1903 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			1903 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2015 The Prometheus Authors
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| // http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| package promql
 | |
| 
 | |
| import (
 | |
| 	"context"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"math"
 | |
| 	"slices"
 | |
| 	"sort"
 | |
| 	"strings"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/facette/natsort"
 | |
| 	"github.com/grafana/regexp"
 | |
| 	"github.com/prometheus/common/model"
 | |
| 
 | |
| 	"github.com/prometheus/prometheus/model/histogram"
 | |
| 	"github.com/prometheus/prometheus/model/labels"
 | |
| 	"github.com/prometheus/prometheus/promql/parser"
 | |
| 	"github.com/prometheus/prometheus/promql/parser/posrange"
 | |
| 	"github.com/prometheus/prometheus/schema"
 | |
| 	"github.com/prometheus/prometheus/util/annotations"
 | |
| )
 | |
| 
 | |
| // FunctionCall is the type of a PromQL function implementation
 | |
| //
 | |
| // vals is a list of the evaluated arguments for the function call.
 | |
| //
 | |
| // For range vectors it will be a Matrix with one series, instant vectors a
 | |
| // Vector, scalars a Vector with one series whose value is the scalar
 | |
| // value,and nil for strings.
 | |
| //
 | |
| // args are the original arguments to the function, where you can access
 | |
| // matrixSelectors, vectorSelectors, and StringLiterals.
 | |
| //
 | |
| // enh.Out is a pre-allocated empty vector that you may use to accumulate
 | |
| // output before returning it. The vectors in vals should not be returned.a
 | |
| //
 | |
| // Range vector functions need only return a vector with the right value,
 | |
| // the metric and timestamp are not needed.
 | |
| //
 | |
| // Instant vector functions need only return a vector with the right values and
 | |
| // metrics, the timestamp are not needed.
 | |
| //
 | |
| // Scalar results should be returned as the value of a sample in a Vector.
 | |
| type FunctionCall func(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations)
 | |
| 
 | |
| // === time() float64 ===
 | |
| func funcTime(_ []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return Vector{Sample{
 | |
| 		F: float64(enh.Ts) / 1000,
 | |
| 	}}, nil
 | |
| }
 | |
| 
 | |
| // extrapolatedRate is a utility function for rate/increase/delta.
 | |
| // It calculates the rate (allowing for counter resets if isCounter is true),
 | |
| // extrapolates if the first/last sample is close to the boundary, and returns
 | |
| // the result as either per-second (if isRate is true) or overall.
 | |
| func extrapolatedRate(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper, isCounter, isRate bool) (Vector, annotations.Annotations) {
 | |
| 	ms := args[0].(*parser.MatrixSelector)
 | |
| 	vs := ms.VectorSelector.(*parser.VectorSelector)
 | |
| 	var (
 | |
| 		samples            = vals[0].(Matrix)[0]
 | |
| 		rangeStart         = enh.Ts - durationMilliseconds(ms.Range+vs.Offset)
 | |
| 		rangeEnd           = enh.Ts - durationMilliseconds(vs.Offset)
 | |
| 		resultFloat        float64
 | |
| 		resultHistogram    *histogram.FloatHistogram
 | |
| 		firstT, lastT      int64
 | |
| 		numSamplesMinusOne int
 | |
| 		annos              annotations.Annotations
 | |
| 	)
 | |
| 
 | |
| 	// We need either at least two Histograms and no Floats, or at least two
 | |
| 	// Floats and no Histograms to calculate a rate. Otherwise, drop this
 | |
| 	// Vector element.
 | |
| 	metricName := samples.Metric.Get(labels.MetricName)
 | |
| 	if len(samples.Histograms) > 0 && len(samples.Floats) > 0 {
 | |
| 		return enh.Out, annos.Add(annotations.NewMixedFloatsHistogramsWarning(metricName, args[0].PositionRange()))
 | |
| 	}
 | |
| 
 | |
| 	switch {
 | |
| 	case len(samples.Histograms) > 1:
 | |
| 		numSamplesMinusOne = len(samples.Histograms) - 1
 | |
| 		firstT = samples.Histograms[0].T
 | |
| 		lastT = samples.Histograms[numSamplesMinusOne].T
 | |
| 		var newAnnos annotations.Annotations
 | |
| 		resultHistogram, newAnnos = histogramRate(samples.Histograms, isCounter, metricName, args[0].PositionRange())
 | |
| 		annos.Merge(newAnnos)
 | |
| 		if resultHistogram == nil {
 | |
| 			// The histograms are not compatible with each other.
 | |
| 			return enh.Out, annos
 | |
| 		}
 | |
| 	case len(samples.Floats) > 1:
 | |
| 		numSamplesMinusOne = len(samples.Floats) - 1
 | |
| 		firstT = samples.Floats[0].T
 | |
| 		lastT = samples.Floats[numSamplesMinusOne].T
 | |
| 		resultFloat = samples.Floats[numSamplesMinusOne].F - samples.Floats[0].F
 | |
| 		if !isCounter {
 | |
| 			break
 | |
| 		}
 | |
| 		// Handle counter resets:
 | |
| 		prevValue := samples.Floats[0].F
 | |
| 		for _, currPoint := range samples.Floats[1:] {
 | |
| 			if currPoint.F < prevValue {
 | |
| 				resultFloat += prevValue
 | |
| 			}
 | |
| 			prevValue = currPoint.F
 | |
| 		}
 | |
| 	default:
 | |
| 		// TODO: add RangeTooShortWarning
 | |
| 		return enh.Out, annos
 | |
| 	}
 | |
| 
 | |
| 	// Duration between first/last samples and boundary of range.
 | |
| 	durationToStart := float64(firstT-rangeStart) / 1000
 | |
| 	durationToEnd := float64(rangeEnd-lastT) / 1000
 | |
| 
 | |
| 	sampledInterval := float64(lastT-firstT) / 1000
 | |
| 	averageDurationBetweenSamples := sampledInterval / float64(numSamplesMinusOne)
 | |
| 
 | |
| 	// If samples are close enough to the (lower or upper) boundary of the
 | |
| 	// range, we extrapolate the rate all the way to the boundary in
 | |
| 	// question. "Close enough" is defined as "up to 10% more than the
 | |
| 	// average duration between samples within the range", see
 | |
| 	// extrapolationThreshold below. Essentially, we are assuming a more or
 | |
| 	// less regular spacing between samples, and if we don't see a sample
 | |
| 	// where we would expect one, we assume the series does not cover the
 | |
| 	// whole range, but starts and/or ends within the range. We still
 | |
| 	// extrapolate the rate in this case, but not all the way to the
 | |
| 	// boundary, but only by half of the average duration between samples
 | |
| 	// (which is our guess for where the series actually starts or ends).
 | |
| 
 | |
| 	extrapolationThreshold := averageDurationBetweenSamples * 1.1
 | |
| 	extrapolateToInterval := sampledInterval
 | |
| 
 | |
| 	if durationToStart >= extrapolationThreshold {
 | |
| 		durationToStart = averageDurationBetweenSamples / 2
 | |
| 	}
 | |
| 	if isCounter && resultFloat > 0 && len(samples.Floats) > 0 && samples.Floats[0].F >= 0 {
 | |
| 		// Counters cannot be negative. If we have any slope at all
 | |
| 		// (i.e. resultFloat went up), we can extrapolate the zero point
 | |
| 		// of the counter. If the duration to the zero point is shorter
 | |
| 		// than the durationToStart, we take the zero point as the start
 | |
| 		// of the series, thereby avoiding extrapolation to negative
 | |
| 		// counter values.
 | |
| 		// TODO(beorn7): Do this for histograms, too.
 | |
| 		durationToZero := sampledInterval * (samples.Floats[0].F / resultFloat)
 | |
| 		if durationToZero < durationToStart {
 | |
| 			durationToStart = durationToZero
 | |
| 		}
 | |
| 	}
 | |
| 	extrapolateToInterval += durationToStart
 | |
| 
 | |
| 	if durationToEnd >= extrapolationThreshold {
 | |
| 		durationToEnd = averageDurationBetweenSamples / 2
 | |
| 	}
 | |
| 	extrapolateToInterval += durationToEnd
 | |
| 
 | |
| 	factor := extrapolateToInterval / sampledInterval
 | |
| 	if isRate {
 | |
| 		factor /= ms.Range.Seconds()
 | |
| 	}
 | |
| 	if resultHistogram == nil {
 | |
| 		resultFloat *= factor
 | |
| 	} else {
 | |
| 		resultHistogram.Mul(factor)
 | |
| 	}
 | |
| 
 | |
| 	return append(enh.Out, Sample{F: resultFloat, H: resultHistogram}), annos
 | |
| }
 | |
| 
 | |
| // histogramRate is a helper function for extrapolatedRate. It requires
 | |
| // points[0] to be a histogram. It returns nil if any other Point in points is
 | |
| // not a histogram, and a warning wrapped in an annotation in that case.
 | |
| // Otherwise, it returns the calculated histogram and an empty annotation.
 | |
| func histogramRate(points []HPoint, isCounter bool, metricName string, pos posrange.PositionRange) (*histogram.FloatHistogram, annotations.Annotations) {
 | |
| 	var (
 | |
| 		prev               = points[0].H
 | |
| 		usingCustomBuckets = prev.UsesCustomBuckets()
 | |
| 		last               = points[len(points)-1].H
 | |
| 		annos              annotations.Annotations
 | |
| 	)
 | |
| 
 | |
| 	if last == nil {
 | |
| 		return nil, annos.Add(annotations.NewMixedFloatsHistogramsWarning(metricName, pos))
 | |
| 	}
 | |
| 
 | |
| 	// We check for gauge type histograms in the loop below, but the loop
 | |
| 	// below does not run on the first and last point, so check the first
 | |
| 	// and last point now.
 | |
| 	if isCounter && (prev.CounterResetHint == histogram.GaugeType || last.CounterResetHint == histogram.GaugeType) {
 | |
| 		annos.Add(annotations.NewNativeHistogramNotCounterWarning(metricName, pos))
 | |
| 	}
 | |
| 
 | |
| 	// Null out the 1st sample if there is a counter reset between the 1st
 | |
| 	// and 2nd. In this case, we want to ignore any incompatibility in the
 | |
| 	// bucket layout of the 1st sample because we do not need to look at it.
 | |
| 	if isCounter && len(points) > 1 {
 | |
| 		second := points[1].H
 | |
| 		if second != nil && second.DetectReset(prev) {
 | |
| 			prev = &histogram.FloatHistogram{}
 | |
| 			prev.Schema = second.Schema
 | |
| 			prev.CustomValues = second.CustomValues
 | |
| 			usingCustomBuckets = second.UsesCustomBuckets()
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if last.UsesCustomBuckets() != usingCustomBuckets {
 | |
| 		return nil, annos.Add(annotations.NewMixedExponentialCustomHistogramsWarning(metricName, pos))
 | |
| 	}
 | |
| 
 | |
| 	// First iteration to find out two things:
 | |
| 	// - What's the smallest relevant schema?
