffix text that can be safely
 | |
| // checked against the label value before running the regexp matcher.
 | |
| func optimizeConcatRegex(r *syntax.Regexp) (prefix, suffix string, contains []string) {
 | |
| 	sub := r.Sub
 | |
| 	clearCapture(sub...)
 | |
| 
 | |
| 	// We can safely remove begin and end text matchers respectively
 | |
| 	// at the beginning and end of the regexp.
 | |
| 	if len(sub) > 0 && sub[0].Op == syntax.OpBeginText {
 | |
| 		sub = sub[1:]
 | |
| 	}
 | |
| 	if len(sub) > 0 && sub[len(sub)-1].Op == syntax.OpEndText {
 | |
| 		sub = sub[:len(sub)-1]
 | |
| 	}
 | |
| 
 | |
| 	if len(sub) == 0 {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Given Prometheus regex matchers are always anchored to the begin/end
 | |
| 	// of the text, if the first/last operations are literals, we can safely
 | |
| 	// treat them as prefix/suffix.
 | |
| 	if sub[0].Op == syntax.OpLiteral && (sub[0].Flags&syntax.FoldCase) == 0 {
 | |
| 		prefix = string(sub[0].Rune)
 | |
| 	}
 | |
| 	if last := len(sub) - 1; sub[last].Op == syntax.OpLiteral && (sub[last].Flags&syntax.FoldCase) == 0 {
 | |
| 		suffix = string(sub[last].Rune)
 | |
| 	}
 | |
| 
 | |
| 	// If contains any literal which is not a prefix/suffix, we keep track of
 | |
| 	// all the ones which are case-sensitive.
 | |
| 	for i := 1; i < len(sub)-1; i++ {
 | |
| 		if sub[i].Op == syntax.OpLiteral && (sub[i].Flags&syntax.FoldCase) == 0 {
 | |
| 			contains = append(contains, string(sub[i].Rune))
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // StringMatcher is a matcher that matches a string in place of a regular expression.
 | |
| type StringMatcher interface {
 | |
| 	Matches(s string) bool
 | |
| }
 | |
| 
 | |
| // stringMatcherFromRegexp attempts to replace a common regexp with a string matcher.
 | |
| // It returns nil if the regexp is not supported.
 | |
| func stringMatcherFromRegexp(re *syntax.Regexp) StringMatcher {
 | |
| 	clearBeginEndText(re)
 | |
| 
 | |
| 	m := stringMatcherFromRegexpInternal(re)
 | |
| 	m = optimizeEqualOrPrefixStringMatchers(m, minEqualMultiStringMatcherMapThreshold)
 | |
| 
 | |
| 	return m
 | |
| }
 | |
| 
 | |
| func stringMatcherFromRegexpInternal(re *syntax.Regexp) StringMatcher {
 | |
| 	clearCapture(re)
 | |
| 
 | |
| 	switch re.Op {
 | |
| 	case syntax.OpBeginText:
 | |
| 		// Correctly handling the begin text operator inside a regex is tricky,
 | |
| 		// so in this case we fallback to the regex engine.
 | |
| 		return nil
 | |
| 	case syntax.OpEndText:
 | |
| 		// Correctly handling the end text operator inside a regex is tricky,
 | |
| 		// so in this case we fallback to the regex engine.
 | |
| 		return nil
 | |
| 	case syntax.OpPlus:
 | |
| 		if re.Sub[0].Op != syntax.OpAnyChar && re.Sub[0].Op != syntax.OpAnyCharNotNL {
 | |
| 			return nil
 | |
| 		}
 | |
| 		return &anyNonEmptyStringMatcher{
 | |
| 			matchNL: re.Sub[0].Op == syntax.OpAnyChar,
 | |
| 		}
 | |
| 	case syntax.OpStar:
 | |
| 		if re.Sub[0].Op != syntax.OpAnyChar && re.Sub[0].Op != syntax.OpAnyCharNotNL {
 | |
| 			return nil
 | |
| 		}
 | |
| 
 | |
| 		// If the newline is valid, than this matcher literally match any string (even empty).
 | |
| 		if re.Sub[0].Op == syntax.OpAnyChar {
 | |
| 			return trueMatcher{}
 | |
| 		}
 | |
| 
 | |
| 		// Any string is fine (including an empty one), as far as it doesn't contain any newline.
