451 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			451 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2015 The Prometheus Authors
 | 
						||
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						||
// you may not use this file except in compliance with the License.
 | 
						||
// You may obtain a copy of the License at
 | 
						||
//
 | 
						||
// http://www.apache.org/licenses/LICENSE-2.0
 | 
						||
//
 | 
						||
// Unless required by applicable law or agreed to in writing, software
 | 
						||
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						||
// See the License for the specific language governing permissions and
 | 
						||
// limitations under the License.
 | 
						||
 | 
						||
package promql
 | 
						||
 | 
						||
import (
 | 
						||
	"math"
 | 
						||
	"sort"
 | 
						||
 | 
						||
	"golang.org/x/exp/slices"
 | 
						||
 | 
						||
	"github.com/prometheus/prometheus/model/histogram"
 | 
						||
	"github.com/prometheus/prometheus/model/labels"
 | 
						||
)
 | 
						||
 | 
						||
// smallDeltaTolerance is the threshold for relative deltas between classic
 | 
						||
// histogram buckets that will be ignored by the histogram_quantile function
 | 
						||
// because they are most likely artifacts of floating point precision issues.
 | 
						||
// Testing on 2 sets of real data with bugs arising from small deltas,
 | 
						||
// the safe ranges were from:
 | 
						||
// - 1e-05 to 1e-15
 | 
						||
// - 1e-06 to 1e-15
 | 
						||
// Anything to the left of that would cause non-query-sharded data to have
 | 
						||
// small deltas ignored (unnecessary and we should avoid this), and anything
 | 
						||
// to the right of that would cause query-sharded data to not have its small
 | 
						||
// deltas ignored (so the problem won't be fixed).
 | 
						||
// For context, query sharding triggers these float precision errors in Mimir.
 | 
						||
// To illustrate, with a relative deviation of 1e-12, we need to have 1e12
 | 
						||
// observations in the bucket so that the change of one observation is small
 | 
						||
// enough to get ignored. With the usual observation rate even of very busy
 | 
						||
// services, this will hardly be reached in timeframes that matters for
 | 
						||
// monitoring.
 | 
						||
const smallDeltaTolerance = 1e-12
 | 
						||
 | 
						||
// Helpers to calculate quantiles.
 | 
						||
 | 
						||
// excludedLabels are the labels to exclude from signature calculation for
 | 
						||
// quantiles.
 | 
						||
var excludedLabels = []string{
 | 
						||
	labels.MetricName,
 | 
						||
	labels.BucketLabel,
 | 
						||
}
 | 
						||
 | 
						||
type bucket struct {
 | 
						||
	upperBound float64
 | 
						||
	count      float64
 | 
						||
}
 | 
						||
 | 
						||
// buckets implements sort.Interface.
 | 
						||
type buckets []bucket
 | 
						||
 | 
						||
type metricWithBuckets struct {
 | 
						||
	metric  labels.Labels
 | 
						||
	buckets buckets
 | 
						||
}
 | 
						||
 | 
						||
// bucketQuantile calculates the quantile 'q' based on the given buckets. The
 | 
						||
// buckets will be sorted by upperBound by this function (i.e. no sorting
 | 
						||
// needed before calling this function). The quantile value is interpolated
 | 
						||
// assuming a linear distribution within a bucket. However, if the quantile
 | 
						||
// falls into the highest bucket, the upper bound of the 2nd highest bucket is
 | 
						||
// returned. A natural lower bound of 0 is assumed if the upper bound of the
 | 
						||
// lowest bucket is greater 0. In that case, interpolation in the lowest bucket
 | 
						||
// happens linearly between 0 and the upper bound of the lowest bucket.
 | 
						||
// However, if the lowest bucket has an upper bound less or equal 0, this upper
 | 
						||
// bound is returned if the quantile falls into the lowest bucket.
 | 
						||
//
 | 
						||
// There are a number of special cases (once we have a way to report errors
 | 
						||
// happening during evaluations of AST functions, we should report those
 | 
						||
// explicitly):
 | 
						||
//
 | 
						||
// If 'buckets' has 0 observations, NaN is returned.
 | 
						||
//
 | 
						||
// If 'buckets' has fewer than 2 elements, NaN is returned.
 | 
						||
//
 | 
						||
// If the highest bucket is not +Inf, NaN is returned.
 | 
						||
//
 | 
						||
// If q==NaN, NaN is returned.
 | 
						||
//
 | 
						||
// If q<0, -Inf is returned.
 | 
						||
//
 | 
						||
// If q>1, +Inf is returned.
