1369 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			1369 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2015 The Prometheus Authors
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| // http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| package promql
 | |
| 
 | |
| import (
 | |
| 	"math"
 | |
| 	"regexp"
 | |
| 	"sort"
 | |
| 	"strconv"
 | |
| 	"strings"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/prometheus/common/model"
 | |
| 	"github.com/prometheus/prometheus/pkg/labels"
 | |
| )
 | |
| 
 | |
| // Function represents a function of the expression language and is
 | |
| // used by function nodes.
 | |
| type Function struct {
 | |
| 	Name       string
 | |
| 	ArgTypes   []ValueType
 | |
| 	Variadic   int
 | |
| 	ReturnType ValueType
 | |
| 	Call       func(ev *evaluator, args Expressions) Value
 | |
| }
 | |
| 
 | |
| // === time() float64 ===
 | |
| func funcTime(ev *evaluator, args Expressions) Value {
 | |
| 	return Scalar{
 | |
| 		V: float64(ev.Timestamp / 1000),
 | |
| 		T: ev.Timestamp,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // extrapolatedRate is a utility function for rate/increase/delta.
 | |
| // It calculates the rate (allowing for counter resets if isCounter is true),
 | |
| // extrapolates if the first/last sample is close to the boundary, and returns
 | |
| // the result as either per-second (if isRate is true) or overall.
 | |
| func extrapolatedRate(ev *evaluator, arg Expr, isCounter bool, isRate bool) Value {
 | |
| 	ms := arg.(*MatrixSelector)
 | |
| 
 | |
| 	var (
 | |
| 		matrix       = ev.evalMatrix(ms)
 | |
| 		rangeStart   = ev.Timestamp - durationMilliseconds(ms.Range+ms.Offset)
 | |
| 		rangeEnd     = ev.Timestamp - durationMilliseconds(ms.Offset)
 | |
| 		resultVector = make(Vector, 0, len(matrix))
 | |
| 	)
 | |
| 
 | |
| 	for _, samples := range matrix {
 | |
| 		// No sense in trying to compute a rate without at least two points. Drop
 | |
| 		// this Vector element.
 | |
| 		if len(samples.Points) < 2 {
 | |
| 			continue
 | |
| 		}
 | |
| 		var (
 | |
| 			counterCorrection float64
 | |
| 			lastValue         float64
 | |
| 		)
 | |
| 		for _, sample := range samples.Points {
 | |
| 			if isCounter && sample.V < lastValue {
 | |
| 				counterCorrection += lastValue
 | |
| 			}
 | |
| 			lastValue = sample.V
 | |
| 		}
 | |
| 		resultValue := lastValue - samples.Points[0].V + counterCorrection
 | |
| 
 | |
| 		// Duration between first/last samples and boundary of range.
 | |
| 		durationToStart := float64(samples.Points[0].T-rangeStart) / 1000
 | |
| 		durationToEnd := float64(rangeEnd-samples.Points[len(samples.Points)-1].T) / 1000
 | |
| 
 | |
| 		sampledInterval := float64(samples.Points[len(samples.Points)-1].T-samples.Points[0].T) / 1000
 | |
| 		averageDurationBetweenSamples := sampledInterval / float64(len(samples.Points)-1)
 | |
| 
 | |
| 		if isCounter && resultValue > 0 && samples.Points[0].V >= 0 {
 | |
| 			// Counters cannot be negative. If we have any slope at
 | |
| 			// all (i.e. resultValue went up), we can extrapolate
 | |
| 			// the zero point of the counter. If the duration to the
 | |
| 			// zero point is shorter than the durationToStart, we
 | |
| 			// take the zero point as the start of the series,
 | |
| 			// thereby avoiding extrapolation to negative counter
 | |
| 			// values.
 | |
| 			durationToZero := sampledInterval * (samples.Points[0].V / resultValue)
 | |
| 			if durationToZero < durationToStart {
 | |
| 				durationToStart = durationToZero
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// If the first/last samples are close to the boundaries of the range,
 | |
| 		// extrapolate the result. This is as we expect that another sample
 | |
| 		// will exist given the spacing between samples we've seen thus far,
 | |
| 		// with an allowance for noise.
 | |
| 		extrapolationThreshold := averageDurationBetweenSamples * 1.1
 | |
| 		extrapolateToInterval := sampledInterval
 | |
| 
 | |
| 		if durationToStart < extrapolationThreshold {
 | |
| 			extrapolateToInterval += durationToStart
 | |
| 		} else {
 | |
| 			extrapolateToInterval += averageDurationBetweenSamples / 2
 | |
| 		}
 | |
| 		if durationToEnd < extrapolationThreshold {
 | |
| 			extrapolateToInterval += durationToEnd
 | |
| 		} else {
 | |
| 			extrapolateToInterval += averageDurationBetweenSamples / 2
 | |
| 		}
 | |
| 		resultValue = resultValue * (extrapolateToInterval / sampledInterval)
 | |
| 		if isRate {
 | |
| 			resultValue = resultValue / ms.Range.Seconds()
 | |
| 		}
 | |
| 
 | |
| 		resultVector = append(resultVector, Sample{
 | |
| 			Metric: dropMetricName(samples.Metric),
 | |
| 			Point:  Point{V: resultValue, T: ev.Timestamp},
 | |
| 		})
 | |
| 	}
 | |
| 	return resultVector
 | |
| }
 | |
| 
 | |
| // === delta(Matrix ValueTypeMatrix) Vector ===
 | |
| func funcDelta(ev *evaluator, args Expressions) Value {
 | |
| 	return extrapolatedRate(ev, args[0], false, false)
 | |
| }
 | |
| 
 | |
| // === rate(node ValueTypeMatrix) Vector ===
 | |
| func funcRate(ev *evaluator, args Expressions) Value {
 | |
| 	return extrapolatedRate(ev, args[0], true, true)
 | |
| }
 | |
| 
 | |
| // === increase(node ValueTypeMatrix) Vector ===
 | |
| func funcIncrease(ev *evaluator, args Expressions) Value {
 | |
| 	return extrapolatedRate(ev, args[0], true, false)
 | |
| }
 | |
| 
 | |
| // === irate(node ValueTypeMatrix) Vector ===
 | |
| func funcIrate(ev *evaluator, args Expressions) Value {
 | |
| 	return instantValue(ev, args[0], true)
 | |
| }
 | |
| 
 | |
| // === idelta(node model.ValMatric) Vector ===
 | |
| func funcIdelta(ev *evaluator, args Expressions) Value {
 | |
| 	return instantValue(ev, args[0], false)
 | |
| }
 | |
| 
 | |
| func instantValue(ev *evaluator, arg Expr, isRate bool) Value {
 | |
| 	resultVector := Vector{}
 | |
| 	for _, samples := range ev.evalMatrix(arg) {
 | |
| 		// No sense in trying to compute a rate without at least two points. Drop
 | |
| 		// this Vector element.
