Commit Graph

67 Commits

Author SHA1 Message Date
GitHub 97aa6cddf4 bazel run gazelle 2024-08-30 04:04:02 +00:00
Simon Unge 97f806282e bazel fixes
(cherry picked from commit 782823fd39)
2024-08-21 05:21:51 +00:00
Michael Klishin 436df7d34c Closes #12040
(cherry picked from commit b5961dafdc)
2024-08-17 06:38:16 +00:00
David Ansari c0bef63e2f Add SASL mechanism ANONYMOUS
## 1. Introduce new SASL mechanism ANONYMOUS

 ### What?
Introduce a new `rabbit_auth_mechanism` implementation for SASL
mechanism ANONYMOUS called `rabbit_auth_mechanism_anonymous`.

 ### Why?
As described in AMQP section 5.3.3.1, ANONYMOUS should be used when the
client doesn't need to authenticate.

Introducing a new `rabbit_auth_mechanism` consolidates and simplifies how anonymous
logins work across all RabbitMQ protocols that support SASL. This commit
therefore allows AMQP 0.9.1, AMQP 1.0, stream clients to connect out of
the box to RabbitMQ without providing any username or password.

Today's AMQP 0.9.1 and stream protocol client libs hard code RabbitMQ default credentials
`guest:guest` for example done in:
* 0215e85643/src/main/java/com/rabbitmq/client/ConnectionFactory.java (L58-L61)
* ddb7a2f068/uri.go (L31-L32)

Hard coding RabbitMQ specific default credentials in dozens of different
client libraries is an anti-pattern in my opinion.
Furthermore, there are various AMQP 1.0 and MQTT client libraries which
we do not control or maintain and which still should work out of the box
when a user is getting started with RabbitMQ (that is without
providing `guest:guest` credentials).

 ### How?
The old RabbitMQ 3.13 AMQP 1.0 plugin `default_user`
[configuration](146b4862d8/deps/rabbitmq_amqp1_0/Makefile (L6))
is replaced with the following two new `rabbit` configurations:
```
{anonymous_login_user, <<"guest">>},
{anonymous_login_pass, <<"guest">>},
```
We call it `anonymous_login_user` because this user will be used for
anonymous logins. The subsequent commit uses the same setting for
anonymous logins in MQTT. Hence, this user is orthogonal to the protocol
used when the client connects.

Setting `anonymous_login_pass` could have been left out.
This commit decides to include it because our documentation has so far
recommended:
> It is highly recommended to pre-configure a new user with a generated username and password or delete the guest user
> or at least change its password to reasonably secure generated value that won't be known to the public.

By having the new module `rabbit_auth_mechanism_anonymous` internally
authenticate with `anonymous_login_pass` instead of blindly allowing
access without any password, we protect operators that relied on the
sentence:
> or at least change its password to reasonably secure generated value that won't be known to the public

To ease the getting started experience, since RabbitMQ already deploys a
guest user with full access to the default virtual host `/`, this commit
also allows SASL mechanism ANONYMOUS in `rabbit` setting `auth_mechanisms`.

In production, operators should disable SASL mechanism ANONYMOUS by
setting `anonymous_login_user` to `none` (or by removing ANONYMOUS from
the `auth_mechanisms` setting. This will be documented separately.
Even if operators forget or don't read the docs, this new ANONYMOUS
mechanism won't do any harm because it relies on the default user name
`guest` and password `guest`, which is recommended against in
production, and who by default can only connect from the local host.

 ## 2. Require SASL security layer in AMQP 1.0

 ### What?
An AMQP 1.0 client must use the SASL security layer.

 ### Why?
This is in line with the mandatory usage of SASL in AMQP 0.9.1 and
RabbitMQ stream protocol.
Since (presumably) any AMQP 1.0 client knows how to authenticate with a
username and password using SASL mechanism PLAIN, any AMQP 1.0 client
also (presumably) implements the trivial SASL mechanism ANONYMOUS.