 | |
| 		return anyStringWithoutNewlineMatcher{}
 | |
| 	case syntax.OpQuest:
 | |
| 		// Only optimize for ".?".
 | |
| 		if len(re.Sub) != 1 || (re.Sub[0].Op != syntax.OpAnyChar && re.Sub[0].Op != syntax.OpAnyCharNotNL) {
 | |
| 			return nil
 | |
| 		}
 | |
| 
 | |
| 		return &zeroOrOneCharacterStringMatcher{
 | |
| 			matchNL: re.Sub[0].Op == syntax.OpAnyChar,
 | |
| 		}
 | |
| 	case syntax.OpEmptyMatch:
 | |
| 		return emptyStringMatcher{}
 | |
| 
 | |
| 	case syntax.OpLiteral:
 | |
| 		return &equalStringMatcher{
 | |
| 			s:             string(re.Rune),
 | |
| 			caseSensitive: !isCaseInsensitive(re),
 | |
| 		}
 | |
| 	case syntax.OpAlternate:
 | |
| 		or := make([]StringMatcher, 0, len(re.Sub))
 | |
| 		for _, sub := range re.Sub {
 | |
| 			m := stringMatcherFromRegexpInternal(sub)
 | |
| 			if m == nil {
 | |
| 				return nil
 | |
| 			}
 | |
| 			or = append(or, m)
 | |
| 		}
 | |
| 		return orStringMatcher(or)
 | |
| 	case syntax.OpConcat:
 | |
| 		clearCapture(re.Sub...)
 | |
| 
 | |
| 		if len(re.Sub) == 0 {
 | |
| 			return emptyStringMatcher{}
 | |
| 		}
 | |
| 		if len(re.Sub) == 1 {
 | |
| 			return stringMatcherFromRegexpInternal(re.Sub[0])
 | |
| 		}
 | |
| 
 | |
| 		var left, right StringMatcher
 | |
| 
 | |
| 		// Let's try to find if there's a first and last any matchers.
 | |
| 		if re.Sub[0].Op == syntax.OpPlus || re.Sub[0].Op == syntax.OpStar || re.Sub[0].Op == syntax.OpQuest {
 | |
| 			left = stringMatcherFromRegexpInternal(re.Sub[0])
 | |
| 			if left == nil {
 | |
| 				return nil
 | |
| 			}
 | |
| 			re.Sub = re.Sub[1:]
 | |
| 		}
 | |
| 		if re.Sub[len(re.Sub)-1].Op == syntax.OpPlus || re.Sub[len(re.Sub)-1].Op == syntax.OpStar || re.Sub[len(re.Sub)-1].Op == syntax.OpQuest {
 | |
| 			right = stringMatcherFromRegexpInternal(re.Sub[len(re.Sub)-1])
 | |
| 			if right == nil {
 | |
| 				return nil
 | |
| 			}
 | |
| 			re.Sub = re.Sub[:len(re.Sub)-1]
 | |
| 		}
 | |
| 
 | |
| 		matches, matchesCaseSensitive := findSetMatchesInternal(re, "")
 | |
| 
 | |
| 		if len(matches) == 0 && len(re.Sub) == 2 {
 | |
| 			// We have not find fixed set matches. We look for other known cases that
 | |
| 			// we can optimize.
 | |
| 			switch {
 | |
| 			// Prefix is literal.
 | |
| 			case right == nil && re.Sub[0].Op == syntax.OpLiteral:
 | |
| 				right = stringMatcherFromRegexpInternal(re.Sub[1])
 | |
| 				if right != nil {
 | |
| 					matches = []string{string(re.Sub[0].Rune)}
 | |
| 					matchesCaseSensitive = !isCaseInsensitive(re.Sub[0])
 | |
| 				}
 | |
| 
 | |
| 			// Suffix is literal.
 | |
| 			case left == nil && re.Sub[1].Op == syntax.OpLiteral:
 | |
| 				left = stringMatcherFromRegexpInternal(re.Sub[0])
 | |
| 				if left != nil {
 | |
| 					matches = []string{string(re.Sub[1].Rune)}
 | |
| 					matchesCaseSensitive = !isCaseInsensitive(re.Sub[1])
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Ensure we've found some literals to match (optionally with a left and/or right matcher).