 | |
| 		if len(samples.Points) < 2 {
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		lastSample := samples.Points[len(samples.Points)-1]
 | |
| 		previousSample := samples.Points[len(samples.Points)-2]
 | |
| 
 | |
| 		var resultValue float64
 | |
| 		if isRate && lastSample.V < previousSample.V {
 | |
| 			// Counter reset.
 | |
| 			resultValue = lastSample.V
 | |
| 		} else {
 | |
| 			resultValue = lastSample.V - previousSample.V
 | |
| 		}
 | |
| 
 | |
| 		sampledInterval := lastSample.T - previousSample.T
 | |
| 		if sampledInterval == 0 {
 | |
| 			// Avoid dividing by 0.float64
 | |
| 		}
 | |
| 
 | |
| 		if isRate {
 | |
| 			// Convert to per-second.
 | |
| 			resultValue /= float64(sampledInterval) / 1000
 | |
| 		}
 | |
| 
 | |
| 		resultVector = append(resultVector, Sample{
 | |
| 			Metric: dropMetricName(samples.Metric),
 | |
| 			Point:  Point{V: resultValue, T: ev.Timestamp},
 | |
| 		})
 | |
| 	}
 | |
| 	return resultVector
 | |
| }
 | |
| 
 | |
| // Calculate the trend value at the given index i in raw data d.
 | |
| // This is somewhat analogous to the slope of the trend at the given index.
 | |
| // The argument "s" is the set of computed smoothed values.
 | |
| // The argument "b" is the set of computed trend factors.
 | |
| // The argument "d" is the set of raw input values.
 | |
| func calcTrendValue(i int, sf, tf float64, s, b, d []float64) float64 {
 | |
| 	if i == 0 {
 | |
| 		return b[0]
 | |
| 	}
 | |
| 
 | |
| 	x := tf * (s[i] - s[i-1])
 | |
| 	y := (1 - tf) * b[i-1]
 | |
| 
 | |
| 	// Cache the computed value.
 | |
| 	b[i] = x + y
 | |
| 
 | |
| 	return b[i]
 | |
| }
 | |
| 
 | |
| // Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data.
 | |
| // Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) affects how historical data will affect the current
 | |
| // data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) affects
 | |
| // how trends in historical data will affect the current data. A higher trend factor increases the influence.
 | |
| // of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing".
 | |
| func funcHoltWinters(ev *evaluator, args Expressions) Value {
 | |
| 	mat := ev.evalMatrix(args[0])
 | |
| 
 | |
| 	// The smoothing factor argument.
 | |
| 	sf := ev.evalFloat(args[1])
 | |
| 
 | |
| 	// The trend factor argument.
 | |
| 	tf := ev.evalFloat(args[2])
 | |
| 
 | |
| 	// Sanity check the input.
 | |
| 	if sf <= 0 || sf >= 1 {
 | |
| 		ev.errorf("invalid smoothing factor. Expected: 0 < sf < 1 goT: %f", sf)
 | |
| 	}
 | |
| 	if tf <= 0 || tf >= 1 {
 | |
| 		ev.errorf("invalid trend factor. Expected: 0 < tf < 1 goT: %f", sf)
 | |
| 	}
 | |
| 
 | |
| 	// Make an output Vector large enough to hold the entire result.
 | |
| 	resultVector := make(Vector, 0, len(mat))
 | |
| 
 | |
| 	// Create scratch values.
 | |
| 	var s, b, d []float64
 | |
| 
 | |
| 	var l int
 | |
| 	for _, samples := range mat {
 | |
| 		l = len(samples.Points)
 | |
| 
 | |
| 		// Can't do the smoothing operation with less than two points.
 | |
| 		if l < 2 {
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		// Resize scratch values.
 | |
| 		if l != len(s) {
 | |
| 			s = make([]float64, l)
 | |
| 			b = make([]float64, l)
 | |
| 			d = make([]float64, l)
 | |
| 		}
 | |
| 
 | |
| 		// Fill in the d values with the raw values from the input.
 | |
| 		for i, v := range samples.Points {
 | |
| 			d[i] = v.V
 | |
| 		}
 | |
| 
 | |
| 		// Set initial values.
 | |
| 		s[0] = d[0]
 | |
| 		b[0] = d[1] - d[0]
 | |
| 
 | |
| 		// Run the smoothing operation.
 | |
| 		var x, y float64
 | |
| 		for i := 1; i < len(d); i++ {
 | |
| 
 | |
| 			// Scale the raw value against the smoothing factor.
 | |
| 			x = sf * d[i]
 | |
| 
 | |
| 			// Scale the last smoothed value with the trend at this point.
 | |
| 			y = (1 - sf) * (s[i-1] + calcTrendValue(i-1, sf, tf, s, b, d))
 | |
| 
 | |
| 			s[i] = x + y
 | |
| 		}
 | |
| 
 | |
| 		resultVector = append(resultVector, Sample{
 | |
| 			Metric: dropMetricName(samples.Metric),
 | |
| 			Point:  Point{V: s[len(s)-1], T: ev.Timestamp}, // The last value in the Vector is the smoothed result.