 | 
						||
//
 | 
						||
// We also return a bool to indicate if monotonicity needed to be forced,
 | 
						||
// and another bool to indicate if small differences between buckets (that
 | 
						||
// are likely artifacts of floating point precision issues) have been
 | 
						||
// ignored.
 | 
						||
func bucketQuantile(q float64, buckets buckets) (float64, bool, bool) {
 | 
						||
	if math.IsNaN(q) {
 | 
						||
		return math.NaN(), false, false
 | 
						||
	}
 | 
						||
	if q < 0 {
 | 
						||
		return math.Inf(-1), false, false
 | 
						||
	}
 | 
						||
	if q > 1 {
 | 
						||
		return math.Inf(+1), false, false
 | 
						||
	}
 | 
						||
	slices.SortFunc(buckets, func(a, b bucket) int {
 | 
						||
		// We don't expect the bucket boundary to be a NaN.
 | 
						||
		if a.upperBound < b.upperBound {
 | 
						||
			return -1
 | 
						||
		}
 | 
						||
		if a.upperBound > b.upperBound {
 | 
						||
			return +1
 | 
						||
		}
 | 
						||
		return 0
 | 
						||
	})
 | 
						||
	if !math.IsInf(buckets[len(buckets)-1].upperBound, +1) {
 | 
						||
		return math.NaN(), false, false
 | 
						||
	}
 | 
						||
 | 
						||
	buckets = coalesceBuckets(buckets)
 | 
						||
	forcedMonotonic, fixedPrecision := ensureMonotonicAndIgnoreSmallDeltas(buckets, smallDeltaTolerance)
 | 
						||
 | 
						||
	if len(buckets) < 2 {
 | 
						||
		return math.NaN(), false, false
 | 
						||
	}
 | 
						||
	observations := buckets[len(buckets)-1].count
 | 
						||
	if observations == 0 {
 | 
						||
		return math.NaN(), false, false
 | 
						||
	}
 | 
						||
	rank := q * observations
 | 
						||
	b := sort.Search(len(buckets)-1, func(i int) bool { return buckets[i].count >= rank })
 | 
						||
 | 
						||
	if b == len(buckets)-1 {
 | 
						||
		return buckets[len(buckets)-2].upperBound, forcedMonotonic, fixedPrecision
 | 
						||
	}
 | 
						||
	if b == 0 && buckets[0].upperBound <= 0 {
 | 
						||
		return buckets[0].upperBound, forcedMonotonic, fixedPrecision
 | 
						||
	}
 | 
						||
	var (
 | 
						||
		bucketStart float64
 | 
						||
		bucketEnd   = buckets[b].upperBound
 | 
						||
		count       = buckets[b].count
 | 
						||
	)
 | 
						||
	if b > 0 {
 | 
						||
		bucketStart = buckets[b-1].upperBound
 | 
						||
		count -= buckets[b-1].count
 | 
						||
		rank -= buckets[b-1].count
 | 
						||
	}
 | 
						||
	return bucketStart + (bucketEnd-bucketStart)*(rank/count), forcedMonotonic, fixedPrecision
 | 
						||
}
 | 
						||
 | 
						||
// histogramQuantile calculates the quantile 'q' based on the given histogram.
 | 
						||
//
 | 
						||
// The quantile value is interpolated assuming a linear distribution within a
 | 
						||
// bucket.
 | 
						||
// TODO(beorn7): Find an interpolation method that is a better fit for
 | 
						||
// exponential buckets (and think about configurable interpolation).
 | 
						||
//
 | 
						||
// A natural lower bound of 0 is assumed if the histogram has only positive
 | 
						||
// buckets. Likewise, a natural upper bound of 0 is assumed if the histogram has
 | 
						||
// only negative buckets.
 | 
						||
// TODO(beorn7): Come to terms if we want that.
 | 
						||
//
 | 
						||
// There are a number of special cases (once we have a way to report errors
 | 
						||
// happening during evaluations of AST functions, we should report those
 | 
						||
// explicitly):
 | 
						||
//
 | 
						||
// If the histogram has 0 observations, NaN is returned.
 | 
						||
//
 | 
						||
// If q<0, -Inf is returned.
 | 
						||
//
 | 
						||
// If q>1, +Inf is returned.
 | 
						||
//
 | 
						||
// If q is NaN, NaN is returned.