 | |
| 		// If not, then this optimization doesn't trigger.
 | |
| 		if len(matches) == 0 {
 | |
| 			return nil
 | |
| 		}
 | |
| 
 | |
| 		// Use the right (and best) matcher based on what we've found.
 | |
| 		switch {
 | |
| 		// No left and right matchers (only fixed set matches).
 | |
| 		case left == nil && right == nil:
 | |
| 			// if there's no any matchers on both side it's a concat of literals
 | |
| 			or := make([]StringMatcher, 0, len(matches))
 | |
| 			for _, match := range matches {
 | |
| 				or = append(or, &equalStringMatcher{
 | |
| 					s:             match,
 | |
| 					caseSensitive: matchesCaseSensitive,
 | |
| 				})
 | |
| 			}
 | |
| 			return orStringMatcher(or)
 | |
| 
 | |
| 		// Right matcher with 1 fixed set match.
 | |
| 		case left == nil && len(matches) == 1:
 | |
| 			return newLiteralPrefixStringMatcher(matches[0], matchesCaseSensitive, right)
 | |
| 
 | |
| 		// Left matcher with 1 fixed set match.
 | |
| 		case right == nil && len(matches) == 1:
 | |
| 			return &literalSuffixStringMatcher{
 | |
| 				left:                left,
 | |
| 				suffix:              matches[0],
 | |
| 				suffixCaseSensitive: matchesCaseSensitive,
 | |
| 			}
 | |
| 
 | |
| 		// We found literals in the middle. We can trigger the fast path only if
 | |
| 		// the matches are case sensitive because containsStringMatcher doesn't
 | |
| 		// support case insensitive.
 | |
| 		case matchesCaseSensitive:
 | |
| 			return &containsStringMatcher{
 | |
| 				substrings: matches,
 | |
| 				left:       left,
 | |
| 				right:      right,
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // containsStringMatcher matches a string if it contains any of the substrings.
 | |
| // If left and right are not nil, it's a contains operation where left and right must match.
 | |
| // If left is nil, it's a hasPrefix operation and right must match.
 | |
| // Finally, if right is nil it's a hasSuffix operation and left must match.
 | |
| type containsStringMatcher struct {
 | |
| 	// The matcher that must match the left side. Can be nil.
 | |
| 	left StringMatcher
 | |
| 
 | |
| 	// At least one of these strings must match in the "middle", between left and right matchers.
 | |
| 	substrings []string
 | |
| 
 | |
| 	// The matcher that must match the right side. Can be nil.
 | |
| 	right StringMatcher
 | |
| }
 | |
| 
 | |
| func (m *containsStringMatcher) Matches(s string) bool {
 | |
| 	for _, substr := range m.substrings {
 | |
| 		switch {
 | |
| 		case m.right != nil && m.left != nil:
 | |
| 			searchStartPos := 0
 | |
| 
 | |
| 			for {
 | |
| 				pos := strings.Index(s[searchStartPos:], substr)
 | |
| 				if pos < 0 {
 | |
| 					break
 | |
| 				}
 | |
| 
 | |
| 				// Since we started searching from searchStartPos, we have to add that offset
 | |
| 				// to get the actual position of the substring inside the text.
 | |
| 				pos += searchStartPos
 | |
| 
 | |
| 				// If both the left and right matchers match, then we can stop searching because
 | |
| 				// we've found a match.
 | |
| 				if m.left.Matches(s[:pos]) && m.right.Matches(s[pos+len(substr):]) {
 | |
| 					return true
 | |
| 				}
 | |
| 
 | |
| 				// Continue searching for another occurrence of the substring inside the text.
 | |
| 				searchStartPos = pos + 1
 | |
| 			}
 | |
| 		case m.left != nil:
 | |
| 			// If we have to check for characters on the left then we need to match a suffix.