 | |
| 		})
 | |
| 	}
 | |
| 
 | |
| 	return resultVector
 | |
| }
 | |
| 
 | |
| // === sort(node ValueTypeVector) Vector ===
 | |
| func funcSort(ev *evaluator, args Expressions) Value {
 | |
| 	// NaN should sort to the bottom, so take descending sort with NaN first and
 | |
| 	// reverse it.
 | |
| 	byValueSorter := vectorByReverseValueHeap(ev.evalVector(args[0]))
 | |
| 	sort.Sort(sort.Reverse(byValueSorter))
 | |
| 	return Vector(byValueSorter)
 | |
| }
 | |
| 
 | |
| // === sortDesc(node ValueTypeVector) Vector ===
 | |
| func funcSortDesc(ev *evaluator, args Expressions) Value {
 | |
| 	// NaN should sort to the bottom, so take ascending sort with NaN first and
 | |
| 	// reverse it.
 | |
| 	byValueSorter := vectorByValueHeap(ev.evalVector(args[0]))
 | |
| 	sort.Sort(sort.Reverse(byValueSorter))
 | |
| 	return Vector(byValueSorter)
 | |
| }
 | |
| 
 | |
| // === clamp_max(Vector ValueTypeVector, max Scalar) Vector ===
 | |
| func funcClampMax(ev *evaluator, args Expressions) Value {
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	max := ev.evalFloat(args[1])
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		el.V = math.Min(max, float64(el.V))
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // === clamp_min(Vector ValueTypeVector, min Scalar) Vector ===
 | |
| func funcClampMin(ev *evaluator, args Expressions) Value {
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	min := ev.evalFloat(args[1])
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		el.V = math.Max(min, float64(el.V))
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // === drop_common_labels(node ValueTypeVector) Vector ===
 | |
| func funcDropCommonLabels(ev *evaluator, args Expressions) Value {
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	if len(vec) < 1 {
 | |
| 		return Vector{}
 | |
| 	}
 | |
| 	common := map[string]string{}
 | |
| 
 | |
| 	for _, l := range vec[0].Metric {
 | |
| 		// TODO(julius): Should we also drop common metric names?
 | |
| 		if l.Name == labels.MetricName {
 | |
| 			continue
 | |
| 		}
 | |
| 		common[l.Name] = l.Value
 | |
| 	}
 | |
| 
 | |
| 	for _, el := range vec[1:] {
 | |
| 		for k, v := range common {
 | |
| 			for _, l := range el.Metric {
 | |
| 				if l.Name == k && l.Value != v {
 | |
| 					// Deletion of map entries while iterating over them is safe.
 | |
| 					// From http://golang.org/ref/spec#For_statements:
 | |
| 					// "If map entries that have not yet been reached are deleted during
 | |
| 					// iteration, the corresponding iteration values will not be produced."
 | |
| 					delete(common, k)
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cnames := []string{}
 | |
| 	for n := range common {
 | |
| 		cnames = append(cnames, n)
 | |
| 	}
 | |
| 
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 		el.Metric = labels.NewBuilder(el.Metric).Del(cnames...).Labels()
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // === round(Vector ValueTypeVector, toNearest=1 Scalar) Vector ===
 | |
| func funcRound(ev *evaluator, args Expressions) Value {
 | |
| 	// round returns a number rounded to toNearest.
 | |
| 	// Ties are solved by rounding up.
 | |
| 	toNearest := float64(1)
 | |
| 	if len(args) >= 2 {
 | |
| 		toNearest = ev.evalFloat(args[1])
 | |
| 	}
 | |
| 	// Invert as it seems to cause fewer floating point accuracy issues.
 | |
| 	toNearestInverse := 1.0 / toNearest
 | |
| 
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		el.V = math.Floor(float64(el.V)*toNearestInverse+0.5) / toNearestInverse
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // === Scalar(node ValueTypeVector) Scalar ===
 | |
| func funcScalar(ev *evaluator, args Expressions) Value {
 | |
| 	v := ev.evalVector(args[0])
 | |
| 	if len(v) != 1 {
 | |
| 		return Scalar{
 | |
| 			V: math.NaN(),
 | |
| 			T: ev.Timestamp,
 | |
| 		}
 | |
| 	}
 | |
| 	return Scalar{
 | |
| 		V: v[0].V,
 | |
| 		T: ev.Timestamp,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // === count_scalar(Vector ValueTypeVector) float64 ===
 | |
| func funcCountScalar(ev *evaluator, args Expressions) Value {
 | |
| 	return Scalar{
 | |
| 		V: float64(len(ev.evalVector(args[0]))),
 | |
| 		T: ev.Timestamp,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func aggrOverTime(ev *evaluator, args Expressions, aggrFn func([]Point) float64) Value {
 | |
| 	mat := ev.evalMatrix(args[0])
 | |
| 	resultVector := Vector{}
 | |
| 
 | |
| 	for _, el := range mat {
 | |
| 		if len(el.Points) == 0 {
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		resultVector = append(resultVector, Sample{
 | |
| 			Metric: dropMetricName(el.Metric),
 | |
| 			Point:  Point{V: aggrFn(el.Points), T: ev.Timestamp},
 | |
| 		})
 | |
| 	}
 | |
| 	return resultVector
 | |
| }
 | |
| 
 | |
| // === avg_over_time(Matrix ValueTypeMatrix) Vector ===
 | |
| func funcAvgOverTime(ev *evaluator, args Expressions) Value {
 | |
| 	return aggrOverTime(ev, args, func(values []Point) float64 {
 | |
| 		var sum float64
 | |
| 		for _, v := range values {
 | |
| 			sum += v.V
 | |
| 		}
 | |
| 		return sum / float64(len(values))
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === count_over_time(Matrix ValueTypeMatrix) Vector ===
 | |
| func funcCountOverTime(ev *evaluator, args Expressions) Value {
 | |
| 	return aggrOverTime(ev, args, func(values []Point) float64 {
 | |
| 		return float64(len(values))
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === floor(Vector ValueTypeVector) Vector ===
 | |
| func funcFloor(ev *evaluator, args Expressions) Value {
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		el.V = math.Floor(float64(el.V))
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // === max_over_time(Matrix ValueTypeMatrix) Vector ===
 | |