 | |
| 	// - Are all data points histograms?
 | |
| 	minSchema := prev.Schema
 | |
| 	if last.Schema < minSchema {
 | |
| 		minSchema = last.Schema
 | |
| 	}
 | |
| 	for _, currPoint := range points[1 : len(points)-1] {
 | |
| 		curr := currPoint.H
 | |
| 		if curr == nil {
 | |
| 			return nil, annotations.New().Add(annotations.NewMixedFloatsHistogramsWarning(metricName, pos))
 | |
| 		}
 | |
| 		if !isCounter {
 | |
| 			continue
 | |
| 		}
 | |
| 		if curr.CounterResetHint == histogram.GaugeType {
 | |
| 			annos.Add(annotations.NewNativeHistogramNotCounterWarning(metricName, pos))
 | |
| 		}
 | |
| 		if curr.Schema < minSchema {
 | |
| 			minSchema = curr.Schema
 | |
| 		}
 | |
| 		if curr.UsesCustomBuckets() != usingCustomBuckets {
 | |
| 			return nil, annotations.New().Add(annotations.NewMixedExponentialCustomHistogramsWarning(metricName, pos))
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	h := last.CopyToSchema(minSchema)
 | |
| 	_, err := h.Sub(prev)
 | |
| 	if err != nil {
 | |
| 		if errors.Is(err, histogram.ErrHistogramsIncompatibleSchema) {
 | |
| 			return nil, annotations.New().Add(annotations.NewMixedExponentialCustomHistogramsWarning(metricName, pos))
 | |
| 		} else if errors.Is(err, histogram.ErrHistogramsIncompatibleBounds) {
 | |
| 			return nil, annotations.New().Add(annotations.NewIncompatibleCustomBucketsHistogramsWarning(metricName, pos))
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if isCounter {
 | |
| 		// Second iteration to deal with counter resets.
 | |
| 		for _, currPoint := range points[1:] {
 | |
| 			curr := currPoint.H
 | |
| 			if curr.DetectReset(prev) {
 | |
| 				_, err := h.Add(prev)
 | |
| 				if err != nil {
 | |
| 					if errors.Is(err, histogram.ErrHistogramsIncompatibleSchema) {
 | |
| 						return nil, annotations.New().Add(annotations.NewMixedExponentialCustomHistogramsWarning(metricName, pos))
 | |
| 					} else if errors.Is(err, histogram.ErrHistogramsIncompatibleBounds) {
 | |
| 						return nil, annotations.New().Add(annotations.NewIncompatibleCustomBucketsHistogramsWarning(metricName, pos))
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			prev = curr
 | |
| 		}
 | |
| 	} else if points[0].H.CounterResetHint != histogram.GaugeType || points[len(points)-1].H.CounterResetHint != histogram.GaugeType {
 | |
| 		annos.Add(annotations.NewNativeHistogramNotGaugeWarning(metricName, pos))
 | |
| 	}
 | |
| 
 | |
| 	h.CounterResetHint = histogram.GaugeType
 | |
| 	return h.Compact(0), annos
 | |
| }
 | |
| 
 | |
| // === delta(Matrix parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcDelta(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return extrapolatedRate(vals, args, enh, false, false)
 | |
| }
 | |
| 
 | |
| // === rate(node parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcRate(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return extrapolatedRate(vals, args, enh, true, true)
 | |
| }
 | |
| 
 | |
| // === increase(node parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcIncrease(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return extrapolatedRate(vals, args, enh, true, false)
 | |
| }
 | |
| 
 | |
| // === irate(node parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcIrate(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return instantValue(vals, args, enh.Out, true)
 | |
| }
 | |
| 
 | |
| // === idelta(node model.ValMatrix) (Vector, Annotations) ===
 | |
| func funcIdelta(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return instantValue(vals, args, enh.Out, false)
 | |
| }
 | |
| 
 | |
| func instantValue(vals []parser.Value, args parser.Expressions, out Vector, isRate bool) (Vector, annotations.Annotations) {
 | |
| 	var (
 | |
| 		samples    = vals[0].(Matrix)[0]
 | |
| 		metricName = samples.Metric.Get(labels.MetricName)
 | |
| 		ss         = make([]Sample, 0, 2)
 | |
| 		annos      annotations.Annotations
 | |
| 	)
 | |
| 
 | |
| 	// No sense in trying to compute a rate without at least two points. Drop
 | |
| 	// this Vector element.
 | |
| 	// TODO: add RangeTooShortWarning
 | |
| 	if len(samples.Floats)+len(samples.Histograms) < 2 {
 | |
| 		return out, nil
 | |
| 	}
 | |
| 
 | |
| 	// Add the last 2 float samples if they exist.
 | |
| 	for i := max(0, len(samples.Floats)-2); i < len(samples.Floats); i++ {
 | |
| 		ss = append(ss, Sample{
 | |
| 			F: samples.Floats[i].F,
 | |
| 			T: samples.Floats[i].T,
 | |
| 		})
 | |
| 	}
 | |
| 
 | |
| 	// Add the last 2 histogram samples into their correct position if they exist.
 | |
| 	for i := max(0, len(samples.Histograms)-2); i < len(samples.Histograms); i++ {
 | |
| 		s := Sample{
 | |
| 			H: samples.Histograms[i].H,
 | |
| 			T: samples.Histograms[i].T,
 | |
| 		}
 | |
| 		switch {
 | |
| 		case len(ss) == 0:
 | |
| 			ss = append(ss, s)
 | |
| 		case len(ss) == 1:
 | |
| 			if s.T < ss[0].T {
 | |
| 				ss = append([]Sample{s}, ss...)
 | |
| 			} else {
 | |
| 				ss = append(ss, s)
 | |
| 			}
 | |
| 		case s.T < ss[0].T:
 | |
| 			// s is older than 1st, so discard it.
 | |
| 		case s.T > ss[1].T:
 | |
| 			// s is newest, so add it as 2nd and make the old 2nd the new 1st.
 | |
| 			ss[0] = ss[1]
 | |
| 			ss[1] = s
 | |
| 		default:
 | |
| 			// In all other cases, we just make s the new 1st.
 | |
| 			// This establishes a correct order, even in the (irregular)
 | |
| 			// case of equal timestamps.
 | |
| 			ss[0] = s
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	resultSample := ss[1]
 | |
| 	sampledInterval := ss[1].T - ss[0].T
 | |
| 	if sampledInterval == 0 {
 | |
| 		// Avoid dividing by 0.
 | |
| 		return out, nil
 | |
| 	}
 | |
| 	switch {
 | |
| 	case ss[1].H == nil && ss[0].H == nil:
 | |
| 		if !isRate || !(ss[1].F < ss[0].F) {
 | |
| 			// Gauge, or counter without reset, or counter with NaN value.
 | |
| 			resultSample.F = ss[1].F - ss[0].F
 | |
| 		}
 | |
| 
 | |
| 		// In case of a counter reset, we leave resultSample at
 | |
| 		// its current value, which is already ss[1].
 | |
| 	case ss[1].H != nil && ss[0].H != nil:
 | |
| 		resultSample.H = ss[1].H.Copy()
 | |
| 		// irate should only be applied to counters.
 | |
| 		if isRate && (ss[1].H.CounterResetHint == histogram.GaugeType || ss[0].H.CounterResetHint == histogram.GaugeType) {
 | |
| 			annos.Add(annotations.NewNativeHistogramNotCounterWarning(metricName, args.PositionRange()))
 | |
| 		}
 | |
| 		// idelta should only be applied to gauges.
 | |
| 		if !isRate && (ss[1].H.CounterResetHint != histogram.GaugeType || ss[0].H.CounterResetHint != histogram.GaugeType) {
 | |
| 			annos.Add(annotations.NewNativeHistogramNotGaugeWarning(metricName, args.PositionRange()))
 | |
| 		}
 | |
| 		if !isRate || !ss[1].H.DetectReset(ss[0].H) {
 | |
| 			_, err := resultSample.H.Sub(ss[0].H)
 | |
| 			if errors.Is(err, histogram.ErrHistogramsIncompatibleSchema) {
 | |
| 				return out, annos.Add(annotations.NewMixedExponentialCustomHistogramsWarning(metricName, args.PositionRange()))
 | |
| 			} else if errors.Is(err, histogram.ErrHistogramsIncompatibleBounds) {
 | |
| 				return out, annos.Add(annotations.NewIncompatibleCustomBucketsHistogramsWarning(metricName, args.PositionRange()))
 | |
| 			}
 | |
| 		}
 | |
| 		resultSample.H.CounterResetHint = histogram.GaugeType
 | |
| 		resultSample.H.Compact(0)
 | |
| 	default:
 | |
| 		// Mix of a float and a histogram.
 | |
| 		return out, annos.Add(annotations.NewMixedFloatsHistogramsWarning(metricName, args.PositionRange()))
 | |
| 	}
 | |
| 
 | |
| 	if isRate {
 | |
| 		// Convert to per-second.
 | |
| 		if resultSample.H == nil {
 | |
| 			resultSample.F /= float64(sampledInterval) / 1000
 | |
| 		} else {
 | |
| 			resultSample.H.Div(float64(sampledInterval) / 1000)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return append(out, resultSample), annos
 | |
| }
 | |
| 
 | |
| // Calculate the trend value at the given index i in raw data d.
 | |
| // This is somewhat analogous to the slope of the trend at the given index.
 | |
| // The argument "tf" is the trend factor.
 | |
| // The argument "s0" is the computed smoothed value.
 | |
| // The argument "s1" is the computed trend factor.
 | |
| // The argument "b" is the raw input value.
 | |
| func calcTrendValue(i int, tf, s0, s1, b float64) float64 {
 | |
| 	if i == 0 {
 | |
| 		return b
 | |
| 	}
 | |
| 
 | |
| 	x := tf * (s1 - s0)
 | |
| 	y := (1 - tf) * b
 | |
| 
 | |
| 	return x + y
 | |
| }
 | |
| 
 | |
| // Double exponential smoothing is similar to a weighted moving average, where
 | |
| // historical data has exponentially less influence on the current data. It also
 | |
| // accounts for trends in data. The smoothing factor (0 < sf < 1) affects how
 | |
| // historical data will affect the current data. A lower smoothing factor
 | |
| // increases the influence of historical data. The trend factor (0 < tf < 1)
 | |
| // affects how trends in historical data will affect the current data. A higher
 | |
| // trend factor increases the influence. of trends. Algorithm taken from
 | |
| // https://en.wikipedia.org/wiki/Exponential_smoothing .
 | |
| func funcDoubleExponentialSmoothing(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	samples := vals[0].(Matrix)[0]
 | |
| 	metricName := samples.Metric.Get(labels.MetricName)
 | |
| 	// The smoothing factor argument.