 | |
| 			if strings.HasSuffix(s, substr) && m.left.Matches(s[:len(s)-len(substr)]) {
 | |
| 				return true
 | |
| 			}
 | |
| 		case m.right != nil:
 | |
| 			if strings.HasPrefix(s, substr) && m.right.Matches(s[len(substr):]) {
 | |
| 				return true
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| func newLiteralPrefixStringMatcher(prefix string, prefixCaseSensitive bool, right StringMatcher) StringMatcher {
 | |
| 	if prefixCaseSensitive {
 | |
| 		return &literalPrefixSensitiveStringMatcher{
 | |
| 			prefix: prefix,
 | |
| 			right:  right,
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return &literalPrefixInsensitiveStringMatcher{
 | |
| 		prefix: prefix,
 | |
| 		right:  right,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // literalPrefixSensitiveStringMatcher matches a string with the given literal case-sensitive prefix and right side matcher.
 | |
| type literalPrefixSensitiveStringMatcher struct {
 | |
| 	prefix string
 | |
| 
 | |
| 	// The matcher that must match the right side. Can be nil.
 | |
| 	right StringMatcher
 | |
| }
 | |
| 
 | |
| func (m *literalPrefixSensitiveStringMatcher) Matches(s string) bool {
 | |
| 	if !strings.HasPrefix(s, m.prefix) {
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	// Ensure the right side matches.
 | |
| 	return m.right.Matches(s[len(m.prefix):])
 | |
| }
 | |
| 
 | |
| // literalPrefixInsensitiveStringMatcher matches a string with the given literal case-insensitive prefix and right side matcher.
 | |
| type literalPrefixInsensitiveStringMatcher struct {
 | |
| 	prefix string
 | |
| 
 | |
| 	// The matcher that must match the right side. Can be nil.
 | |
| 	right StringMatcher
 | |
| }
 | |
| 
 | |
| func (m *literalPrefixInsensitiveStringMatcher) Matches(s string) bool {
 | |
| 	if !hasPrefixCaseInsensitive(s, m.prefix) {
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	// Ensure the right side matches.
 | |
| 	return m.right.Matches(s[len(m.prefix):])
 | |
| }
 | |
| 
 | |
| // literalSuffixStringMatcher matches a string with the given literal suffix and left side matcher.
 | |
| type literalSuffixStringMatcher struct {
 | |
| 	// The matcher that must match the left side. Can be nil.
 | |
| 	left StringMatcher
 | |
| 
 | |
| 	suffix              string
 | |
| 	suffixCaseSensitive bool
 | |
| }
 | |
| 
 | |
| func (m *literalSuffixStringMatcher) Matches(s string) bool {
 | |
| 	// Ensure the suffix matches.
 | |
| 	if m.suffixCaseSensitive && !strings.HasSuffix(s, m.suffix) {
 | |
| 		return false
 | |
| 	}
 | |
| 	if !m.suffixCaseSensitive && !hasSuffixCaseInsensitive(s, m.suffix) {
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	// Ensure the left side matches.
 | |
| 	return m.left.Matches(s[:len(s)-len(m.suffix)])
 | |
| }
 | |
| 
 | |
| // emptyStringMatcher matches an empty string.
 | |
| type emptyStringMatcher struct{}
 | |
| 
 | |
| func (emptyStringMatcher) Matches(s string) bool {
 | |
| 	return len(s) == 0
 | |
| }
 | |
| 
 | |
| // orStringMatcher matches any of the sub-matchers.
 | |
| type orStringMatcher []StringMatcher
 | |
| 
 | |
| func (m orStringMatcher) Matches(s string) bool {
 | |
| 	for _, matcher := range m {
 | |
| 		if matcher.Matches(s) {
 | |
| 			return true
 | |
| 		}
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| // equalStringMatcher matches a string exactly and support case insensitive.
 | |
| type equalStringMatcher struct {
 | |
| 	s             string
 | |
| 	caseSensitive bool
 | |
| }
 | |
| 
 | |
| func (m *equalStringMatcher) Matches(s string) bool {
 | |
| 	if m.caseSensitive {
 | |
| 		return m.s == s
 | |
| 	}
 | |
| 	return strings.EqualFold(m.s, s)
 | |
| }
 | |
| 
 | |
| type multiStringMatcherBuilder interface {
 | |
| 	StringMatcher
 | |
| 	add(s string)
 | |
| 	addPrefix(prefix string, prefixCaseSensitive bool, matcher StringMatcher)
 | |
| 	setMatches() []string
 | |
| }
 | |
| 
 | |
| func newEqualMultiStringMatcher(caseSensitive bool, estimatedSize, estimatedPrefixes, minPrefixLength int) multiStringMatcherBuilder {
 | |
| 	// If the estimated size is low enough, it's faster to use a slice instead of a map.