| func funcMaxOverTime(ev *evaluator, args Expressions) Value {
 | |
| 	return aggrOverTime(ev, args, func(values []Point) float64 {
 | |
| 		max := math.Inf(-1)
 | |
| 		for _, v := range values {
 | |
| 			max = math.Max(max, float64(v.V))
 | |
| 		}
 | |
| 		return max
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === min_over_time(Matrix ValueTypeMatrix) Vector ===
 | |
| func funcMinOverTime(ev *evaluator, args Expressions) Value {
 | |
| 	return aggrOverTime(ev, args, func(values []Point) float64 {
 | |
| 		min := math.Inf(1)
 | |
| 		for _, v := range values {
 | |
| 			min = math.Min(min, float64(v.V))
 | |
| 		}
 | |
| 		return min
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === sum_over_time(Matrix ValueTypeMatrix) Vector ===
 | |
| func funcSumOverTime(ev *evaluator, args Expressions) Value {
 | |
| 	return aggrOverTime(ev, args, func(values []Point) float64 {
 | |
| 		var sum float64
 | |
| 		for _, v := range values {
 | |
| 			sum += v.V
 | |
| 		}
 | |
| 		return sum
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === quantile_over_time(Matrix ValueTypeMatrix) Vector ===
 | |
| func funcQuantileOverTime(ev *evaluator, args Expressions) Value {
 | |
| 	q := ev.evalFloat(args[0])
 | |
| 	mat := ev.evalMatrix(args[1])
 | |
| 	resultVector := Vector{}
 | |
| 
 | |
| 	for _, el := range mat {
 | |
| 		if len(el.Points) == 0 {
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		values := make(vectorByValueHeap, 0, len(el.Points))
 | |
| 		for _, v := range el.Points {
 | |
| 			values = append(values, Sample{Point: Point{V: v.V}})
 | |
| 		}
 | |
| 		resultVector = append(resultVector, Sample{
 | |
| 			Metric: el.Metric,
 | |
| 			Point:  Point{V: quantile(q, values), T: ev.Timestamp},
 | |
| 		})
 | |
| 	}
 | |
| 	return resultVector
 | |
| }
 | |
| 
 | |
| // === stddev_over_time(Matrix ValueTypeMatrix) Vector ===
 | |
| func funcStddevOverTime(ev *evaluator, args Expressions) Value {
 | |
| 	return aggrOverTime(ev, args, func(values []Point) float64 {
 | |
| 		var sum, squaredSum, count float64
 | |
| 		for _, v := range values {
 | |
| 			sum += v.V
 | |
| 			squaredSum += v.V * v.V
 | |
| 			count++
 | |
| 		}
 | |
| 		avg := sum / count
 | |
| 		return math.Sqrt(float64(squaredSum/count - avg*avg))
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === stdvar_over_time(Matrix ValueTypeMatrix) Vector ===
 | |
| func funcStdvarOverTime(ev *evaluator, args Expressions) Value {
 | |
| 	return aggrOverTime(ev, args, func(values []Point) float64 {
 | |
| 		var sum, squaredSum, count float64
 | |
| 		for _, v := range values {
 | |
| 			sum += v.V
 | |
| 			squaredSum += v.V * v.V
 | |
| 			count++
 | |
| 		}
 | |
| 		avg := sum / count
 | |
| 		return squaredSum/count - avg*avg
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === abs(Vector ValueTypeVector) Vector ===
 | |
| func funcAbs(ev *evaluator, args Expressions) Value {
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		el.V = math.Abs(float64(el.V))
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // === absent(Vector ValueTypeVector) Vector ===
 | |
| func funcAbsent(ev *evaluator, args Expressions) Value {
 | |
| 	if len(ev.evalVector(args[0])) > 0 {
 | |
| 		return Vector{}
 | |
| 	}
 | |
| 	m := []labels.Label{}
 | |
| 
 | |
| 	if vs, ok := args[0].(*VectorSelector); ok {
 | |
| 		for _, ma := range vs.LabelMatchers {
 | |
| 			if ma.Type == labels.MatchEqual && ma.Name != labels.MetricName {
 | |
| 				m = append(m, labels.Label{Name: ma.Name, Value: ma.Value})
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return Vector{
 | |
| 		Sample{
 | |
| 			Metric: labels.New(m...),
 | |
| 			Point:  Point{V: 1, T: ev.Timestamp},
 | |
| 		},
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // === ceil(Vector ValueTypeVector) Vector ===
 | |
| func funcCeil(ev *evaluator, args Expressions) Value {
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		el.V = math.Ceil(float64(el.V))
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // === exp(Vector ValueTypeVector) Vector ===
 | |
| func funcExp(ev *evaluator, args Expressions) Value {
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		el.V = math.Exp(float64(el.V))
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // === sqrt(Vector VectorNode) Vector ===
 | |
| func funcSqrt(ev *evaluator, args Expressions) Value {
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		el.V = math.Sqrt(float64(el.V))
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // === ln(Vector ValueTypeVector) Vector ===
 | |
| func funcLn(ev *evaluator, args Expressions) Value {
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		el.V = math.Log(float64(el.V))
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // === log2(Vector ValueTypeVector) Vector ===
 | |
| func funcLog2(ev *evaluator, args Expressions) Value {
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		el.V = math.Log2(float64(el.V))
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // === log10(Vector ValueTypeVector) Vector ===
 | |
| func funcLog10(ev *evaluator, args Expressions) Value {
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		el.V = math.Log10(float64(el.V))
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // === timestamp(Vector ValueTypeVector) Vector ===
 | |
| func funcTimestamp(ev *evaluator, args Expressions) Value {
 | |
| 	vec := ev.evalVector(args[0])
 | |
| 	for i := range vec {
 | |
| 		el := &vec[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		el.V = float64(el.T) / 1000.0
 | |
| 	}
 | |
| 	return vec
 | |
| }
 | |
| 
 | |
| // linearRegression performs a least-square linear regression analysis on the
 | |
| // provided SamplePairs. It returns the slope, and the intercept value at the
 | |
| // provided time.