 | |
| 	sf := vals[1].(Vector)[0].F
 | |
| 
 | |
| 	// The trend factor argument.
 | |
| 	tf := vals[2].(Vector)[0].F
 | |
| 
 | |
| 	// Check that the input parameters are valid.
 | |
| 	if sf <= 0 || sf >= 1 {
 | |
| 		panic(fmt.Errorf("invalid smoothing factor. Expected: 0 < sf < 1, got: %f", sf))
 | |
| 	}
 | |
| 	if tf <= 0 || tf >= 1 {
 | |
| 		panic(fmt.Errorf("invalid trend factor. Expected: 0 < tf < 1, got: %f", tf))
 | |
| 	}
 | |
| 
 | |
| 	l := len(samples.Floats)
 | |
| 
 | |
| 	// Can't do the smoothing operation with less than two points.
 | |
| 	if l < 2 {
 | |
| 		// Annotate mix of float and histogram.
 | |
| 		if l == 1 && len(samples.Histograms) > 0 {
 | |
| 			return enh.Out, annotations.New().Add(annotations.NewHistogramIgnoredInMixedRangeInfo(metricName, args[0].PositionRange()))
 | |
| 		}
 | |
| 		return enh.Out, nil
 | |
| 	}
 | |
| 
 | |
| 	var s0, s1, b float64
 | |
| 	// Set initial values.
 | |
| 	s1 = samples.Floats[0].F
 | |
| 	b = samples.Floats[1].F - samples.Floats[0].F
 | |
| 
 | |
| 	// Run the smoothing operation.
 | |
| 	var x, y float64
 | |
| 	for i := 1; i < l; i++ {
 | |
| 		// Scale the raw value against the smoothing factor.
 | |
| 		x = sf * samples.Floats[i].F
 | |
| 
 | |
| 		// Scale the last smoothed value with the trend at this point.
 | |
| 		b = calcTrendValue(i-1, tf, s0, s1, b)
 | |
| 		y = (1 - sf) * (s1 + b)
 | |
| 
 | |
| 		s0, s1 = s1, x+y
 | |
| 	}
 | |
| 	if len(samples.Histograms) > 0 {
 | |
| 		return append(enh.Out, Sample{F: s1}), annotations.New().Add(annotations.NewHistogramIgnoredInMixedRangeInfo(metricName, args[0].PositionRange()))
 | |
| 	}
 | |
| 	return append(enh.Out, Sample{F: s1}), nil
 | |
| }
 | |
| 
 | |
| // filterFloats filters out histogram samples from the vector in-place.
 | |
| func filterFloats(v Vector) Vector {
 | |
| 	floats := v[:0]
 | |
| 	for _, s := range v {
 | |
| 		if s.H == nil {
 | |
| 			floats = append(floats, s)
 | |
| 		}
 | |
| 	}
 | |
| 	return floats
 | |
| }
 | |
| 
 | |
| // === sort(node parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcSort(vals []parser.Value, _ parser.Expressions, _ *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	// NaN should sort to the bottom, so take descending sort with NaN first and
 | |
| 	// reverse it.
 | |
| 	byValueSorter := vectorByReverseValueHeap(filterFloats(vals[0].(Vector)))
 | |
| 	sort.Sort(sort.Reverse(byValueSorter))
 | |
| 	return Vector(byValueSorter), nil
 | |
| }
 | |
| 
 | |
| // === sortDesc(node parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcSortDesc(vals []parser.Value, _ parser.Expressions, _ *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	// NaN should sort to the bottom, so take ascending sort with NaN first and
 | |
| 	// reverse it.
 | |
| 	byValueSorter := vectorByValueHeap(filterFloats(vals[0].(Vector)))
 | |
| 	sort.Sort(sort.Reverse(byValueSorter))
 | |
| 	return Vector(byValueSorter), nil
 | |
| }
 | |
| 
 | |
| // === sort_by_label(vector parser.ValueTypeVector, label parser.ValueTypeString...) (Vector, Annotations) ===
 | |
| func funcSortByLabel(vals []parser.Value, args parser.Expressions, _ *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	lbls := stringSliceFromArgs(args[1:])
 | |
| 	slices.SortFunc(vals[0].(Vector), func(a, b Sample) int {
 | |
| 		for _, label := range lbls {
 | |
| 			lv1 := a.Metric.Get(label)
 | |
| 			lv2 := b.Metric.Get(label)
 | |
| 
 | |
| 			if lv1 == lv2 {
 | |
| 				continue
 | |
| 			}
 | |
| 
 | |
| 			if natsort.Compare(lv1, lv2) {
 | |
| 				return -1
 | |
| 			}
 | |
| 
 | |
| 			return +1
 | |
| 		}
 | |
| 
 | |
| 		// If all labels provided as arguments were equal, sort by the full label set. This ensures a consistent ordering.
 | |
| 		return labels.Compare(a.Metric, b.Metric)
 | |
| 	})
 | |
| 
 | |
| 	return vals[0].(Vector), nil
 | |
| }
 | |
| 
 | |
| // === sort_by_label_desc(vector parser.ValueTypeVector, label parser.ValueTypeString...) (Vector, Annotations) ===
 | |
| func funcSortByLabelDesc(vals []parser.Value, args parser.Expressions, _ *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	lbls := stringSliceFromArgs(args[1:])
 | |
| 	slices.SortFunc(vals[0].(Vector), func(a, b Sample) int {
 | |
| 		for _, label := range lbls {
 | |
| 			lv1 := a.Metric.Get(label)
 | |
| 			lv2 := b.Metric.Get(label)
 | |
| 
 | |
| 			if lv1 == lv2 {
 | |
| 				continue
 | |
| 			}
 | |
| 
 | |
| 			if natsort.Compare(lv1, lv2) {
 | |
| 				return +1
 | |
| 			}
 | |
| 
 | |
| 			return -1
 | |
| 		}
 | |
| 
 | |
| 		// If all labels provided as arguments were equal, sort by the full label set. This ensures a consistent ordering.
 | |
| 		return -labels.Compare(a.Metric, b.Metric)
 | |
| 	})
 | |
| 
 | |
| 	return vals[0].(Vector), nil
 | |
| }
 | |
| 
 | |
| func clamp(vec Vector, minVal, maxVal float64, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	if maxVal < minVal {
 | |
| 		return enh.Out, nil
 | |
| 	}
 | |
| 	for _, el := range vec {
 | |
| 		if el.H != nil {
 | |
| 			// Process only float samples.
 | |
| 			continue
 | |
| 		}
 | |
| 		if !enh.enableDelayedNameRemoval {
 | |
| 			el.Metric = el.Metric.DropReserved(schema.IsMetadataLabel)
 | |
| 		}
 | |
| 		enh.Out = append(enh.Out, Sample{
 | |
| 			Metric:   el.Metric,
 | |
| 			F:        math.Max(minVal, math.Min(maxVal, el.F)),
 | |
| 			DropName: true,
 | |
| 		})
 | |
| 	}
 | |
| 	return enh.Out, nil
 | |
| }
 | |
| 
 | |
| // === clamp(Vector parser.ValueTypeVector, min, max Scalar) (Vector, Annotations) ===
 | |
| func funcClamp(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	vec := vals[0].(Vector)
 | |
| 	minVal := vals[1].(Vector)[0].F
 | |
| 	maxVal := vals[2].(Vector)[0].F
 | |
| 	return clamp(vec, minVal, maxVal, enh)
 | |
| }
 | |
| 
 | |
| // === clamp_max(Vector parser.ValueTypeVector, max Scalar) (Vector, Annotations) ===
 | |
| func funcClampMax(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	vec := vals[0].(Vector)
 | |
| 	maxVal := vals[1].(Vector)[0].F
 | |
| 	return clamp(vec, math.Inf(-1), maxVal, enh)
 | |
| }
 | |
| 
 | |
| // === clamp_min(Vector parser.ValueTypeVector, min Scalar) (Vector, Annotations) ===
 | |
| func funcClampMin(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	vec := vals[0].(Vector)
 | |
| 	minVal := vals[1].(Vector)[0].F
 | |
| 	return clamp(vec, minVal, math.Inf(+1), enh)
 | |
| }
 | |
| 
 | |
| // === round(Vector parser.ValueTypeVector, toNearest=1 Scalar) (Vector, Annotations) ===
 | |
| func funcRound(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	// round returns a number rounded to toNearest.
 | |
| 	// Ties are solved by rounding up.
 | |
| 	toNearest := float64(1)
 | |
| 	if len(args) >= 2 {
 | |
| 		toNearest = vals[1].(Vector)[0].F
 | |
| 	}
 | |
| 	// Invert as it seems to cause fewer floating point accuracy issues.
 | |
| 	toNearestInverse := 1.0 / toNearest
 | |
| 	return simpleFloatFunc(vals, enh, func(f float64) float64 {
 | |
| 		return math.Floor(f*toNearestInverse+0.5) / toNearestInverse
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === Scalar(node parser.ValueTypeVector) Scalar ===
 | |
| func funcScalar(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	var (
 | |
| 		v     = vals[0].(Vector)
 | |
| 		value float64
 | |
| 		found bool
 | |
| 	)
 | |
| 
 | |
| 	for _, s := range v {
 | |
| 		if s.H == nil {
 | |
| 			if found {
 | |
| 				// More than one float found, return NaN.
 | |
| 				return append(enh.Out, Sample{F: math.NaN()}), nil
 | |
| 			}
 | |
| 			found = true
 | |
| 			value = s.F
 | |
| 		}
 | |
| 	}
 | |
| 	// Return the single float if found, otherwise return NaN.
 | |
| 	if !found {
 | |
| 		return append(enh.Out, Sample{F: math.NaN()}), nil
 | |
| 	}
 | |
| 	return append(enh.Out, Sample{F: value}), nil
 | |
| }
 | |
| 
 | |
| func aggrOverTime(vals []parser.Value, enh *EvalNodeHelper, aggrFn func(Series) float64) Vector {
 | |
| 	el := vals[0].(Matrix)[0]
 | |
| 
 | |
| 	return append(enh.Out, Sample{F: aggrFn(el)})
 | |
| }
 | |
| 
 | |
| func aggrHistOverTime(vals []parser.Value, enh *EvalNodeHelper, aggrFn func(Series) (*histogram.FloatHistogram, error)) (Vector, error) {
 | |
| 	el := vals[0].(Matrix)[0]
 | |
| 	res, err := aggrFn(el)
 | |
| 
 | |
| 	return append(enh.Out, Sample{H: res}), err
 | |
| }
 | |
| 
 | |
| // === avg_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations)  ===
 | |
| func funcAvgOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	firstSeries := vals[0].(Matrix)[0]
 | |
| 	if len(firstSeries.Floats) > 0 && len(firstSeries.Histograms) > 0 {
 | |
| 		metricName := firstSeries.Metric.Get(labels.MetricName)
 | |
| 		return enh.Out, annotations.New().Add(annotations.NewMixedFloatsHistogramsWarning(metricName, args[0].PositionRange()))
 | |
| 	}
 | |
| 	if len(firstSeries.Floats) == 0 {
 | |
| 		// The passed values only contain histograms.