 | |
| 	if estimatedSize < minEqualMultiStringMatcherMapThreshold && estimatedPrefixes == 0 {
 | |
| 		return &equalMultiStringSliceMatcher{caseSensitive: caseSensitive, values: make([]string, 0, estimatedSize)}
 | |
| 	}
 | |
| 
 | |
| 	return &equalMultiStringMapMatcher{
 | |
| 		values:        make(map[string]struct{}, estimatedSize),
 | |
| 		prefixes:      make(map[string][]StringMatcher, estimatedPrefixes),
 | |
| 		minPrefixLen:  minPrefixLength,
 | |
| 		caseSensitive: caseSensitive,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // equalMultiStringSliceMatcher matches a string exactly against a slice of valid values.
 | |
| type equalMultiStringSliceMatcher struct {
 | |
| 	values []string
 | |
| 
 | |
| 	caseSensitive bool
 | |
| }
 | |
| 
 | |
| func (m *equalMultiStringSliceMatcher) add(s string) {
 | |
| 	m.values = append(m.values, s)
 | |
| }
 | |
| 
 | |
| func (*equalMultiStringSliceMatcher) addPrefix(string, bool, StringMatcher) {
 | |
| 	panic("not implemented")
 | |
| }
 | |
| 
 | |
| func (m *equalMultiStringSliceMatcher) setMatches() []string {
 | |
| 	return m.values
 | |
| }
 | |
| 
 | |
| func (m *equalMultiStringSliceMatcher) Matches(s string) bool {
 | |
| 	if m.caseSensitive {
 | |
| 		return slices.Contains(m.values, s)
 | |
| 	}
 | |
| 	for _, v := range m.values {
 | |
| 		if strings.EqualFold(s, v) {
 | |
| 			return true
 | |
| 		}
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| // equalMultiStringMapMatcher matches a string exactly against a map of valid values
 | |
| // or against a set of prefix matchers.
 | |
| type equalMultiStringMapMatcher struct {
 | |
| 	// values contains values to match a string against. If the matching is case insensitive,
 | |
| 	// the values here must be lowercase.
 | |
| 	values map[string]struct{}
 | |
| 	// prefixes maps strings, all of length minPrefixLen, to sets of matchers to check the rest of the string.
 | |
| 	// If the matching is case insensitive, prefixes are all lowercase.
 | |
| 	prefixes map[string][]StringMatcher
 | |
| 	// minPrefixLen can be zero, meaning there are no prefix matchers.
 | |
| 	minPrefixLen  int
 | |
| 	caseSensitive bool
 | |
| }
 | |
| 
 | |
| func (m *equalMultiStringMapMatcher) add(s string) {
 | |
| 	if !m.caseSensitive {
 | |
| 		s = toNormalisedLower(s, nil) // Don't pass a stack buffer here - it will always escape to heap.