Skipping SASL is not recommended in production anyway.
By requiring SASL, configuration for operators becomes easier.
Following the principle of least surprise, when an an operator
configures `auth_mechanisms` to exclude `ANONYMOUS`, anonymous logins
will be prohibited in SASL and also by disallowing skipping the SASL
layer.

 ### How?
This commit implements AMQP 1.0 figure 2.13.

A follow-up commit needs to be pushed to `v3.13.x` which will use SASL
mechanism `anon` instead of `none` in the Erlang AMQP 1.0 client
such that AMQP 1.0 shovels running on 3.13 can connect to 4.0 RabbitMQ nodes.

(cherry picked from commit d46f07c0a4)
2024-08-15 17:14:02 +00:00
Karl Nilsson ba2388b465 Quorum queues v4 (#10637)
This commit contains the following new quorum queue features:

* Fair share high/low priorities
* SAC consumers honour consumer priorities
* Credited consumer refactoring to meet AMQP requirements.
* Use checkpoints feature to reduce memory use for queues with long backlogs
 * Consumer cancel option that immediately removes consumer and returns all pending messages.
 * More compact commands of the most common commands such as enqueue, settle and credit
 * Correctly track the delivery-count to be compatible with the AMQP spec
 * Support the "modified" AMQP 1.0 outcome better.

Commits:

* Quorum queues v4 scaffolding.

Create the new version but not including any changes yet.

QQ: force delete followers after leader has terminated.

Also try a longer sleep for mqtt_shared_SUITE so that the
delete operation stands a chance to time out and move on
to the forced deletion stage.

In some mixed machine version scenarios some followers will never
apply the poison pill command so we may as well force delete them
just in case.

QQ: skip test in amqp_client that cannot pass with mixed machine versions

QQ: remove dead code

Code relating to prior machine versions and state conversions.

rabbit_fifo_prop_SUITE fixes

* QQ: add v4 ff and new more compact enqueue command.

Also update rabbit_fifo_* suites to test more relevant code versions
where applicable.

QQ: always use the updated credit mode format

QQv4: use more compact consumer reference in settle, credit, return

This introudces a new type: consumer_key() which is either the consumer_id
or the raft index the checkout was processed at. If the consumer is
using one of the updated credit spec formats rabbit_fifo will use the
raft index as the primary key for the consumer such that the rabbit
fifo client can then use the more space efficient integer index
instead of the full consumer id in subsequent commands.

There is compatibility code to still accept the consumer id in
settle, return, discard and credit commands but this is slighlyt
slower and of course less space efficient.

The old form will be used in cases where the fifo client may have
already remove the local consumer state (as happens after a cancel).

Lots of test refactorings of the rabbit_fifo_SUITE to begin to use
the new forms.

* More test refactoring and new API fixes

rabbit_fifo_prop_SUITE refactoring and other fixes.

* First pass SAC consumer priority implementation.

Single active consumers will be activated if they have a higher priority
than the currently active consumer. if the currently active consumer
has pending messages, no further messages will be assigned to the
consumer and the activation of the new consumer will happen once
all pending messages are settled. This is to ensure processing order.

Consumers with the same priority will internally be ordered to
favour those with credit then those that attached first.

QQ: add SAC consumer priority integration tests

QQ: add check for ff in tests

* QQ: add new consumer cancel option: 'remove'

This option immediately removes and returns all messages for a
consumer instead of the softer 'cancel' option which keeps the
consumer around until all pending messages have been either
settled or returned.

This involves a change to the rabbit_queue_type:cancel/5 API
to rabbit_queue_type:cancel/3.

* QQ: capture checked out time for each consumer message.

This will form the basis for queue initiated consumer timeouts.

* QQ: Refactor to use the new ra_machine:handle_aux/5 API

Instead of the old ra_machine:handle_aux/6 callback.

* QQ hi/lo priority queue

* QQ: Avoid using mc:size/1 inside rabbit_fifo

As we dont want to depend on external functions for things that may
change the state of the queue.