 | |
| 		vec, err := aggrHistOverTime(vals, enh, func(s Series) (*histogram.FloatHistogram, error) {
 | |
| 			count := 1
 | |
| 			mean := s.Histograms[0].H.Copy()
 | |
| 			for _, h := range s.Histograms[1:] {
 | |
| 				count++
 | |
| 				left := h.H.Copy().Div(float64(count))
 | |
| 				right := mean.Copy().Div(float64(count))
 | |
| 				toAdd, err := left.Sub(right)
 | |
| 				if err != nil {
 | |
| 					return mean, err
 | |
| 				}
 | |
| 				_, err = mean.Add(toAdd)
 | |
| 				if err != nil {
 | |
| 					return mean, err
 | |
| 				}
 | |
| 			}
 | |
| 			return mean, nil
 | |
| 		})
 | |
| 		if err != nil {
 | |
| 			metricName := firstSeries.Metric.Get(labels.MetricName)
 | |
| 			if errors.Is(err, histogram.ErrHistogramsIncompatibleSchema) {
 | |
| 				return enh.Out, annotations.New().Add(annotations.NewMixedExponentialCustomHistogramsWarning(metricName, args[0].PositionRange()))
 | |
| 			} else if errors.Is(err, histogram.ErrHistogramsIncompatibleBounds) {
 | |
| 				return enh.Out, annotations.New().Add(annotations.NewIncompatibleCustomBucketsHistogramsWarning(metricName, args[0].PositionRange()))
 | |
| 			}
 | |
| 		}
 | |
| 		return vec, nil
 | |
| 	}
 | |
| 	return aggrOverTime(vals, enh, func(s Series) float64 {
 | |
| 		var (
 | |
| 			sum, mean, count, kahanC float64
 | |
| 			incrementalMean          bool
 | |
| 		)
 | |
| 		for _, f := range s.Floats {
 | |
| 			count++
 | |
| 			if !incrementalMean {
 | |
| 				newSum, newC := kahanSumInc(f.F, sum, kahanC)
 | |
| 				// Perform regular mean calculation as long as
 | |
| 				// the sum doesn't overflow and (in any case)
 | |
| 				// for the first iteration (even if we start
 | |
| 				// with ±Inf) to not run into division-by-zero
 | |
| 				// problems below.
 | |
| 				if count == 1 || !math.IsInf(newSum, 0) {
 | |
| 					sum, kahanC = newSum, newC
 | |
| 					continue
 | |
| 				}
 | |
| 				// Handle overflow by reverting to incremental calculation of the mean value.
 | |
| 				incrementalMean = true
 | |
| 				mean = sum / (count - 1)
 | |
| 				kahanC /= count - 1
 | |
| 			}
 | |
| 			if math.IsInf(mean, 0) {
 | |
| 				if math.IsInf(f.F, 0) && (mean > 0) == (f.F > 0) {
 | |
| 					// The `mean` and `f.F` values are `Inf` of the same sign.  They
 | |
| 					// can't be subtracted, but the value of `mean` is correct
 | |
| 					// already.
 | |
| 					continue
 | |
| 				}
 | |
| 				if !math.IsInf(f.F, 0) && !math.IsNaN(f.F) {
 | |
| 					// At this stage, the mean is an infinite. If the added
 | |
| 					// value is neither an Inf or a Nan, we can keep that mean
 | |
| 					// value.
 | |
| 					// This is required because our calculation below removes
 | |
| 					// the mean value, which would look like Inf += x - Inf and
 | |
| 					// end up as a NaN.
 | |
| 					continue
 | |
| 				}
 | |
| 			}
 | |
| 			correctedMean := mean + kahanC
 | |
| 			mean, kahanC = kahanSumInc(f.F/count-correctedMean/count, mean, kahanC)
 | |
| 		}
 | |
| 		if incrementalMean {
 | |
| 			return mean + kahanC
 | |
| 		}
 | |
| 		return (sum + kahanC) / count
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === count_over_time(Matrix parser.ValueTypeMatrix) (Vector, Notes)  ===
 | |
| func funcCountOverTime(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return aggrOverTime(vals, enh, func(s Series) float64 {
 | |
| 		return float64(len(s.Floats) + len(s.Histograms))
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === last_over_time(Matrix parser.ValueTypeMatrix) (Vector, Notes)  ===
 | |
| func funcLastOverTime(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	el := vals[0].(Matrix)[0]
 | |
| 
 | |
| 	var f FPoint
 | |
| 	if len(el.Floats) > 0 {
 | |
| 		f = el.Floats[len(el.Floats)-1]
 | |
| 	}
 | |
| 
 | |
| 	var h HPoint
 | |
| 	if len(el.Histograms) > 0 {
 | |
| 		h = el.Histograms[len(el.Histograms)-1]
 | |
| 	}
 | |
| 
 | |
| 	if h.H == nil || h.T < f.T {
 | |
| 		return append(enh.Out, Sample{
 | |
| 			Metric: el.Metric,
 | |
| 			F:      f.F,
 | |
| 		}), nil
 | |
| 	}
 | |
| 	return append(enh.Out, Sample{
 | |
| 		Metric: el.Metric,
 | |
| 		H:      h.H.Copy(),
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === mad_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcMadOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	samples := vals[0].(Matrix)[0]
 | |
| 	var annos annotations.Annotations
 | |
| 	if len(samples.Floats) == 0 {
 | |
| 		return enh.Out, nil
 | |
| 	}
 | |
| 	if len(samples.Histograms) > 0 {
 | |
| 		metricName := samples.Metric.Get(labels.MetricName)
 | |
| 		annos.Add(annotations.NewHistogramIgnoredInMixedRangeInfo(metricName, args[0].PositionRange()))
 | |
| 	}
 | |
| 	return aggrOverTime(vals, enh, func(s Series) float64 {
 | |
| 		values := make(vectorByValueHeap, 0, len(s.Floats))
 | |
| 		for _, f := range s.Floats {
 | |
| 			values = append(values, Sample{F: f.F})
 | |
| 		}
 | |
| 		median := quantile(0.5, values)
 | |
| 		values = make(vectorByValueHeap, 0, len(s.Floats))
 | |
| 		for _, f := range s.Floats {
 | |
| 			values = append(values, Sample{F: math.Abs(f.F - median)})
 | |
| 		}
 | |
| 		return quantile(0.5, values)
 | |
| 	}), annos
 | |
| }
 | |
| 
 | |
| // compareOverTime is a helper used by funcMaxOverTime and funcMinOverTime.
 | |
| func compareOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper, compareFn func(float64, float64) bool) (Vector, annotations.Annotations) {
 | |
| 	samples := vals[0].(Matrix)[0]
 | |
| 	var annos annotations.Annotations
 | |
| 	if len(samples.Floats) == 0 {
 | |
| 		return enh.Out, nil
 | |
| 	}
 | |
| 	if len(samples.Histograms) > 0 {
 | |
| 		metricName := samples.Metric.Get(labels.MetricName)
 | |
| 		annos.Add(annotations.NewHistogramIgnoredInMixedRangeInfo(metricName, args[0].PositionRange()))
 | |
| 	}
 | |
| 	return aggrOverTime(vals, enh, func(s Series) float64 {
 | |
| 		maxVal := s.Floats[0].F
 | |
| 		for _, f := range s.Floats {
 | |
| 			if compareFn(f.F, maxVal) {
 | |
| 				maxVal = f.F
 | |
| 			}
 | |
| 		}
 | |
| 		return maxVal
 | |
| 	}), annos
 | |
| }
 | |
| 
 | |
| // === max_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcMaxOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return compareOverTime(vals, args, enh, func(cur, maxVal float64) bool {
 | |
| 		return (cur > maxVal) || math.IsNaN(maxVal)
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === min_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcMinOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return compareOverTime(vals, args, enh, func(cur, maxVal float64) bool {
 | |
| 		return (cur < maxVal) || math.IsNaN(maxVal)
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // === sum_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcSumOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	firstSeries := vals[0].(Matrix)[0]
 | |
| 	if len(firstSeries.Floats) > 0 && len(firstSeries.Histograms) > 0 {
 | |
| 		metricName := firstSeries.Metric.Get(labels.MetricName)
 | |
| 		return enh.Out, annotations.New().Add(annotations.NewMixedFloatsHistogramsWarning(metricName, args[0].PositionRange()))
 | |
| 	}
 | |
| 	if len(firstSeries.Floats) == 0 {
 | |
| 		// The passed values only contain histograms.