 | |
| 	}
 | |
| 
 | |
| 	m.values[s] = struct{}{}
 | |
| }
 | |
| 
 | |
| func (m *equalMultiStringMapMatcher) addPrefix(prefix string, prefixCaseSensitive bool, matcher StringMatcher) {
 | |
| 	if m.minPrefixLen == 0 {
 | |
| 		panic("addPrefix called when no prefix length defined")
 | |
| 	}
 | |
| 	if len(prefix) < m.minPrefixLen {
 | |
| 		panic("addPrefix called with a too short prefix")
 | |
| 	}
 | |
| 	if m.caseSensitive != prefixCaseSensitive {
 | |
| 		panic("addPrefix called with a prefix whose case sensitivity is different than the expected one")
 | |
| 	}
 | |
| 
 | |
| 	s := prefix[:m.minPrefixLen]
 | |
| 	if !m.caseSensitive {
 | |
| 		s = strings.ToLower(s)
 | |
| 	}
 | |
| 
 | |
| 	m.prefixes[s] = append(m.prefixes[s], matcher)
 | |
| }
 | |
| 
 | |
| func (m *equalMultiStringMapMatcher) setMatches() []string {
 | |
| 	if len(m.values) >= maxSetMatches || len(m.prefixes) > 0 {
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	matches := make([]string, 0, len(m.values))
 | |
| 	for s := range m.values {
 | |
| 		matches = append(matches, s)
 | |
| 	}
 | |
| 	return matches
 | |
| }
 | |
| 
 | |
| func (m *equalMultiStringMapMatcher) Matches(s string) bool {
 | |
| 	if len(m.values) > 0 {
 | |
| 		sNorm := s
 | |
| 		var a [32]byte
 | |
| 		if !m.caseSensitive {
 | |
| 			sNorm = toNormalisedLower(s, a[:])
 | |
| 		}
 | |
| 		if _, ok := m.values[sNorm]; ok {
 | |
| 			return true
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if m.minPrefixLen > 0 && len(s) >= m.minPrefixLen {
 | |
| 		prefix := s[:m.minPrefixLen]
 | |
| 		var a [32]byte
 | |
| 		if !m.caseSensitive {
 | |
| 			prefix = toNormalisedLower(s[:m.minPrefixLen], a[:])
 | |
| 		}
 | |
| 		for _, matcher := range m.prefixes[prefix] {
 | |
| 			if matcher.Matches(s) {
 | |
| 				return true
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| // toNormalisedLower normalise the input string using "Unicode Normalization Form D" and then convert
 | |
| // it to lower case.
 | |
| func toNormalisedLower(s string, a []byte) string {
 | |
| 	for i := 0; i < len(s); i++ {
 | |
| 		c := s[i]
 | |
| 		if c >= utf8.RuneSelf {
 | |
| 			return strings.Map(unicode.ToLower, norm.NFKD.String(s))
 | |
| 		}
 | |
| 		if 'A' <= c && c <= 'Z' {
 | |
| 			return toNormalisedLowerSlow(s, i, a)
 | |
| 		}
 | |
| 	}
 | |
| 	return s
 | |
| }
 | |
| 
 | |
| // toNormalisedLowerSlow is split from toNormalisedLower because having a call
 | |
| // to `copy` slows it down even when it is not called.
 | |
| func toNormalisedLowerSlow(s string, i int, a []byte) string {
 | |
| 	var buf []byte
 | |
| 	if cap(a) > len(s) {
 | |
| 		buf = a[:len(s)]
 | |
| 		copy(buf, s)
 | |
| 	} else {
 | |
| 		buf = []byte(s)
 | |
| 	}
 | |
| 	for ; i < len(s); i++ {
 | |
| 		c := s[i]
 | |
| 		if c >= utf8.RuneSelf {
 | |
| 			return strings.Map(unicode.ToLower, norm.NFKD.String(s))
 | |
| 		}
 | |
| 		if 'A' <= c && c <= 'Z' {
 | |
| 			buf[i] = c + 'a' - 'A'
 | |
| 		}
 | |
| 	}
 | |
| 	return yoloString(buf)
 | |
| }
 | |
| 
 | |
| // anyStringWithoutNewlineMatcher is a stringMatcher which matches any string
 | |
| // (including an empty one) as far as it doesn't contain any newline character.
 | |
| type anyStringWithoutNewlineMatcher struct{}
 | |
| 
 | |
| func (anyStringWithoutNewlineMatcher) Matches(s string) bool {
 | |
| 	// We need to make sure it doesn't contain a newline. Since the newline is
 | |
| 	// an ASCII character, we can use strings.IndexByte().
 | |
| 	return strings.IndexByte(s, '\n') == -1
 | |
| }
 | |
| 
 | |
| // anyNonEmptyStringMatcher is a stringMatcher which matches any non-empty string.
 | |
| type anyNonEmptyStringMatcher struct {
 | |
| 	matchNL bool
 | |
| }
 | |
| 
 | |
| func (m *anyNonEmptyStringMatcher) Matches(s string) bool {
 | |
| 	if m.matchNL {
 | |
| 		// It's OK if the string contains a newline so we just need to make
 | |
| 		// sure it's non-empty.
 | |
| 		return len(s) > 0
 | |
| 	}
 | |
| 
 | |
| 	// We need to make sure it non-empty and doesn't contain a newline.
 | |
| 	// Since the newline is an ASCII character, we can use strings.IndexByte().