 | 
						||
func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
 | 
						||
	if q < 0 {
 | 
						||
		return math.Inf(-1)
 | 
						||
	}
 | 
						||
	if q > 1 {
 | 
						||
		return math.Inf(+1)
 | 
						||
	}
 | 
						||
 | 
						||
	if h.Count == 0 || math.IsNaN(q) {
 | 
						||
		return math.NaN()
 | 
						||
	}
 | 
						||
 | 
						||
	var (
 | 
						||
		bucket histogram.Bucket[float64]
 | 
						||
		count  float64
 | 
						||
		it     histogram.BucketIterator[float64]
 | 
						||
		rank   float64
 | 
						||
	)
 | 
						||
 | 
						||
	// if there are NaN observations in the histogram (h.Sum is NaN), use the forward iterator
 | 
						||
	// if the q < 0.5, use the forward iterator
 | 
						||
	// if the q >= 0.5, use the reverse iterator
 | 
						||
	if math.IsNaN(h.Sum) || q < 0.5 {
 | 
						||
		it = h.AllBucketIterator()
 | 
						||
		rank = q * h.Count
 | 
						||
	} else {
 | 
						||
		it = h.AllReverseBucketIterator()
 | 
						||
		rank = (1 - q) * h.Count
 | 
						||
	}
 | 
						||
 | 
						||
	for it.Next() {
 | 
						||
		bucket = it.At()
 | 
						||
		count += bucket.Count
 | 
						||
		if count >= rank {
 | 
						||
			break
 | 
						||
		}
 | 
						||
	}
 | 
						||
	if bucket.Lower < 0 && bucket.Upper > 0 {
 | 
						||
		switch {
 | 
						||
		case len(h.NegativeBuckets) == 0 && len(h.PositiveBuckets) > 0:
 | 
						||
			// The result is in the zero bucket and the histogram has only
 | 
						||
			// positive buckets. So we consider 0 to be the lower bound.
 | 
						||
			bucket.Lower = 0
 | 
						||
		case len(h.PositiveBuckets) == 0 && len(h.NegativeBuckets) > 0:
 | 
						||
			// The result is in the zero bucket and the histogram has only
 | 
						||
			// negative buckets. So we consider 0 to be the upper bound.
 | 
						||
			bucket.Upper = 0
 | 
						||
		}
 | 
						||
	}
 | 
						||
	// Due to numerical inaccuracies, we could end up with a higher count
 | 
						||
	// than h.Count. Thus, make sure count is never higher than h.Count.
 | 
						||
	if count > h.Count {
 | 
						||
		count = h.Count
 | 
						||
	}
 | 
						||
	// We could have hit the highest bucket without even reaching the rank
 | 
						||
	// (this should only happen if the histogram contains observations of
 | 
						||
	// the value NaN), in which case we simply return the upper limit of the
 | 
						||
	// highest explicit bucket.
 | 
						||
	if count < rank {
 | 
						||
		return bucket.Upper
 | 
						||
	}
 | 
						||
 | 
						||
	// NaN observations increase h.Count but not the total number of
 | 
						||
	// observations in the buckets. Therefore, we have to use the forward
 | 
						||
	// iterator to find percentiles. We recognize histograms containing NaN
 | 
						||
	// observations by checking if their h.Sum is NaN.
 | 
						||
	if math.IsNaN(h.Sum) || q < 0.5 {
 | 
						||
		rank -= count - bucket.Count
 | 
						||
	} else {
 | 
						||
		rank = count - rank
 | 
						||
	}
 | 
						||
 | 
						||
	// TODO(codesome): Use a better estimation than linear.
 | 
						||
	return bucket.Lower + (bucket.Upper-bucket.Lower)*(rank/bucket.Count)
 | 
						||
}
 | 
						||
 | 
						||
// histogramFraction calculates the fraction of observations between the
 | 
						||
// provided lower and upper bounds, based on the provided histogram.
 | 
						||
//
 | 
						||
// histogramFraction is in a certain way the inverse of histogramQuantile.  If
 | 
						||
// histogramQuantile(0.9, h) returns 123.4, then histogramFraction(-Inf, 123.4, h)
 | 
						||
// returns 0.9.
 | 
						||
//
 | 
						||
// The same notes (and TODOs) with regard to interpolation and assumptions about
 | 
						||
// the zero bucket boundaries apply as for histogramQuantile.
 | 
						||
//
 | 
						||
// Whether either boundary is inclusive or exclusive doesn’t actually matter as
 | 
						||
// long as interpolation has to be performed anyway. In the case of a boundary
 | 
						||
// coinciding with a bucket boundary, the inclusive or exclusive nature of the
 | 
						||
// boundary determines the exact behavior of the threshold. With the current
 | 
						||
// implementation, that means that lower is exclusive for positive values and
 | 
						||
// inclusive for negative values, while upper is inclusive for positive values
 | 
						||
// and exclusive for negative values.