 | |
| 		vec, err := aggrHistOverTime(vals, enh, func(s Series) (*histogram.FloatHistogram, error) {
 | |
| 			sum := s.Histograms[0].H.Copy()
 | |
| 			for _, h := range s.Histograms[1:] {
 | |
| 				_, err := sum.Add(h.H)
 | |
| 				if err != nil {
 | |
| 					return sum, err
 | |
| 				}
 | |
| 			}
 | |
| 			return sum, nil
 | |
| 		})
 | |
| 		if err != nil {
 | |
| 			metricName := firstSeries.Metric.Get(labels.MetricName)
 | |
| 			if errors.Is(err, histogram.ErrHistogramsIncompatibleSchema) {
 | |
| 				return enh.Out, annotations.New().Add(annotations.NewMixedExponentialCustomHistogramsWarning(metricName, args[0].PositionRange()))
 | |
| 			} else if errors.Is(err, histogram.ErrHistogramsIncompatibleBounds) {
 | |
| 				return enh.Out, annotations.New().Add(annotations.NewIncompatibleCustomBucketsHistogramsWarning(metricName, args[0].PositionRange()))
 | |
| 			}
 | |
| 		}
 | |
| 		return vec, nil
 | |
| 	}
 | |
| 	return aggrOverTime(vals, enh, func(s Series) float64 {
 | |
| 		var sum, c float64
 | |
| 		for _, f := range s.Floats {
 | |
| 			sum, c = kahanSumInc(f.F, sum, c)
 | |
| 		}
 | |
| 		if math.IsInf(sum, 0) {
 | |
| 			return sum
 | |
| 		}
 | |
| 		return sum + c
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === quantile_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcQuantileOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	q := vals[0].(Vector)[0].F
 | |
| 	el := vals[1].(Matrix)[0]
 | |
| 	if len(el.Floats) == 0 {
 | |
| 		return enh.Out, nil
 | |
| 	}
 | |
| 
 | |
| 	var annos annotations.Annotations
 | |
| 	if math.IsNaN(q) || q < 0 || q > 1 {
 | |
| 		annos.Add(annotations.NewInvalidQuantileWarning(q, args[0].PositionRange()))
 | |
| 	}
 | |
| 	if len(el.Histograms) > 0 {
 | |
| 		metricName := el.Metric.Get(labels.MetricName)
 | |
| 		annos.Add(annotations.NewHistogramIgnoredInMixedRangeInfo(metricName, args[0].PositionRange()))
 | |
| 	}
 | |
| 	values := make(vectorByValueHeap, 0, len(el.Floats))
 | |
| 	for _, f := range el.Floats {
 | |
| 		values = append(values, Sample{F: f.F})
 | |
| 	}
 | |
| 	return append(enh.Out, Sample{F: quantile(q, values)}), annos
 | |
| }
 | |
| 
 | |
| func varianceOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper, varianceToResult func(float64) float64) (Vector, annotations.Annotations) {
 | |
| 	samples := vals[0].(Matrix)[0]
 | |
| 	var annos annotations.Annotations
 | |
| 	if len(samples.Floats) == 0 {
 | |
| 		return enh.Out, nil
 | |
| 	}
 | |
| 	if len(samples.Histograms) > 0 {
 | |
| 		metricName := samples.Metric.Get(labels.MetricName)
 | |
| 		annos.Add(annotations.NewHistogramIgnoredInMixedRangeInfo(metricName, args[0].PositionRange()))
 | |
| 	}
 | |
| 	return aggrOverTime(vals, enh, func(s Series) float64 {
 | |
| 		var count float64
 | |
| 		var mean, cMean float64
 | |
| 		var aux, cAux float64
 | |
| 		for _, f := range s.Floats {
 | |
| 			count++
 | |
| 			delta := f.F - (mean + cMean)
 | |
| 			mean, cMean = kahanSumInc(delta/count, mean, cMean)
 | |
| 			aux, cAux = kahanSumInc(delta*(f.F-(mean+cMean)), aux, cAux)
 | |
| 		}
 | |
| 		variance := (aux + cAux) / count
 | |
| 		if varianceToResult == nil {
 | |
| 			return variance
 | |
| 		}
 | |
| 		return varianceToResult(variance)
 | |
| 	}), annos
 | |
| }
 | |
| 
 | |
| // === stddev_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcStddevOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return varianceOverTime(vals, args, enh, math.Sqrt)
 | |
| }
 | |
| 
 | |
| // === stdvar_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcStdvarOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return varianceOverTime(vals, args, enh, nil)
 | |
| }
 | |
| 
 | |
| // === absent(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcAbsent(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	if len(vals[0].(Vector)) > 0 {
 | |
| 		return enh.Out, nil
 | |
| 	}
 | |
| 	return append(enh.Out,
 | |
| 		Sample{
 | |
| 			Metric: createLabelsForAbsentFunction(args[0]),
 | |
| 			F:      1,
 | |
| 		}), nil
 | |
| }
 | |
| 
 | |
| // === absent_over_time(Vector parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| // As this function has a matrix as argument, it does not get all the Series.
 | |
| // This function will return 1 if the matrix has at least one element.
 | |
| // Due to engine optimization, this function is only called when this condition is true.
 | |
| // Then, the engine post-processes the results to get the expected output.
 | |
| func funcAbsentOverTime(_ []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return append(enh.Out, Sample{F: 1}), nil
 | |
| }
 | |
| 
 | |
| // === present_over_time(Vector parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcPresentOverTime(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return aggrOverTime(vals, enh, func(_ Series) float64 {
 | |
| 		return 1
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| func simpleFloatFunc(vals []parser.Value, enh *EvalNodeHelper, f func(float64) float64) Vector {
 | |
| 	for _, el := range vals[0].(Vector) {
 | |
| 		if el.H == nil { // Process only float samples.
 | |
| 			if !enh.enableDelayedNameRemoval {
 | |
| 				el.Metric = el.Metric.DropReserved(schema.IsMetadataLabel)
 | |
| 			}
 | |
| 			enh.Out = append(enh.Out, Sample{
 | |
| 				Metric:   el.Metric,
 | |
| 				F:        f(el.F),
 | |
| 				DropName: true,
 | |
| 			})
 | |
| 		}
 | |
| 	}
 | |
| 	return enh.Out
 | |
| }
 | |
| 
 | |
| // === abs(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcAbs(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Abs), nil
 | |
| }
 | |
| 
 | |
| // === ceil(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcCeil(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Ceil), nil
 | |
| }
 | |
| 
 | |
| // === floor(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcFloor(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Floor), nil
 | |
| }
 | |
| 
 | |
| // === exp(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcExp(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Exp), nil
 | |
| }
 | |
| 
 | |
| // === sqrt(Vector VectorNode) (Vector, Annotations) ===
 | |
| func funcSqrt(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Sqrt), nil
 | |
| }
 | |
| 
 | |
| // === ln(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcLn(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Log), nil
 | |
| }
 | |
| 
 | |
| // === log2(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcLog2(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Log2), nil
 | |
| }
 | |
| 
 | |
| // === log10(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcLog10(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Log10), nil
 | |
| }
 | |
| 
 | |
| // === sin(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcSin(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Sin), nil
 | |
| }
 | |
| 
 | |
| // === cos(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcCos(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Cos), nil
 | |
| }
 | |
| 
 | |
| // === tan(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcTan(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Tan), nil
 | |
| }
 | |
| 
 | |
| // === asin(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcAsin(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Asin), nil
 | |
| }
 | |
| 
 | |
| // === acos(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcAcos(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Acos), nil
 | |
| }
 | |
| 
 | |
| // === atan(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcAtan(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Atan), nil
 | |
| }
 | |
| 
 | |
| // === sinh(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcSinh(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Sinh), nil
 | |
| }
 | |
| 
 | |
| // === cosh(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcCosh(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Cosh), nil
 | |
| }
 | |
| 
 | |
| // === tanh(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcTanh(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Tanh), nil
 | |
| }
 | |
| 
 | |
| // === asinh(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcAsinh(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Asinh), nil
 | |
| }
 | |
| 
 | |
| // === acosh(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcAcosh(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Acosh), nil
 | |
| }
 | |
| 
 | |
| // === atanh(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcAtanh(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, math.Atanh), nil
 | |
| }
 | |
| 
 | |
| // === rad(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcRad(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, func(v float64) float64 {
 | |
| 		return v * math.Pi / 180
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === deg(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcDeg(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, func(v float64) float64 {
 | |
| 		return v * 180 / math.Pi
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === pi() Scalar ===
 | |
| func funcPi(_ []parser.Value, _ parser.Expressions, _ *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return Vector{Sample{F: math.Pi}}, nil
 | |
| }
 | |
| 
 | |
| // === sgn(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcSgn(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleFloatFunc(vals, enh, func(v float64) float64 {
 | |
| 		switch {
 | |
| 		case v < 0:
 | |
| 			return -1
 | |
| 		case v > 0:
 | |
| 			return 1
 | |
| 		default:
 | |
| 			return v
 | |
| 		}
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === timestamp(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcTimestamp(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	vec := vals[0].(Vector)
 | |
| 	for _, el := range vec {
 | |
| 		if !enh.enableDelayedNameRemoval {
 | |
| 			el.Metric = el.Metric.DropReserved(schema.IsMetadataLabel)
 | |
| 		}
 | |
| 		enh.Out = append(enh.Out, Sample{
 | |
| 			Metric:   el.Metric,
 | |
| 			F:        float64(el.T) / 1000,
 | |
| 			DropName: true,
 | |
| 		})
 | |
| 	}
 | |
| 	return enh.Out, nil
 | |
| }
 | |
| 
 | |
| func kahanSumInc(inc, sum, c float64) (newSum, newC float64) {
 | |
| 	t := sum + inc
 | |
| 	switch {
 | |
| 	case math.IsInf(t, 0):
 | |
| 		c = 0
 | |
| 
 | |
| 	// Using Neumaier improvement, swap if next term larger than sum.
 | |
| 	case math.Abs(sum) >= math.Abs(inc):
 | |
| 		c += (sum - t) + inc
 | |
| 	default:
 | |
| 		c += (inc - t) + sum
 | |
| 	}
 | |
| 	return t, c
 | |
| }
 | |
| 
 | |
| // linearRegression performs a least-square linear regression analysis on the
 | |
| // provided SamplePairs. It returns the slope, and the intercept value at the
 | |
| // provided time.
 | |
| func linearRegression(samples []FPoint, interceptTime int64) (slope, intercept float64) {
 | |
| 	var (
 | |
| 		n          float64
 | |
| 		sumX, cX   float64
 | |
| 		sumY, cY   float64
 | |
| 		sumXY, cXY float64
 | |
| 		sumX2, cX2 float64
 | |
| 		initY      float64
 | |
| 		constY     bool
 | |
| 	)
 | |
| 	initY = samples[0].F
 | |
| 	constY = true
 | |
| 	for i, sample := range samples {
 | |
| 		// Set constY to false if any new y values are encountered.
 | |
| 		if constY && i > 0 && sample.F != initY {
 | |
| 			constY = false
 | |
| 		}
 | |
| 		n += 1.0
 | |
| 		x := float64(sample.T-interceptTime) / 1e3
 | |
| 		sumX, cX = kahanSumInc(x, sumX, cX)
 | |
| 		sumY, cY = kahanSumInc(sample.F, sumY, cY)
 | |
| 		sumXY, cXY = kahanSumInc(x*sample.F, sumXY, cXY)
 | |
| 		sumX2, cX2 = kahanSumInc(x*x, sumX2, cX2)
 | |
| 	}
 | |
| 	if constY {
 | |
| 		if math.IsInf(initY, 0) {
 | |
| 			return math.NaN(), math.NaN()
 | |
| 		}
 | |
| 		return 0, initY
 | |
| 	}
 | |
| 	sumX += cX
 | |
| 	sumY += cY
 | |
| 	sumXY += cXY
 | |
| 	sumX2 += cX2
 | |
| 
 | |
| 	covXY := sumXY - sumX*sumY/n
 | |
| 	varX := sumX2 - sumX*sumX/n
 | |
| 
 | |
| 	slope = covXY / varX
 | |
| 	intercept = sumY/n - slope*sumX/n
 | |
| 	return slope, intercept
 | |
| }
 | |
| 
 | |
| // === deriv(node parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcDeriv(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	samples := vals[0].(Matrix)[0]
 | |
| 	metricName := samples.Metric.Get(labels.MetricName)
 | |
| 
 | |
| 	// No sense in trying to compute a derivative without at least two float points.
 | |
| 	// Drop this Vector element.
 | |
| 	if len(samples.Floats) < 2 {
 | |
| 		// Annotate mix of float and histogram.