 | |
| 	return len(s) > 0 && strings.IndexByte(s, '\n') == -1
 | |
| }
 | |
| 
 | |
| // zeroOrOneCharacterStringMatcher is a StringMatcher which matches zero or one occurrence
 | |
| // of any character. The newline character is matches only if matchNL is set to true.
 | |
| type zeroOrOneCharacterStringMatcher struct {
 | |
| 	matchNL bool
 | |
| }
 | |
| 
 | |
| func (m *zeroOrOneCharacterStringMatcher) Matches(s string) bool {
 | |
| 	// If there's more than one rune in the string, then it can't match.
 | |
| 	if r, size := utf8.DecodeRuneInString(s); r == utf8.RuneError {
 | |
| 		// Size is 0 for empty strings, 1 for invalid rune.
 | |
| 		// Empty string matches, invalid rune matches if there isn't anything else.
 | |
| 		return size == len(s)
 | |
| 	} else if size < len(s) {
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	// No need to check for the newline if the string is empty or matching a newline is OK.
 | |
| 	if m.matchNL || len(s) == 0 {
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| 	return s[0] != '\n'
 | |
| }
 | |
| 
 | |
| // trueMatcher is a stringMatcher which matches any string (always returns true).
 | |
| type trueMatcher struct{}
 | |
| 
 | |
| func (trueMatcher) Matches(string) bool {
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // optimizeEqualOrPrefixStringMatchers optimize a specific case where all matchers are made by an
 | |
| // alternation (orStringMatcher) of strings checked for equality (equalStringMatcher) or
 | |
| // with a literal prefix (literalPrefixSensitiveStringMatcher or literalPrefixInsensitiveStringMatcher).
 | |
| //
 | |
| // In this specific case, when we have many strings to match against we can use a map instead
 | |
| // of iterating over the list of strings.
 | |
| func optimizeEqualOrPrefixStringMatchers(input StringMatcher, threshold int) StringMatcher {
 | |
| 	var (
 | |
| 		caseSensitive    bool
 | |
| 		caseSensitiveSet bool
 | |
| 		numValues        int
 | |
| 		numPrefixes      int
 | |
| 		minPrefixLength  int
 | |
| 	)
 | |
| 
 | |
| 	// Analyse the input StringMatcher to count the number of occurrences
 | |
| 	// and ensure all of them have the same case sensitivity.
 | |
| 	analyseEqualMatcherCallback := func(matcher *equalStringMatcher) bool {
 | |
| 		// Ensure we don't have mixed case sensitivity.
 | |
| 		if caseSensitiveSet && caseSensitive != matcher.caseSensitive {
 | |
| 			return false
 | |
| 		} else if !caseSensitiveSet {
 | |
| 			caseSensitive = matcher.caseSensitive
 | |
| 			caseSensitiveSet = true
 | |
| 		}
 | |
| 
 | |
| 		numValues++
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| 	analysePrefixMatcherCallback := func(prefix string, prefixCaseSensitive bool, _ StringMatcher) bool {
 | |
| 		// Ensure we don't have mixed case sensitivity.
 | |
| 		if caseSensitiveSet && caseSensitive != prefixCaseSensitive {
 | |
| 			return false
 | |
| 		} else if !caseSensitiveSet {
 | |
| 			caseSensitive = prefixCaseSensitive
 | |
| 			caseSensitiveSet = true
 | |
| 		}
 | |
| 		if numPrefixes == 0 || len(prefix) < minPrefixLength {
 | |
| 			minPrefixLength = len(prefix)
 | |
| 		}
 | |
| 
 | |
| 		numPrefixes++
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| 	if !findEqualOrPrefixStringMatchers(input, analyseEqualMatcherCallback, analysePrefixMatcherCallback) {
 | |
| 		return input
 | |
| 	}
 | |
| 
 | |
| 	// If the number of values and prefixes found is less than the threshold, then we should skip the optimization.
 | |
| 	if (numValues + numPrefixes) < threshold {
 | |
| 		return input
 | |
| 	}
 | |
| 
 | |
| 	// Parse again the input StringMatcher to extract all values and storing them.
 | |
| 	// We can skip the case sensitivity check because we've already checked it and
 | |
| 	// if the code reach this point then it means all matchers have the same case sensitivity.