 | 
						||
//
 | 
						||
// Special cases:
 | 
						||
//
 | 
						||
// If the histogram has 0 observations, NaN is returned.
 | 
						||
//
 | 
						||
// Use a lower bound of -Inf to get the fraction of all observations below the
 | 
						||
// upper bound.
 | 
						||
//
 | 
						||
// Use an upper bound of +Inf to get the fraction of all observations above the
 | 
						||
// lower bound.
 | 
						||
//
 | 
						||
// If lower or upper is NaN, NaN is returned.
 | 
						||
//
 | 
						||
// If lower >= upper and the histogram has at least 1 observation, zero is returned.
 | 
						||
func histogramFraction(lower, upper float64, h *histogram.FloatHistogram) float64 {
 | 
						||
	if h.Count == 0 || math.IsNaN(lower) || math.IsNaN(upper) {
 | 
						||
		return math.NaN()
 | 
						||
	}
 | 
						||
	if lower >= upper {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
 | 
						||
	var (
 | 
						||
		rank, lowerRank, upperRank float64
 | 
						||
		lowerSet, upperSet         bool
 | 
						||
		it                         = h.AllBucketIterator()
 | 
						||
	)
 | 
						||
	for it.Next() {
 | 
						||
		b := it.At()
 | 
						||
		if b.Lower < 0 && b.Upper > 0 {
 | 
						||
			switch {
 | 
						||
			case len(h.NegativeBuckets) == 0 && len(h.PositiveBuckets) > 0:
 | 
						||
				// This is the zero bucket and the histogram has only
 | 
						||
				// positive buckets. So we consider 0 to be the lower
 | 
						||
				// bound.
 | 
						||
				b.Lower = 0
 | 
						||
			case len(h.PositiveBuckets) == 0 && len(h.NegativeBuckets) > 0:
 | 
						||
				// This is in the zero bucket and the histogram has only
 | 
						||
				// negative buckets. So we consider 0 to be the upper
 | 
						||
				// bound.
 | 
						||
				b.Upper = 0
 | 
						||
			}
 | 
						||
		}
 | 
						||
		if !lowerSet && b.Lower >= lower {
 | 
						||
			lowerRank = rank
 | 
						||
			lowerSet = true
 | 
						||
		}
 | 
						||
		if !upperSet && b.Lower >= upper {
 | 
						||
			upperRank = rank
 | 
						||
			upperSet = true
 | 
						||
		}
 | 
						||
		if lowerSet && upperSet {
 | 
						||
			break
 | 
						||
		}
 | 
						||
		if !lowerSet && b.Lower < lower && b.Upper > lower {
 | 
						||
			lowerRank = rank + b.Count*(lower-b.Lower)/(b.Upper-b.Lower)
 | 
						||
			lowerSet = true
 | 
						||
		}
 | 
						||
		if !upperSet && b.Lower < upper && b.Upper > upper {
 | 
						||
			upperRank = rank + b.Count*(upper-b.Lower)/(b.Upper-b.Lower)
 | 
						||
			upperSet = true
 | 
						||
		}
 | 
						||
		if lowerSet && upperSet {
 | 
						||
			break
 | 
						||
		}
 | 
						||
		rank += b.Count
 | 
						||
	}
 | 
						||
	if !lowerSet || lowerRank > h.Count {
 | 
						||
		lowerRank = h.Count
 | 
						||
	}
 | 
						||
	if !upperSet || upperRank > h.Count {
 | 
						||
		upperRank = h.Count
 | 
						||
	}
 | 
						||
 | 
						||
	return (upperRank - lowerRank) / h.Count
 | 
						||
}
 | 
						||
 | 
						||
// coalesceBuckets merges buckets with the same upper bound.
 | 
						||
//
 | 
						||
// The input buckets must be sorted.
 | 
						||
func coalesceBuckets(buckets buckets) buckets {
 | 
						||
	last := buckets[0]
 | 
						||
	i := 0
 | 
						||
	for _, b := range buckets[1:] {
 | 
						||
		if b.upperBound == last.upperBound {
 | 
						||
			last.count += b.count
 | 
						||
		} else {
 | 
						||
			buckets[i] = last
 | 
						||
			last = b
 | 
						||
			i++
 | 
						||
		}
 | 
						||
	}
 | 
						||
	buckets[i] = last
 | 
						||
	return buckets[:i+1]
 | 
						||
}
 | 
						||
 | 
						||
// The assumption that bucket counts increase monotonically with increasing
 | 
						||
// upperBound may be violated during:
 | 
						||
//
 | 
						||
//   - Circumstances where data is already inconsistent at the target's side.