 | |
| 		if len(samples.Floats) == 1 && len(samples.Histograms) > 0 {
 | |
| 			return enh.Out, annotations.New().Add(annotations.NewHistogramIgnoredInMixedRangeInfo(metricName, args[0].PositionRange()))
 | |
| 		}
 | |
| 		return enh.Out, nil
 | |
| 	}
 | |
| 
 | |
| 	// We pass in an arbitrary timestamp that is near the values in use
 | |
| 	// to avoid floating point accuracy issues, see
 | |
| 	// https://github.com/prometheus/prometheus/issues/2674
 | |
| 	slope, _ := linearRegression(samples.Floats, samples.Floats[0].T)
 | |
| 	if len(samples.Histograms) > 0 {
 | |
| 		return append(enh.Out, Sample{F: slope}), annotations.New().Add(annotations.NewHistogramIgnoredInMixedRangeInfo(metricName, args[0].PositionRange()))
 | |
| 	}
 | |
| 	return append(enh.Out, Sample{F: slope}), nil
 | |
| }
 | |
| 
 | |
| // === predict_linear(node parser.ValueTypeMatrix, k parser.ValueTypeScalar) (Vector, Annotations) ===
 | |
| func funcPredictLinear(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	samples := vals[0].(Matrix)[0]
 | |
| 	duration := vals[1].(Vector)[0].F
 | |
| 	metricName := samples.Metric.Get(labels.MetricName)
 | |
| 
 | |
| 	// No sense in trying to predict anything without at least two float points.
 | |
| 	// Drop this Vector element.
 | |
| 	if len(samples.Floats) < 2 {
 | |
| 		// Annotate mix of float and histogram.
 | |
| 		if len(samples.Floats) == 1 && len(samples.Histograms) > 0 {
 | |
| 			return enh.Out, annotations.New().Add(annotations.NewHistogramIgnoredInMixedRangeInfo(metricName, args[0].PositionRange()))
 | |
| 		}
 | |
| 		return enh.Out, nil
 | |
| 	}
 | |
| 
 | |
| 	slope, intercept := linearRegression(samples.Floats, enh.Ts)
 | |
| 	if len(samples.Histograms) > 0 {
 | |
| 		return append(enh.Out, Sample{F: slope*duration + intercept}), annotations.New().Add(annotations.NewHistogramIgnoredInMixedRangeInfo(metricName, args[0].PositionRange()))
 | |
| 	}
 | |
| 	return append(enh.Out, Sample{F: slope*duration + intercept}), nil
 | |
| }
 | |
| 
 | |
| func simpleHistogramFunc(vals []parser.Value, enh *EvalNodeHelper, f func(h *histogram.FloatHistogram) float64) Vector {
 | |
| 	for _, el := range vals[0].(Vector) {
 | |
| 		if el.H != nil { // Process only histogram samples.
 | |
| 			if !enh.enableDelayedNameRemoval {
 | |
| 				el.Metric = el.Metric.DropMetricName()
 | |
| 			}
 | |
| 			enh.Out = append(enh.Out, Sample{
 | |
| 				Metric:   el.Metric,
 | |
| 				F:        f(el.H),
 | |
| 				DropName: true,
 | |
| 			})
 | |
| 		}
 | |
| 	}
 | |
| 	return enh.Out
 | |
| }
 | |
| 
 | |
| // === histogram_count(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcHistogramCount(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleHistogramFunc(vals, enh, func(h *histogram.FloatHistogram) float64 {
 | |
| 		return h.Count
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === histogram_sum(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcHistogramSum(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleHistogramFunc(vals, enh, func(h *histogram.FloatHistogram) float64 {
 | |
| 		return h.Sum
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === histogram_avg(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcHistogramAvg(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return simpleHistogramFunc(vals, enh, func(h *histogram.FloatHistogram) float64 {
 | |
| 		return h.Sum / h.Count
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| func histogramVariance(vals []parser.Value, enh *EvalNodeHelper, varianceToResult func(float64) float64) (Vector, annotations.Annotations) {
 | |
| 	return simpleHistogramFunc(vals, enh, func(h *histogram.FloatHistogram) float64 {
 | |
| 		mean := h.Sum / h.Count
 | |
| 		var variance, cVariance float64
 | |
| 		it := h.AllBucketIterator()
 | |
| 		for it.Next() {
 | |
| 			bucket := it.At()
 | |
| 			if bucket.Count == 0 {
 | |
| 				continue
 | |
| 			}
 | |
| 			var val float64
 | |
| 			switch {
 | |
| 			case h.UsesCustomBuckets():
 | |
| 				// Use arithmetic mean in case of custom buckets.
 | |
| 				val = (bucket.Upper + bucket.Lower) / 2.0
 | |
| 			case bucket.Lower <= 0 && bucket.Upper >= 0:
 | |
| 				// Use zero (effectively the arithmetic mean) in the zero bucket of a standard exponential histogram.
 | |
| 				val = 0
 | |
| 			default:
 | |
| 				// Use geometric mean in case of standard exponential buckets.
 | |
| 				val = math.Sqrt(bucket.Upper * bucket.Lower)
 | |
| 				if bucket.Upper < 0 {
 | |
| 					val = -val
 | |
| 				}
 | |
| 			}
 | |
| 			delta := val - mean
 | |
| 			variance, cVariance = kahanSumInc(bucket.Count*delta*delta, variance, cVariance)
 | |
| 		}
 | |
| 		variance += cVariance
 | |
| 		variance /= h.Count
 | |
| 		if varianceToResult != nil {
 | |
| 			variance = varianceToResult(variance)
 | |
| 		}
 | |
| 		return variance
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === histogram_stddev(Vector parser.ValueTypeVector) (Vector, Annotations)  ===
 | |
| func funcHistogramStdDev(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return histogramVariance(vals, enh, math.Sqrt)
 | |
| }
 | |
| 
 | |
| // === histogram_stdvar(Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcHistogramStdVar(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return histogramVariance(vals, enh, nil)
 | |
| }
 | |
| 
 | |
| // === histogram_fraction(lower, upper parser.ValueTypeScalar, Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcHistogramFraction(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	lower := vals[0].(Vector)[0].F
 | |
| 	upper := vals[1].(Vector)[0].F
 | |
| 	inVec := vals[2].(Vector)
 | |
| 
 | |
| 	annos := enh.resetHistograms(inVec, args[2])
 | |
| 
 | |
| 	// Deal with the native histograms.
 | |
| 	for _, sample := range enh.nativeHistogramSamples {
 | |
| 		if sample.H == nil {
 | |
| 			// Native histogram conflicts with classic histogram at the same timestamp, ignore.
 | |
| 			continue
 | |
| 		}
 | |
| 		if !enh.enableDelayedNameRemoval {
 | |
| 			sample.Metric = sample.Metric.DropReserved(schema.IsMetadataLabel)
 | |
| 		}
 | |
| 		enh.Out = append(enh.Out, Sample{
 | |
| 			Metric:   sample.Metric,
 | |
| 			F:        HistogramFraction(lower, upper, sample.H),
 | |
| 			DropName: true,
 | |
| 		})
 | |
| 	}
 | |
| 
 | |
| 	// Deal with classic histograms that have already been filtered for conflicting native histograms.
 | |
| 	for _, mb := range enh.signatureToMetricWithBuckets {
 | |
| 		if len(mb.buckets) == 0 {
 | |
| 			continue
 | |
| 		}
 | |
| 		if !enh.enableDelayedNameRemoval {
 | |
| 			mb.metric = mb.metric.DropReserved(schema.IsMetadataLabel)
 | |
| 		}
 | |
| 
 | |
| 		enh.Out = append(enh.Out, Sample{
 | |
| 			Metric:   mb.metric,
 | |
| 			F:        BucketFraction(lower, upper, mb.buckets),
 | |
| 			DropName: true,
 | |
| 		})
 | |
| 	}
 | |
| 
 | |
| 	return enh.Out, annos
 | |
| }
 | |
| 
 | |
| // === histogram_quantile(k parser.ValueTypeScalar, Vector parser.ValueTypeVector) (Vector, Annotations) ===
 | |
| func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	q := vals[0].(Vector)[0].F
 | |
| 	inVec := vals[1].(Vector)
 | |
| 	var annos annotations.Annotations
 | |
| 
 | |
| 	if math.IsNaN(q) || q < 0 || q > 1 {
 | |
| 		annos.Add(annotations.NewInvalidQuantileWarning(q, args[0].PositionRange()))
 | |
| 	}
 | |
| 	annos.Merge(enh.resetHistograms(inVec, args[1]))
 | |
| 
 | |
| 	// Deal with the native histograms.
 | |
| 	for _, sample := range enh.nativeHistogramSamples {
 | |
| 		if sample.H == nil {
 | |
| 			// Native histogram conflicts with classic histogram at the same timestamp, ignore.
 | |
| 			continue
 | |
| 		}
 | |
| 		if !enh.enableDelayedNameRemoval {
 | |
| 			sample.Metric = sample.Metric.DropReserved(schema.IsMetadataLabel)
 | |
| 		}
 | |
| 		enh.Out = append(enh.Out, Sample{
 | |
| 			Metric:   sample.Metric,
 | |
| 			F:        HistogramQuantile(q, sample.H),
 | |
| 			DropName: true,
 | |
| 		})
 | |
| 	}
 | |
| 
 | |
| 	// Deal with classic histograms that have already been filtered for conflicting native histograms.
 | |
| 	for _, mb := range enh.signatureToMetricWithBuckets {
 | |
| 		if len(mb.buckets) > 0 {
 | |
| 			res, forcedMonotonicity, _ := BucketQuantile(q, mb.buckets)
 | |
| 			if forcedMonotonicity {
 | |
| 				annos.Add(annotations.NewHistogramQuantileForcedMonotonicityInfo(mb.metric.Get(labels.MetricName), args[1].PositionRange()))
 | |
| 			}
 | |
| 
 | |
| 			if !enh.enableDelayedNameRemoval {
 | |
| 				mb.metric = mb.metric.DropReserved(schema.IsMetadataLabel)
 | |
| 			}
 | |
| 
 | |
| 			enh.Out = append(enh.Out, Sample{
 | |
| 				Metric:   mb.metric,
 | |
| 				F:        res,
 | |
| 				DropName: true,
 | |
| 			})
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return enh.Out, annos
 | |
| }
 | |
| 
 | |
| // === resets(Matrix parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcResets(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	floats := vals[0].(Matrix)[0].Floats
 | |
| 	histograms := vals[0].(Matrix)[0].Histograms
 | |
| 	resets := 0
 | |
| 	if len(floats) == 0 && len(histograms) == 0 {
 | |
| 		return enh.Out, nil
 | |
| 	}
 | |
| 
 | |
| 	var prevSample, curSample Sample
 | |
| 	for iFloat, iHistogram := 0, 0; iFloat < len(floats) || iHistogram < len(histograms); {
 | |
| 		switch {
 | |
| 		// Process a float sample if no histogram sample remains or its timestamp is earlier.