 | |
| 	multiMatcher := newEqualMultiStringMatcher(caseSensitive, numValues, numPrefixes, minPrefixLength)
 | |
| 
 | |
| 	// Ignore the return value because we already iterated over the input StringMatcher
 | |
| 	// and it was all good.
 | |
| 	findEqualOrPrefixStringMatchers(input, func(matcher *equalStringMatcher) bool {
 | |
| 		multiMatcher.add(matcher.s)
 | |
| 		return true
 | |
| 	}, func(prefix string, _ bool, matcher StringMatcher) bool {
 | |
| 		multiMatcher.addPrefix(prefix, caseSensitive, matcher)
 | |
| 		return true
 | |
| 	})
 | |
| 
 | |
| 	return multiMatcher
 | |
| }
 | |
| 
 | |
| // findEqualOrPrefixStringMatchers analyze the input StringMatcher and calls the equalMatcherCallback for each
 | |
| // equalStringMatcher found, and prefixMatcherCallback for each literalPrefixSensitiveStringMatcher and literalPrefixInsensitiveStringMatcher found.
 | |
| //
 | |
| // Returns true if and only if the input StringMatcher is *only* composed by an alternation of equalStringMatcher and/or
 | |
| // literal prefix matcher. Returns false if prefixMatcherCallback is nil and a literal prefix matcher is encountered.
 | |
| func findEqualOrPrefixStringMatchers(input StringMatcher, equalMatcherCallback func(matcher *equalStringMatcher) bool, prefixMatcherCallback func(prefix string, prefixCaseSensitive bool, matcher StringMatcher) bool) bool {
 | |
| 	orInput, ok := input.(orStringMatcher)
 | |
| 	if !ok {
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	for _, m := range orInput {
 | |
| 		switch casted := m.(type) {
 | |
| 		case orStringMatcher:
 | |
| 			if !findEqualOrPrefixStringMatchers(m, equalMatcherCallback, prefixMatcherCallback) {
 | |
| 				return false
 | |
| 			}
 | |
| 
 | |
| 		case *equalStringMatcher:
 | |
| 			if !equalMatcherCallback(casted) {
 | |
| 				return false
 | |
| 			}
 | |
| 
 | |
| 		case *literalPrefixSensitiveStringMatcher:
 | |
| 			if prefixMatcherCallback == nil || !prefixMatcherCallback(casted.prefix, true, casted) {
 | |
| 				return false
 | |
| 			}
 | |
| 
 | |
| 		case *literalPrefixInsensitiveStringMatcher:
 | |
| 			if prefixMatcherCallback == nil || !prefixMatcherCallback(casted.prefix, false, casted) {
 | |
| 				return false
 | |
| 			}
 | |
| 
 | |
| 		default:
 | |
| 			// It's not an equal or prefix string matcher, so we have to stop searching
 | |
| 			// cause this optimization can't be applied.
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| func hasPrefixCaseInsensitive(s, prefix string) bool {
 | |
| 	return len(s) >= len(prefix) && strings.EqualFold(s[0:len(prefix)], prefix)
 | |
| }
 | |
| 
 | |
| func hasSuffixCaseInsensitive(s, suffix string) bool {
 | |
| 	return len(s) >= len(suffix) && strings.EqualFold(s[len(s)-len(suffix):], suffix)
 | |
| }
 | |
| 
 | |
| func containsInOrder(s string, contains []string) bool {
 | |
| 	// Optimization for the case we only have to look for 1 substring.
 | |
| 	if len(contains) == 1 {
 | |
| 		return strings.Contains(s, contains[0])
 | |
| 	}
 | |
| 
 | |
| 	return containsInOrderMulti(s, contains)
 | |
| }
 | |
| 
 | |
| func containsInOrderMulti(s string, contains []string) bool {
 | |
| 	offset := 0
 | |
| 
 | |
| 	for _, substr := range contains {
 | |
| 		at := strings.Index(s[offset:], substr)
 | |
| 		if at == -1 {
 | |
| 			return false
 | |
| 		}
 | |
| 
 | |
| 		offset += at + len(substr)
 | |
| 	}
 | |
| 
 | |
| 	return true
 | |
| }
 |