 | 
						||
//   - Ingestion via the remote write receiver that Prometheus implements.
 | 
						||
//   - Optimisation of query execution where precision is sacrificed for other
 | 
						||
//     benefits, not by Prometheus but by systems built on top of it.
 | 
						||
//   - Circumstances where floating point precision errors accumulate.
 | 
						||
//
 | 
						||
// Monotonicity is usually guaranteed because if a bucket with upper bound
 | 
						||
// u1 has count c1, then any bucket with a higher upper bound u > u1 must
 | 
						||
// have counted all c1 observations and perhaps more, so that c >= c1.
 | 
						||
//
 | 
						||
// bucketQuantile depends on that monotonicity to do a binary search for the
 | 
						||
// bucket with the φ-quantile count, so breaking the monotonicity
 | 
						||
// guarantee causes bucketQuantile() to return undefined (nonsense) results.
 | 
						||
//
 | 
						||
// As a somewhat hacky solution, we first silently ignore any numerically
 | 
						||
// insignificant (relative delta below the requested tolerance and likely to
 | 
						||
// be from floating point precision errors) differences between successive
 | 
						||
// buckets regardless of the direction. Then we calculate the "envelope" of
 | 
						||
// the histogram buckets, essentially removing any decreases in the count
 | 
						||
// between successive buckets.
 | 
						||
//
 | 
						||
// We return a bool to indicate if this monotonicity was forced or not, and
 | 
						||
// another bool to indicate if small deltas were ignored or not.
 | 
						||
func ensureMonotonicAndIgnoreSmallDeltas(buckets buckets, tolerance float64) (bool, bool) {
 | 
						||
	var forcedMonotonic, fixedPrecision bool
 | 
						||
	prev := buckets[0].count
 | 
						||
	for i := 1; i < len(buckets); i++ {
 | 
						||
		curr := buckets[i].count // Assumed always positive.
 | 
						||
		if curr == prev {
 | 
						||
			// No correction needed if the counts are identical between buckets.
 | 
						||
			continue
 | 
						||
		}
 | 
						||
		if almostEqual(prev, curr, tolerance) {
 | 
						||
			// Silently correct numerically insignificant differences from floating
 | 
						||
			// point precision errors, regardless of direction.
 | 
						||
			// Do not update the 'prev' value as we are ignoring the difference.
 | 
						||
			buckets[i].count = prev
 | 
						||
			fixedPrecision = true
 | 
						||
			continue
 | 
						||
		}
 | 
						||
		if curr < prev {
 | 
						||
			// Force monotonicity by removing any decreases regardless of magnitude.
 | 
						||
			// Do not update the 'prev' value as we are ignoring the decrease.
 | 
						||
			buckets[i].count = prev
 | 
						||
			forcedMonotonic = true
 | 
						||
			continue
 | 
						||
		}
 | 
						||
		prev = curr
 | 
						||
	}
 | 
						||
	return forcedMonotonic, fixedPrecision
 | 
						||
}
 | 
						||
 | 
						||
// quantile calculates the given quantile of a vector of samples.
 | 
						||
//
 | 
						||
// The Vector will be sorted.
 | 
						||
// If 'values' has zero elements, NaN is returned.
 | 
						||
// If q==NaN, NaN is returned.
 | 
						||
// If q<0, -Inf is returned.
 | 
						||
// If q>1, +Inf is returned.
 | 
						||
func quantile(q float64, values vectorByValueHeap) float64 {
 | 
						||
	if len(values) == 0 || math.IsNaN(q) {
 | 
						||
		return math.NaN()
 | 
						||
	}
 | 
						||
	if q < 0 {
 | 
						||
		return math.Inf(-1)
 | 
						||
	}
 | 
						||
	if q > 1 {
 | 
						||
		return math.Inf(+1)
 | 
						||
	}
 | 
						||
	sort.Sort(values)
 | 
						||
 | 
						||
	n := float64(len(values))
 | 
						||
	// When the quantile lies between two samples,
 | 
						||
	// we use a weighted average of the two samples.
 | 
						||
	rank := q * (n - 1)
 | 
						||
 | 
						||
	lowerIndex := math.Max(0, math.Floor(rank))
 | 
						||
	upperIndex := math.Min(n-1, lowerIndex+1)
 | 
						||
 | 
						||
	weight := rank - math.Floor(rank)
 | 
						||
	return values[int(lowerIndex)].F*(1-weight) + values[int(upperIndex)].F*weight
 | 
						||
}
 |