 | |
| 		// Process a histogram sample if no float sample remains or its timestamp is earlier.
 | |
| 		case iHistogram >= len(histograms) || iFloat < len(floats) && floats[iFloat].T < histograms[iHistogram].T:
 | |
| 			curSample.F = floats[iFloat].F
 | |
| 			curSample.H = nil
 | |
| 			iFloat++
 | |
| 		case iFloat >= len(floats) || iHistogram < len(histograms) && floats[iFloat].T > histograms[iHistogram].T:
 | |
| 			curSample.H = histograms[iHistogram].H
 | |
| 			iHistogram++
 | |
| 		}
 | |
| 		// Skip the comparison for the first sample, just initialize prevSample.
 | |
| 		if iFloat+iHistogram == 1 {
 | |
| 			prevSample = curSample
 | |
| 			continue
 | |
| 		}
 | |
| 		switch {
 | |
| 		case prevSample.H == nil && curSample.H == nil:
 | |
| 			if curSample.F < prevSample.F {
 | |
| 				resets++
 | |
| 			}
 | |
| 		case prevSample.H != nil && curSample.H == nil, prevSample.H == nil && curSample.H != nil:
 | |
| 			resets++
 | |
| 		case prevSample.H != nil && curSample.H != nil:
 | |
| 			if curSample.H.DetectReset(prevSample.H) {
 | |
| 				resets++
 | |
| 			}
 | |
| 		}
 | |
| 		prevSample = curSample
 | |
| 	}
 | |
| 
 | |
| 	return append(enh.Out, Sample{F: float64(resets)}), nil
 | |
| }
 | |
| 
 | |
| // === changes(Matrix parser.ValueTypeMatrix) (Vector, Annotations) ===
 | |
| func funcChanges(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	floats := vals[0].(Matrix)[0].Floats
 | |
| 	histograms := vals[0].(Matrix)[0].Histograms
 | |
| 	changes := 0
 | |
| 	if len(floats) == 0 && len(histograms) == 0 {
 | |
| 		return enh.Out, nil
 | |
| 	}
 | |
| 
 | |
| 	var prevSample, curSample Sample
 | |
| 	for iFloat, iHistogram := 0, 0; iFloat < len(floats) || iHistogram < len(histograms); {
 | |
| 		switch {
 | |
| 		// Process a float sample if no histogram sample remains or its timestamp is earlier.
 | |
| 		// Process a histogram sample if no float sample remains or its timestamp is earlier.
 | |
| 		case iHistogram >= len(histograms) || iFloat < len(floats) && floats[iFloat].T < histograms[iHistogram].T:
 | |
| 			curSample.F = floats[iFloat].F
 | |
| 			curSample.H = nil
 | |
| 			iFloat++
 | |
| 		case iFloat >= len(floats) || iHistogram < len(histograms) && floats[iFloat].T > histograms[iHistogram].T:
 | |
| 			curSample.H = histograms[iHistogram].H
 | |
| 			iHistogram++
 | |
| 		}
 | |
| 		// Skip the comparison for the first sample, just initialize prevSample.
 | |
| 		if iFloat+iHistogram == 1 {
 | |
| 			prevSample = curSample
 | |
| 			continue
 | |
| 		}
 | |
| 		switch {
 | |
| 		case prevSample.H == nil && curSample.H == nil:
 | |
| 			if curSample.F != prevSample.F && !(math.IsNaN(curSample.F) && math.IsNaN(prevSample.F)) {
 | |
| 				changes++
 | |
| 			}
 | |
| 		case prevSample.H != nil && curSample.H == nil, prevSample.H == nil && curSample.H != nil:
 | |
| 			changes++
 | |
| 		case prevSample.H != nil && curSample.H != nil:
 | |
| 			if !curSample.H.Equals(prevSample.H) {
 | |
| 				changes++
 | |
| 			}
 | |
| 		}
 | |
| 		prevSample = curSample
 | |
| 	}
 | |
| 
 | |
| 	return append(enh.Out, Sample{F: float64(changes)}), nil
 | |
| }
 | |
| 
 | |
| // label_replace function operates only on series; does not look at timestamps or values.
 | |
| func (ev *evaluator) evalLabelReplace(ctx context.Context, args parser.Expressions) (parser.Value, annotations.Annotations) {
 | |
| 	var (
 | |
| 		dst      = stringFromArg(args[1])
 | |
| 		repl     = stringFromArg(args[2])
 | |
| 		src      = stringFromArg(args[3])
 | |
| 		regexStr = stringFromArg(args[4])
 | |
| 	)
 | |
| 
 | |
| 	regex, err := regexp.Compile("^(?s:" + regexStr + ")$")
 | |
| 	if err != nil {
 | |
| 		panic(fmt.Errorf("invalid regular expression in label_replace(): %s", regexStr))
 | |
| 	}
 | |
| 	if !model.LabelName(dst).IsValid() {
 | |
| 		panic(fmt.Errorf("invalid destination label name in label_replace(): %s", dst))
 | |
| 	}
 | |
| 
 | |
| 	val, ws := ev.eval(ctx, args[0])
 | |
| 	matrix := val.(Matrix)
 | |
| 	lb := labels.NewBuilder(labels.EmptyLabels())
 | |
| 
 | |
| 	for i, el := range matrix {
 | |
| 		srcVal := el.Metric.Get(src)
 | |
| 		indexes := regex.FindStringSubmatchIndex(srcVal)
 | |
| 		if indexes != nil { // Only replace when regexp matches.
 | |
| 			res := regex.ExpandString([]byte{}, repl, srcVal, indexes)
 | |
| 			lb.Reset(el.Metric)
 | |
| 			lb.Set(dst, string(res))
 | |
| 			matrix[i].Metric = lb.Labels()
 | |
| 			if dst == model.MetricNameLabel {
 | |
| 				matrix[i].DropName = false
 | |
| 			} else {
 | |
| 				matrix[i].DropName = el.DropName
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if matrix.ContainsSameLabelset() {
 | |
| 		ev.errorf("vector cannot contain metrics with the same labelset")
 | |
| 	}
 | |
| 
 | |
| 	return matrix, ws
 | |
| }
 | |
| 
 | |
| // === Vector(s Scalar) (Vector, Annotations) ===
 | |
| func funcVector(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return append(enh.Out,
 | |
| 		Sample{
 | |
| 			Metric: labels.Labels{},
 | |
| 			F:      vals[0].(Vector)[0].F,
 | |
| 		}), nil
 | |
| }
 | |
| 
 | |
| // label_join function operates only on series; does not look at timestamps or values.
 | |
| func (ev *evaluator) evalLabelJoin(ctx context.Context, args parser.Expressions) (parser.Value, annotations.Annotations) {
 | |
| 	var (
 | |
| 		dst       = stringFromArg(args[1])
 | |
| 		sep       = stringFromArg(args[2])
 | |
| 		srcLabels = make([]string, len(args)-3)
 | |
| 	)
 | |
| 	for i := 3; i < len(args); i++ {
 | |
| 		src := stringFromArg(args[i])
 | |
| 		if !model.LabelName(src).IsValid() {
 | |
| 			panic(fmt.Errorf("invalid source label name in label_join(): %s", src))
 | |
| 		}
 | |
| 		srcLabels[i-3] = src
 | |
| 	}
 | |
| 	if !model.LabelName(dst).IsValid() {
 | |
| 		panic(fmt.Errorf("invalid destination label name in label_join(): %s", dst))
 | |
| 	}
 | |
| 
 | |
| 	val, ws := ev.eval(ctx, args[0])
 | |
| 	matrix := val.(Matrix)
 | |
| 	srcVals := make([]string, len(srcLabels))
 | |
| 	lb := labels.NewBuilder(labels.EmptyLabels())
 | |
| 
 | |
| 	for i, el := range matrix {
 | |
| 		for i, src := range srcLabels {
 | |
| 			srcVals[i] = el.Metric.Get(src)
 | |
| 		}
 | |
| 		strval := strings.Join(srcVals, sep)
 | |
| 		lb.Reset(el.Metric)
 | |
| 		lb.Set(dst, strval)
 | |
| 		matrix[i].Metric = lb.Labels()
 | |
| 
 | |
| 		if dst == model.MetricNameLabel {
 | |
| 			matrix[i].DropName = false
 | |
| 		} else {
 | |
| 			matrix[i].DropName = el.DropName
 | |
| 		}
 | |
| 	}
 | |
| 	if matrix.ContainsSameLabelset() {
 | |
| 		ev.errorf("vector cannot contain metrics with the same labelset")
 | |
| 	}
 | |
| 
 | |
| 	return matrix, ws
 | |
| }
 | |
| 
 | |
| // Common code for date related functions.
 | |
| func dateWrapper(vals []parser.Value, enh *EvalNodeHelper, f func(time.Time) float64) Vector {
 | |
| 	if len(vals) == 0 {
 | |
| 		return append(enh.Out,
 | |
| 			Sample{
 | |
| 				Metric: labels.Labels{},
 | |
| 				F:      f(time.Unix(enh.Ts/1000, 0).UTC()),
 | |
| 			})
 | |
| 	}
 | |
| 
 | |
| 	for _, el := range vals[0].(Vector) {
 | |
| 		if el.H != nil {
 | |
| 			// Ignore histogram sample.
 | |
| 			continue
 | |
| 		}
 | |
| 		t := time.Unix(int64(el.F), 0).UTC()
 | |
| 		if !enh.enableDelayedNameRemoval {
 | |
| 			el.Metric = el.Metric.DropReserved(schema.IsMetadataLabel)
 | |
| 		}
 | |
| 		enh.Out = append(enh.Out, Sample{
 | |
| 			Metric:   el.Metric,
 | |
| 			F:        f(t),
 | |
| 			DropName: true,
 | |
| 		})
 | |
| 	}
 | |
| 	return enh.Out
 | |
| }
 | |
| 
 | |
| // === days_in_month(v Vector) Scalar ===
 | |
| func funcDaysInMonth(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return dateWrapper(vals, enh, func(t time.Time) float64 {
 | |
| 		return float64(32 - time.Date(t.Year(), t.Month(), 32, 0, 0, 0, 0, time.UTC).Day())
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === day_of_month(v Vector) Scalar ===
 | |
| func funcDayOfMonth(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return dateWrapper(vals, enh, func(t time.Time) float64 {
 | |
| 		return float64(t.Day())
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === day_of_week(v Vector) Scalar ===
 | |
| func funcDayOfWeek(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return dateWrapper(vals, enh, func(t time.Time) float64 {
 | |
| 		return float64(t.Weekday())
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === day_of_year(v Vector) Scalar ===
 | |
| func funcDayOfYear(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return dateWrapper(vals, enh, func(t time.Time) float64 {
 | |
| 		return float64(t.YearDay())
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === hour(v Vector) Scalar ===
 | |
| func funcHour(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return dateWrapper(vals, enh, func(t time.Time) float64 {
 | |
| 		return float64(t.Hour())
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === minute(v Vector) Scalar ===
 | |
| func funcMinute(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return dateWrapper(vals, enh, func(t time.Time) float64 {
 | |
| 		return float64(t.Minute())
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === month(v Vector) Scalar ===
 | |
| func funcMonth(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return dateWrapper(vals, enh, func(t time.Time) float64 {
 | |
| 		return float64(t.Month())
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // === year(v Vector) Scalar ===
 | |
| func funcYear(vals []parser.Value, _ parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
 | |
| 	return dateWrapper(vals, enh, func(t time.Time) float64 {
 | |
| 		return float64(t.Year())
 | |
| 	}), nil
 | |
| }
 | |
| 
 | |
| // FunctionCalls is a list of all functions supported by PromQL, including their types.