 | |
| func linearRegression(samples []Point, interceptTime int64) (slope, intercept float64) {
 | |
| 	var (
 | |
| 		n            float64
 | |
| 		sumX, sumY   float64
 | |
| 		sumXY, sumX2 float64
 | |
| 	)
 | |
| 	for _, sample := range samples {
 | |
| 		x := float64(sample.T-interceptTime) / 1e3
 | |
| 		n += 1.0
 | |
| 		sumY += sample.V
 | |
| 		sumX += x
 | |
| 		sumXY += x * sample.V
 | |
| 		sumX2 += x * x
 | |
| 	}
 | |
| 	covXY := sumXY - sumX*sumY/n
 | |
| 	varX := sumX2 - sumX*sumX/n
 | |
| 
 | |
| 	slope = covXY / varX
 | |
| 	intercept = sumY/n - slope*sumX/n
 | |
| 	return slope, intercept
 | |
| }
 | |
| 
 | |
| // === deriv(node ValueTypeMatrix) Vector ===
 | |
| func funcDeriv(ev *evaluator, args Expressions) Value {
 | |
| 	mat := ev.evalMatrix(args[0])
 | |
| 	resultVector := make(Vector, 0, len(mat))
 | |
| 
 | |
| 	for _, samples := range mat {
 | |
| 		// No sense in trying to compute a derivative without at least two points.
 | |
| 		// Drop this Vector element.
 | |
| 		if len(samples.Points) < 2 {
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		// We pass in an arbitrary timestamp that is near the values in use
 | |
| 		// to avoid floating point accuracy issues, see
 | |
| 		// https://github.com/prometheus/prometheus/issues/2674
 | |
| 		slope, _ := linearRegression(samples.Points, samples.Points[0].T)
 | |
| 		resultSample := Sample{
 | |
| 			Metric: dropMetricName(samples.Metric),
 | |
| 			Point:  Point{V: slope, T: ev.Timestamp},
 | |
| 		}
 | |
| 
 | |
| 		resultVector = append(resultVector, resultSample)
 | |
| 	}
 | |
| 	return resultVector
 | |
| }
 | |
| 
 | |
| // === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector ===
 | |
| func funcPredictLinear(ev *evaluator, args Expressions) Value {
 | |
| 	mat := ev.evalMatrix(args[0])
 | |
| 	resultVector := make(Vector, 0, len(mat))
 | |
| 	duration := ev.evalFloat(args[1])
 | |
| 
 | |
| 	for _, samples := range mat {
 | |
| 		// No sense in trying to predict anything without at least two points.
 | |
| 		// Drop this Vector element.
 | |
| 		if len(samples.Points) < 2 {
 | |
| 			continue
 | |
| 		}
 | |
| 		slope, intercept := linearRegression(samples.Points, ev.Timestamp)
 | |
| 
 | |
| 		resultVector = append(resultVector, Sample{
 | |
| 			Metric: dropMetricName(samples.Metric),
 | |
| 			Point:  Point{V: slope*duration + intercept, T: ev.Timestamp},
 | |
| 		})
 | |
| 	}
 | |
| 	return resultVector
 | |
| }
 | |
| 
 | |
| // === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector ===
 | |
| func funcHistogramQuantile(ev *evaluator, args Expressions) Value {
 | |
| 	q := ev.evalFloat(args[0])
 | |
| 	inVec := ev.evalVector(args[1])
 | |
| 
 | |
| 	outVec := Vector{}
 | |
| 	signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{}
 | |
| 	for _, el := range inVec {
 | |
| 		upperBound, err := strconv.ParseFloat(
 | |
| 			el.Metric.Get(model.BucketLabel), 64,
 | |
| 		)
 | |
| 		if err != nil {
 | |
| 			// Oops, no bucket label or malformed label value. Skip.
 | |
| 			// TODO(beorn7): Issue a warning somehow.
 | |
| 			continue
 | |
| 		}
 | |
| 		hash := hashWithoutLabels(el.Metric, excludedLabels...)
 | |
| 
 | |
| 		mb, ok := signatureToMetricWithBuckets[hash]
 | |
| 		if !ok {
 | |
| 			el.Metric = labels.NewBuilder(el.Metric).
 | |
| 				Del(labels.BucketLabel, labels.MetricName).