* QQ bug fix: Maintain order when returning multiple

Prior to this commit, quorum queues requeued messages in an undefined
order, which is wrong.

This commit fixes this bug and requeues messages always in the order as
nacked / rejected / released by the client.

We ensure that order of requeues is deterministic from the client's
point of view and doesn't depend on whether the quorum queue soft limit
was exceeded temporarily.
So, even when rabbit_fifo_client batches requeues, the order as nacked
by the client is still maintained.

* Simplify

* Add rabbit_quorum_queue:file_handle* functions back.

For backwards compat.

* dialyzer fix

* dynamic_qq_SUITE: avoid mixed versions failure.

* QQ: track number of requeues for message.

To be able to calculate the correct value for the AMQP delivery_count
header we need to be able to distinguish between messages that were
"released" or returned in QQ speak and those that were returned
due to errors such as channel termination.

This commit implement such tracking as well as the calculation
of a new mc annotations `delivery_count` that AMQP makes use
of to set the header value accordingly.

* Use QQ consumer removal when AMQP client detaches

This enables us to unskip some AMQP tests.

* Use AMQP address v2 in fsharp-tests

* QQ: track number of requeues for message.

To be able to calculate the correct value for the AMQP delivery_count
header we need to be able to distinguish between messages that were
"released" or returned in QQ speak and those that were returned
due to errors such as channel termination.

This commit implement such tracking as well as the calculation
of a new mc annotations `delivery_count` that AMQP makes use
of to set the header value accordingly.

* rabbit_fifo: Use Ra checkpoints

* quorum queues: Use a custom interval for checkpoints

* rabbit_fifo_SUITE: List actual effects in ?ASSERT_EFF failure

* QQ: Checkpoints modifications

* fixes

* QQ: emit release cursors on tick for followers and leaders

else followers could end up holding on to segments a bit longer
after traffic stops.

* Support draining a QQ SAC waiting consumer

By issuing drain=true, the client says "either send a transfer or a flow frame".
Since there are no messages to send to an inactive consumer, the sending
queue should advance the delivery-count consuming all link-credit and send
a credit_reply with drain=true to the session proc which causes the session
proc to send a flow frame to the client.

* Extract applying #credit{} cmd into 2 functions

This commit is only refactoring and doesn't change any behaviour.

* Fix default priority level

Prior to this commit, when a message didn't have a priority level set,
it got enqueued as high prio.

This is wrong because the default priority is 4 and
"for example, if 2 distinct priorities are implemented,
then levels 0 to 4 are equivalent, and levels 5 to 9 are equivalent
and levels 4 and 5 are distinct."
Hence, by default a message without priority set, must be enqueued as
low prio.

* bazel run gazelle

* Avoid deprecated time unit

* Fix aux_test

* Delete dead code

* Fix rabbit_fifo_q:get_lowest_index/1

* Delete unused normalize functions

* Generate less garbage

* Add integration test for QQ SAC with consumer priority

* Improve readability

* Change modified outcome behaviour

With the new quorum queue v4 improvements where a requeue counter was
added in addition to the quorum queue delivery counter, the following
sentence from https://github.com/rabbitmq/rabbitmq-server/pull/6292#issue-1431275848
doesn't apply anymore:

> Also the case where delivery_failed=false|undefined requires the release of the
> message without incrementing the delivery_count. Again this is not something
> that our queues are able to do so again we have to reject without requeue.

Therefore, we simplify the modified outcome behaviour:
RabbitMQ will from now on only discard the message if the modified's
undeliverable-here field is true.

* Introduce single feature flag rabbitmq_4.0.0

 ## What?

Merge all feature flags introduced in RabbitMQ 4.0.0 into a single
feature flag called rabbitmq_4.0.0.

 ## Why?

1. This fixes the crash in
https://github.com/rabbitmq/rabbitmq-server/pull/10637#discussion_r1681002352
2. It's better user experience.

* QQ: expose priority metrics in UI

* Enable skipped test after rebasing onto main

* QQ: add new command "modify" to better handle AMQP modified outcomes.