 | |
| var FunctionCalls = map[string]FunctionCall{
 | |
| 	"abs":                          funcAbs,
 | |
| 	"absent":                       funcAbsent,
 | |
| 	"absent_over_time":             funcAbsentOverTime,
 | |
| 	"acos":                         funcAcos,
 | |
| 	"acosh":                        funcAcosh,
 | |
| 	"asin":                         funcAsin,
 | |
| 	"asinh":                        funcAsinh,
 | |
| 	"atan":                         funcAtan,
 | |
| 	"atanh":                        funcAtanh,
 | |
| 	"avg_over_time":                funcAvgOverTime,
 | |
| 	"ceil":                         funcCeil,
 | |
| 	"changes":                      funcChanges,
 | |
| 	"clamp":                        funcClamp,
 | |
| 	"clamp_max":                    funcClampMax,
 | |
| 	"clamp_min":                    funcClampMin,
 | |
| 	"cos":                          funcCos,
 | |
| 	"cosh":                         funcCosh,
 | |
| 	"count_over_time":              funcCountOverTime,
 | |
| 	"days_in_month":                funcDaysInMonth,
 | |
| 	"day_of_month":                 funcDayOfMonth,
 | |
| 	"day_of_week":                  funcDayOfWeek,
 | |
| 	"day_of_year":                  funcDayOfYear,
 | |
| 	"deg":                          funcDeg,
 | |
| 	"delta":                        funcDelta,
 | |
| 	"deriv":                        funcDeriv,
 | |
| 	"exp":                          funcExp,
 | |
| 	"floor":                        funcFloor,
 | |
| 	"histogram_avg":                funcHistogramAvg,
 | |
| 	"histogram_count":              funcHistogramCount,
 | |
| 	"histogram_fraction":           funcHistogramFraction,
 | |
| 	"histogram_quantile":           funcHistogramQuantile,
 | |
| 	"histogram_sum":                funcHistogramSum,
 | |
| 	"histogram_stddev":             funcHistogramStdDev,
 | |
| 	"histogram_stdvar":             funcHistogramStdVar,
 | |
| 	"double_exponential_smoothing": funcDoubleExponentialSmoothing,
 | |
| 	"hour":                         funcHour,
 | |
| 	"idelta":                       funcIdelta,
 | |
| 	"increase":                     funcIncrease,
 | |
| 	"info":                         nil,
 | |
| 	"irate":                        funcIrate,
 | |
| 	"label_replace":                nil, // evalLabelReplace not called via this map.
 | |
| 	"label_join":                   nil, // evalLabelJoin not called via this map.
 | |
| 	"ln":                           funcLn,
 | |
| 	"log10":                        funcLog10,
 | |
| 	"log2":                         funcLog2,
 | |
| 	"last_over_time":               funcLastOverTime,
 | |
| 	"mad_over_time":                funcMadOverTime,
 | |
| 	"max_over_time":                funcMaxOverTime,
 | |
| 	"min_over_time":                funcMinOverTime,
 | |
| 	"minute":                       funcMinute,
 | |
| 	"month":                        funcMonth,
 | |
| 	"pi":                           funcPi,
 | |
| 	"predict_linear":               funcPredictLinear,
 | |
| 	"present_over_time":            funcPresentOverTime,
 | |
| 	"quantile_over_time":           funcQuantileOverTime,
 | |
| 	"rad":                          funcRad,
 | |
| 	"rate":                         funcRate,
 | |
| 	"resets":                       funcResets,
 | |
| 	"round":                        funcRound,
 | |
| 	"scalar":                       funcScalar,
 | |
| 	"sgn":                          funcSgn,
 | |
| 	"sin":                          funcSin,
 | |
| 	"sinh":                         funcSinh,
 | |
| 	"sort":                         funcSort,
 | |
| 	"sort_desc":                    funcSortDesc,
 | |
| 	"sort_by_label":                funcSortByLabel,
 | |
| 	"sort_by_label_desc":           funcSortByLabelDesc,
 | |
| 	"sqrt":                         funcSqrt,
 | |
| 	"stddev_over_time":             funcStddevOverTime,
 | |
| 	"stdvar_over_time":             funcStdvarOverTime,
 | |
| 	"sum_over_time":                funcSumOverTime,
 | |
| 	"tan":                          funcTan,
 | |
| 	"tanh":                         funcTanh,
 | |
| 	"time":                         funcTime,
 | |
| 	"timestamp":                    funcTimestamp,
 | |
| 	"vector":                       funcVector,
 | |
| 	"year":                         funcYear,
 | |
| }
 | |
| 
 | |
| // AtModifierUnsafeFunctions are the functions whose result
 | |
| // can vary if evaluation time is changed when the arguments are
 | |
| // step invariant. It also includes functions that use the timestamps
 | |
| // of the passed instant vector argument to calculate a result since
 | |
| // that can also change with change in eval time.
 | |
| var AtModifierUnsafeFunctions = map[string]struct{}{
 | |
| 	// Step invariant functions.
 | |
| 	"days_in_month": {}, "day_of_month": {}, "day_of_week": {}, "day_of_year": {},
 | |
| 	"hour": {}, "minute": {}, "month": {}, "year": {},
 | |
| 	"predict_linear": {}, "time": {},
 | |
| 	// Uses timestamp of the argument for the result,
 | |
| 	// hence unsafe to use with @ modifier.
 | |
| 	"timestamp": {},
 | |
| }
 | |
| 
 | |
| type vectorByValueHeap Vector
 | |
| 
 | |
| func (s vectorByValueHeap) Len() int {
 | |
| 	return len(s)
 | |
| }
 | |
| 
 | |
| func (s vectorByValueHeap) Less(i, j int) bool {
 | |
| 	vi, vj := s[i].F, s[j].F
 | |
| 	if math.IsNaN(vi) {
 | |
| 		return true
 | |
| 	}
 | |
| 	return vi < vj
 | |
| }
 | |
| 
 | |
| func (s vectorByValueHeap) Swap(i, j int) {
 | |
| 	s[i], s[j] = s[j], s[i]
 | |
| }
 | |
| 
 | |
| func (s *vectorByValueHeap) Push(x interface{}) {
 | |
| 	*s = append(*s, *(x.(*Sample)))
 | |
| }
 | |
| 
 | |
| func (s *vectorByValueHeap) Pop() interface{} {
 | |
| 	old := *s
 | |
| 	n := len(old)
 | |
| 	el := old[n-1]
 | |
| 	*s = old[0 : n-1]
 | |
| 	return el
 | |
| }
 | |
| 
 | |
| type vectorByReverseValueHeap Vector
 | |
| 
 | |
| func (s vectorByReverseValueHeap) Len() int {
 | |
| 	return len(s)
 | |
| }
 | |
| 
 | |
| func (s vectorByReverseValueHeap) Less(i, j int) bool {
 | |
| 	vi, vj := s[i].F, s[j].F
 | |
| 	if math.IsNaN(vi) {
 | |
| 		return true
 | |
| 	}
 | |
| 	return vi > vj
 | |
| }
 | |
| 
 | |
| func (s vectorByReverseValueHeap) Swap(i, j int) {
 | |
| 	s[i], s[j] = s[j], s[i]
 | |
| }
 | |
| 
 | |
| func (s *vectorByReverseValueHeap) Push(x interface{}) {
 | |
| 	*s = append(*s, *(x.(*Sample)))
 | |
| }
 | |
| 
 | |
| func (s *vectorByReverseValueHeap) Pop() interface{} {
 | |
| 	old := *s
 | |
| 	n := len(old)
 | |
| 	el := old[n-1]
 | |
| 	*s = old[0 : n-1]
 | |
| 	return el
 | |
| }
 | |
| 
 | |
| // createLabelsForAbsentFunction returns the labels that are uniquely and exactly matched
 | |
| // in a given expression. It is used in the absent functions.
 | |
| func createLabelsForAbsentFunction(expr parser.Expr) labels.Labels {
 | |
| 	b := labels.NewBuilder(labels.EmptyLabels())
 | |
| 
 | |
| 	var lm []*labels.Matcher
 | |
| 	switch n := expr.(type) {
 | |
| 	case *parser.VectorSelector:
 | |
| 		lm = n.LabelMatchers
 | |
| 	case *parser.MatrixSelector:
 | |
| 		lm = n.VectorSelector.(*parser.VectorSelector).LabelMatchers
 | |
| 	default:
 | |
| 		return labels.EmptyLabels()
 | |
| 	}
 | |
| 
 | |
| 	// The 'has' map implements backwards-compatibility for historic behaviour:
 | |
| 	// e.g. in `absent(x{job="a",job="b",foo="bar"})` then `job` is removed from the output.
 | |
| 	// Note this gives arguably wrong behaviour for `absent(x{job="a",job="a",foo="bar"})`.
 | |
| 	has := make(map[string]bool, len(lm))
 | |
| 	for _, ma := range lm {
 | |
| 		if ma.Name == labels.MetricName {
 | |
| 			continue
 | |
| 		}
 | |
| 		if ma.Type == labels.MatchEqual && !has[ma.Name] {
 | |
| 			b.Set(ma.Name, ma.Value)
 | |
| 			has[ma.Name] = true
 | |
| 		} else {
 | |
| 			b.Del(ma.Name)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return b.Labels()
 | |
| }
 | |
| 
 | |
| func stringFromArg(e parser.Expr) string {
 | |
| 	tmp := unwrapStepInvariantExpr(e) // Unwrap StepInvariant
 | |
| 	unwrapParenExpr(&tmp)             // Optionally unwrap ParenExpr
 | |
| 	return tmp.(*parser.StringLiteral).Val
 | |
| }
 | |
| 
 | |
| func stringSliceFromArgs(args parser.Expressions) []string {
 | |
| 	tmp := make([]string, len(args))
 | |
| 	for i := 0; i < len(args); i++ {
 | |
| 		tmp[i] = stringFromArg(args[i])
 | |
| 	}
 | |
| 	return tmp
 | |
| }
 |