 | |
| 				Labels()
 | |
| 
 | |
| 			mb = &metricWithBuckets{el.Metric, nil}
 | |
| 			signatureToMetricWithBuckets[hash] = mb
 | |
| 		}
 | |
| 		mb.buckets = append(mb.buckets, bucket{upperBound, el.V})
 | |
| 	}
 | |
| 
 | |
| 	for _, mb := range signatureToMetricWithBuckets {
 | |
| 		outVec = append(outVec, Sample{
 | |
| 			Metric: mb.metric,
 | |
| 			Point:  Point{V: bucketQuantile(q, mb.buckets), T: ev.Timestamp},
 | |
| 		})
 | |
| 	}
 | |
| 
 | |
| 	return outVec
 | |
| }
 | |
| 
 | |
| // === resets(Matrix ValueTypeMatrix) Vector ===
 | |
| func funcResets(ev *evaluator, args Expressions) Value {
 | |
| 	in := ev.evalMatrix(args[0])
 | |
| 	out := make(Vector, 0, len(in))
 | |
| 
 | |
| 	for _, samples := range in {
 | |
| 		resets := 0
 | |
| 		prev := samples.Points[0].V
 | |
| 		for _, sample := range samples.Points[1:] {
 | |
| 			current := sample.V
 | |
| 			if current < prev {
 | |
| 				resets++
 | |
| 			}
 | |
| 			prev = current
 | |
| 		}
 | |
| 
 | |
| 		out = append(out, Sample{
 | |
| 			Metric: dropMetricName(samples.Metric),
 | |
| 			Point:  Point{V: float64(resets), T: ev.Timestamp},
 | |
| 		})
 | |
| 	}
 | |
| 	return out
 | |
| }
 | |
| 
 | |
| // === changes(Matrix ValueTypeMatrix) Vector ===
 | |
| func funcChanges(ev *evaluator, args Expressions) Value {
 | |
| 	in := ev.evalMatrix(args[0])
 | |
| 	out := make(Vector, 0, len(in))
 | |
| 
 | |
| 	for _, samples := range in {
 | |
| 		changes := 0
 | |
| 		prev := samples.Points[0].V
 | |
| 		for _, sample := range samples.Points[1:] {
 | |
| 			current := sample.V
 | |
| 			if current != prev && !(math.IsNaN(float64(current)) && math.IsNaN(float64(prev))) {
 | |
| 				changes++
 | |
| 			}
 | |
| 			prev = current
 | |
| 		}
 | |
| 
 | |
| 		out = append(out, Sample{
 | |
| 			Metric: dropMetricName(samples.Metric),
 | |
| 			Point:  Point{V: float64(changes), T: ev.Timestamp},
 | |
| 		})
 | |
| 	}
 | |
| 	return out
 | |
| }
 | |
| 
 | |
| // === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector ===
 | |
| func funcLabelReplace(ev *evaluator, args Expressions) Value {
 | |
| 	var (
 | |
| 		vector   = ev.evalVector(args[0])
 | |
| 		dst      = ev.evalString(args[1]).V
 | |
| 		repl     = ev.evalString(args[2]).V
 | |
| 		src      = ev.evalString(args[3]).V
 | |
| 		regexStr = ev.evalString(args[4]).V
 | |
| 	)
 | |
| 
 | |
| 	regex, err := regexp.Compile("^(?:" + regexStr + ")$")
 | |
| 	if err != nil {
 | |
| 		ev.errorf("invalid regular expression in label_replace(): %s", regexStr)
 | |
| 	}
 | |
| 	if !model.LabelNameRE.MatchString(string(dst)) {
 | |
| 		ev.errorf("invalid destination label name in label_replace(): %s", dst)
 | |
| 	}
 | |
| 
 | |
| 	outSet := make(map[uint64]struct{}, len(vector))
 | |
| 	for i := range vector {
 | |
| 		el := &vector[i]
 | |
| 
 | |
| 		srcVal := el.Metric.Get(src)
 | |
| 		indexes := regex.FindStringSubmatchIndex(srcVal)
 | |
| 		// If there is no match, no replacement should take place.
 | |
| 		if indexes == nil {
 | |
| 			continue
 | |
| 		}
 | |
| 		res := regex.ExpandString([]byte{}, repl, srcVal, indexes)
 | |
| 
 | |
| 		lb := labels.NewBuilder(el.Metric).Del(dst)
 | |
| 		if len(res) > 0 {
 | |
| 			lb.Set(dst, string(res))
 | |
| 		}
 | |
| 		el.Metric = lb.Labels()
 | |
| 
 | |
| 		h := el.Metric.Hash()
 | |
| 		if _, ok := outSet[h]; ok {
 | |
| 			ev.errorf("duplicated label set in output of label_replace(): %s", el.Metric)
 | |
| 		} else {
 | |
| 			outSet[h] = struct{}{}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return vector
 | |
| }
 | |
| 
 | |
| // === Vector(s Scalar) Vector ===
 | |
| func funcVector(ev *evaluator, args Expressions) Value {
 | |
| 	return Vector{
 | |
| 		Sample{
 | |
| 			Metric: labels.Labels{},
 | |
| 			Point:  Point{V: ev.evalFloat(args[0]), T: ev.Timestamp},
 | |
| 		},
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // === label_join(vector model.ValVector, dest_labelname, separator, src_labelname...) Vector ===
 | |
| func funcLabelJoin(ev *evaluator, args Expressions) Value {
 | |
| 	var (
 | |
| 		vector    = ev.evalVector(args[0])
 | |
| 		dst       = ev.evalString(args[1]).V
 | |
| 		sep       = ev.evalString(args[2]).V
 | |
| 		srcLabels = make([]string, len(args)-3)
 | |
| 	)
 | |
| 	for i := 3; i < len(args); i++ {
 | |
| 		src := ev.evalString(args[i]).V
 | |
| 		if !model.LabelName(src).IsValid() {
 | |
| 			ev.errorf("invalid source label name in label_join(): %s", src)
 | |
| 		}
 | |
| 		srcLabels[i-3] = src
 | |
| 	}
 | |
| 
 | |
| 	if !model.LabelName(dst).IsValid() {
 | |
| 		ev.errorf("invalid destination label name in label_join(): %s", dst)
 | |
| 	}
 | |
| 
 | |
| 	outSet := make(map[uint64]struct{}, len(vector))
 | |
| 	for i := range vector {
 | |
| 		el := &vector[i]
 | |
| 
 | |
| 		srcVals := make([]string, len(srcLabels))
 | |
| 		for i, src := range srcLabels {
 | |
| 			srcVals[i] = el.Metric.Get(src)
 | |
| 		}
 | |
| 
 | |
| 		lb := labels.NewBuilder(el.Metric)
 | |
| 
 | |
| 		strval := strings.Join(srcVals, sep)
 | |
| 		if strval == "" {
 | |
| 			lb.Del(dst)
 | |
| 		} else {
 | |
| 			lb.Set(dst, strval)
 | |
| 		}
 | |
| 
 | |
| 		el.Metric = lb.Labels()
 | |
| 		h := el.Metric.Hash()
 | |
| 
 | |
| 		if _, exists := outSet[h]; exists {
 | |
| 			ev.errorf("duplicated label set in output of label_join(): %s", el.Metric)
 | |
| 		} else {
 | |
| 			outSet[h] = struct{}{}
 | |
| 		}
 | |
| 	}
 | |
| 	return vector
 | |
| }
 | |
| 
 | |
| // Common code for date related functions.
 | |
| func dateWrapper(ev *evaluator, args Expressions, f func(time.Time) float64) Value {
 | |
| 	var v Vector
 | |
| 	if len(args) == 0 {
 | |
| 		v = Vector{
 | |
| 			Sample{
 | |
| 				Metric: labels.Labels{},
 | |
| 				Point:  Point{V: float64(ev.Timestamp) / 1000, T: ev.Timestamp},
 | |
| 			},
 | |
| 		}
 | |
| 	} else {
 | |
| 		v = ev.evalVector(args[0])
 | |
| 	}
 | |
| 	for i := range v {
 | |
| 		el := &v[i]
 | |
| 
 | |
| 		el.Metric = dropMetricName(el.Metric)
 | |
| 		t := time.Unix(int64(el.V), 0).UTC()
 | |
| 		el.V = f(t)
 | |
| 	}
 | |
| 	return v
 | |
| }
 | |
| 
 | |
| // === days_in_month(v Vector) Scalar ===
 | |
| func funcDaysInMonth(ev *evaluator, args Expressions) Value {
 | |
| 	return dateWrapper(ev, args, func(t time.Time) float64 {
 | |
| 		return float64(32 - time.Date(t.Year(), t.Month(), 32, 0, 0, 0, 0, time.UTC).Day())
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === day_of_month(v Vector) Scalar ===
 | |
| func funcDayOfMonth(ev *evaluator, args Expressions) Value {
 | |
| 	return dateWrapper(ev, args, func(t time.Time) float64 {
 | |
| 		return float64(t.Day())
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === day_of_week(v Vector) Scalar ===
 | |
| func funcDayOfWeek(ev *evaluator, args Expressions) Value {
 | |
| 	return dateWrapper(ev, args, func(t time.Time) float64 {
 | |
| 		return float64(t.Weekday())
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === hour(v Vector) Scalar ===
 | |
| func funcHour(ev *evaluator, args Expressions) Value {
 | |
| 	return dateWrapper(ev, args, func(t time.Time) float64 {
 | |
| 		return float64(t.Hour())
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === minute(v Vector) Scalar ===
 | |
| func funcMinute(ev *evaluator, args Expressions) Value {
 | |
| 	return dateWrapper(ev, args, func(t time.Time) float64 {
 | |
| 		return float64(t.Minute())
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === month(v Vector) Scalar ===
 | |
| func funcMonth(ev *evaluator, args Expressions) Value {
 | |
| 	return dateWrapper(ev, args, func(t time.Time) float64 {
 | |
| 		return float64(t.Month())
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === year(v Vector) Scalar ===
 | |
| func funcYear(ev *evaluator, args Expressions) Value {
 | |
| 	return dateWrapper(ev, args, func(t time.Time) float64 {
 | |
| 		return float64(t.Year())
 | |
| 	})
 | |
| }
 | |
| 
 | |
| var functions = map[string]*Function{
 | |
| 	"abs": {
 | |
| 		Name:       "abs",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcAbs,
 | |
| 	},
 | |
| 	"absent": {
 | |
| 		Name:       "absent",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcAbsent,
 | |
| 	},
 | |
| 	"avg_over_time": {
 | |
| 		Name:       "avg_over_time",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcAvgOverTime,
 | |
| 	},
 | |
| 	"ceil": {
 | |
| 		Name:       "ceil",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcCeil,
 | |
| 	},
 | |
| 	"changes": {
 | |
| 		Name:       "changes",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcChanges,
 | |
| 	},
 | |
| 	"clamp_max": {
 | |
| 		Name:       "clamp_max",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector, ValueTypeScalar},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcClampMax,
 | |
| 	},
 | |
| 	"clamp_min": {
 | |
| 		Name:       "clamp_min",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector, ValueTypeScalar},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcClampMin,
 | |
| 	},
 | |
| 	"count_over_time": {
 | |
| 		Name:       "count_over_time",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcCountOverTime,
 | |
| 	},
 | |
| 	"count_scalar": {
 | |
| 		Name:       "count_scalar",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeScalar,
 | |
| 		Call:       funcCountScalar,
 | |
| 	},
 | |
| 	"days_in_month": {
 | |
| 		Name:       "days_in_month",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		Variadic:   1,
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcDaysInMonth,
 | |
| 	},
 | |
| 	"day_of_month": {
 | |
| 		Name:       "day_of_month",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		Variadic:   1,
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcDayOfMonth,
 | |
| 	},
 | |
| 	"day_of_week": {
 | |
| 		Name:       "day_of_week",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		Variadic:   1,
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcDayOfWeek,
 | |
| 	},
 | |
| 	"delta": {
 | |
| 		Name:       "delta",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcDelta,
 | |
| 	},
 | |
| 	"deriv": {
 | |
| 		Name:       "deriv",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcDeriv,
 | |
| 	},
 | |
| 	"drop_common_labels": {
 | |
| 		Name:       "drop_common_labels",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcDropCommonLabels,
 | |
| 	},
 | |
| 	"exp": {
 | |
| 		Name:       "exp",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcExp,
 | |
| 	},
 | |
| 	"floor": {
 | |
| 		Name:       "floor",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcFloor,
 | |
| 	},
 | |
| 	"histogram_quantile": {
 | |
| 		Name:       "histogram_quantile",
 | |
| 		ArgTypes:   []ValueType{ValueTypeScalar, ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcHistogramQuantile,
 | |
| 	},
 | |
| 	"holt_winters": {
 | |
| 		Name:       "holt_winters",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix, ValueTypeScalar, ValueTypeScalar},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcHoltWinters,
 | |
| 	},
 | |
| 	"hour": {
 | |
| 		Name:       "hour",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		Variadic:   1,
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcHour,
 | |
| 	},
 | |
| 	"idelta": {
 | |
| 		Name:       "idelta",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcIdelta,
 | |
| 	},
 | |
| 	"increase": {
 | |
| 		Name:       "increase",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcIncrease,
 | |
| 	},
 | |
| 	"irate": {
 | |
| 		Name:       "irate",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcIrate,
 | |
| 	},
 | |
| 	"label_replace": {
 | |
| 		Name:       "label_replace",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString, ValueTypeString},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcLabelReplace,
 | |
| 	},
 | |
| 	"label_join": {
 | |
| 		Name:       "label_join",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString},
 | |
| 		Variadic:   -1,
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcLabelJoin,
 | |
| 	},
 | |
| 	"ln": {
 | |
| 		Name:       "ln",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcLn,
 | |
| 	},
 | |
| 	"log10": {
 | |
| 		Name:       "log10",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcLog10,
 | |
| 	},
 | |
| 	"log2": {
 | |
| 		Name:       "log2",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcLog2,
 | |
| 	},
 | |
| 	"max_over_time": {
 | |
| 		Name:       "max_over_time",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcMaxOverTime,
 | |
| 	},
 | |
| 	"min_over_time": {
 | |
| 		Name:       "min_over_time",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcMinOverTime,
 | |
| 	},
 | |
| 	"minute": {
 | |
| 		Name:       "minute",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		Variadic:   1,
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcMinute,
 | |
| 	},
 | |
| 	"month": {
 | |
| 		Name:       "month",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		Variadic:   1,
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcMonth,
 | |
| 	},
 | |
| 	"predict_linear": {
 | |
| 		Name:       "predict_linear",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix, ValueTypeScalar},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcPredictLinear,
 | |
| 	},
 | |
| 	"quantile_over_time": {
 | |
| 		Name:       "quantile_over_time",
 | |
| 		ArgTypes:   []ValueType{ValueTypeScalar, ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcQuantileOverTime,
 | |
| 	},
 | |
| 	"rate": {
 | |
| 		Name:       "rate",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcRate,
 | |
| 	},
 | |
| 	"resets": {
 | |
| 		Name:       "resets",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcResets,
 | |
| 	},
 | |
| 	"round": {
 | |
| 		Name:       "round",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector, ValueTypeScalar},
 | |
| 		Variadic:   1,
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcRound,
 | |
| 	},
 | |
| 	"scalar": {
 | |
| 		Name:       "scalar",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeScalar,
 | |
| 		Call:       funcScalar,
 | |
| 	},
 | |
| 	"sort": {
 | |
| 		Name:       "sort",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcSort,
 | |
| 	},
 | |
| 	"sort_desc": {
 | |
| 		Name:       "sort_desc",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcSortDesc,
 | |
| 	},
 | |
| 	"sqrt": {
 | |
| 		Name:       "sqrt",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcSqrt,
 | |
| 	},
 | |
| 	"stddev_over_time": {
 | |
| 		Name:       "stddev_over_time",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcStddevOverTime,
 | |
| 	},
 | |
| 	"stdvar_over_time": {
 | |
| 		Name:       "stdvar_over_time",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcStdvarOverTime,
 | |
| 	},
 | |
| 	"sum_over_time": {
 | |
| 		Name:       "sum_over_time",
 | |
| 		ArgTypes:   []ValueType{ValueTypeMatrix},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcSumOverTime,
 | |
| 	},
 | |
| 	"time": {
 | |
| 		Name:       "time",
 | |
| 		ArgTypes:   []ValueType{},
 | |
| 		ReturnType: ValueTypeScalar,
 | |
| 		Call:       funcTime,
 | |
| 	},
 | |
| 	"timestamp": {
 | |
| 		Name:       "timestamp",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcTimestamp,
 | |
| 	},
 | |
| 	"vector": {
 | |
| 		Name:       "vector",
 | |
| 		ArgTypes:   []ValueType{ValueTypeScalar},
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcVector,
 | |
| 	},
 | |
| 	"year": {
 | |
| 		Name:       "year",
 | |
| 		ArgTypes:   []ValueType{ValueTypeVector},
 | |
| 		Variadic:   1,
 | |
| 		ReturnType: ValueTypeVector,
 | |
| 		Call:       funcYear,
 | |
| 	},
 | |
| }
 | |
| 
 | |
| // getFunction returns a predefined Function object for the given name.
 | |
| func getFunction(name string) (*Function, bool) {
 | |
| 	function, ok := functions[name]
 | |
| 	return function, ok
 | |
| }
 | |
| 
 | |
| type vectorByValueHeap Vector
 | |
| 
 | |
| func (s vectorByValueHeap) Len() int {
 | |
| 	return len(s)
 | |
| }
 | |
| 
 | |
| func (s vectorByValueHeap) Less(i, j int) bool {
 | |
| 	if math.IsNaN(float64(s[i].V)) {
 | |
| 		return true
 | |
| 	}
 | |
| 	return s[i].V < s[j].V
 | |
| }
 | |
| 
 | |
| func (s vectorByValueHeap) Swap(i, j int) {
 | |
| 	s[i], s[j] = s[j], s[i]
 | |
| }
 | |
| 
 | |
| func (s *vectorByValueHeap) Push(x interface{}) {
 | |
| 	*s = append(*s, *(x.(*Sample)))
 | |
| }
 | |
| 
 | |
| func (s *vectorByValueHeap) Pop() interface{} {
 | |
| 	old := *s
 | |
| 	n := len(old)
 | |
| 	el := old[n-1]
 | |
| 	*s = old[0 : n-1]
 | |
| 	return el
 | |
| }
 | |
| 
 | |
| type vectorByReverseValueHeap Vector
 | |
| 
 | |
| func (s vectorByReverseValueHeap) Len() int {
 | |
| 	return len(s)
 | |
| }
 | |
| 
 | |
| func (s vectorByReverseValueHeap) Less(i, j int) bool {
 | |
| 	if math.IsNaN(float64(s[i].V)) {
 | |
| 		return true
 | |
| 	}
 | |
| 	return s[i].V > s[j].V
 | |
| }
 | |
| 
 | |
| func (s vectorByReverseValueHeap) Swap(i, j int) {
 | |
| 	s[i], s[j] = s[j], s[i]
 | |
| }
 | |
| 
 | |
| func (s *vectorByReverseValueHeap) Push(x interface{}) {
 | |
| 	*s = append(*s, *(x.(*Sample)))
 | |
| }
 | |
| 
 | |
| func (s *vectorByReverseValueHeap) Pop() interface{} {
 | |
| 	old := *s
 | |
| 	n := len(old)
 | |
| 	el := old[n-1]
 | |
| 	*s = old[0 : n-1]
 | |
| 	return el
 | |
| }
 |