This new command can be used to annotate returned or rejected messages.

This commit also retains the delivery-count across dead letter boundaries
such that the AMQP header delivery-count field can now include _all_ failed
deliver attempts since the message was originally received.

Internally the quorum queue has moved it's delivery_count header to
only track the AMQP protocol delivery attempts and now introduces
a new acquired_count to track all message acquisitions by consumers.

* Type tweaks and naming

* Add test for modified outcome with classic queue

* Add test routing on message-annotations in modified outcome

* Skip tests in mixed version tests

Skip tests in mixed version tests because feature flag
rabbitmq_4.0.0 is needed for the new #modify{} Ra command
being sent to quorum queues.

---------

Co-authored-by: David Ansari <david.ansari@gmx.de>
Co-authored-by: Michael Davis <mcarsondavis@gmail.com>
(cherry picked from commit 194d4ba2f5)
2024-08-08 11:52:40 +02:00
Michael Klishin 009c1374d6 Rework shovel_prometheus and federation_prometheus plugins
to structure them like applications.

This updates Bazel files but not yet Make ones.

(cherry picked from commit ed7e79cf92)
2024-08-08 05:58:47 +00:00
Simon Unge edc8be2ba5 Move shovel prometheus to its own plugin
(cherry picked from commit 2766122836)
2024-08-08 05:58:47 +00:00
Simon Unge 876f57ab94 Add dynamic and static promethues metric gauge
(cherry picked from commit 4c44ebd8eb)
2024-08-03 07:27:45 +00:00
mergify[bot] f1e4eb6fb9
Deprecate queue-master-locator (#11565) (#11699)
* Deprecate queue-master-locator

This should not be a breaking change - all validation should still pass
* CQs can now use `queue-leader-locator`
* `queue-leader-locator` takes precedence over `queue-master-locator` if both are used
* regardless of which name is used, effectively there are only two  values: `client-local` (default) or `balanced`
* other values (`min-masters`, `random`, `least-leaders`) are mapped to `balanced`
* Management UI no longer shows `master-locator` fields when declaring a queue/policy, but such arguments can still be used manually (unless not permitted)
* exclusive queues are always declared locally, as before

(cherry picked from commit f398892bda)

Co-authored-by: Michal Kuratczyk <michal.kuratczyk@broadcom.com>
2024-07-12 14:14:44 +02:00
Jean-Sébastien Pédron e9da930f59
Bump Khepri from 0.13.0 to 0.14.0
Release notes:
https://github.com/rabbitmq/khepri/releases/tag/v0.14.0

While here, bump khepri_mnesia_migration from 0.4.0 to 0.5.0 as well.
2024-07-10 16:07:43 -04:00
David Ansari 50116f0927 Require MQTT feature flags in 4.0
Require all MQTT feature flags and remove their compatibility code:
* delete_ra_cluster_mqtt_node
* rabbit_mqtt_qos0_queue
* mqtt_v5

These feature flags were introduced in or before 3.13.0.
2024-07-10 10:27:59 +02:00
David Ansari 7b18bd7a81 Enforce percent encoding
Partially copy file
https://github.com/ninenines/cowlib/blob/optimise-urldecode/src/cow_uri.erl
We use this copy because:
1. uri_string:unquote/1 is lax: It doesn't validate that characters that are
   required to be percent encoded are indeed percent encoded. In RabbitMQ,
   we want to enforce that proper percent encoding is done by AMQP clients.
2. uri_string:unquote/1 and cow_uri:urldecode/1 in cowlib v2.13.0 are both
   slow because they allocate a new binary for the common case where no
   character was percent encoded.
When a new cowlib version is released, we should make app rabbit depend on
app cowlib calling cow_uri:urldecode/1 and delete this file (rabbit_uri.erl).
2024-07-03 17:01:51 +02:00
David Ansari 0de9591050 Use different AMQP address format for v1 and v2
to distinguish between v1 and v2 address formats.

Previously, v1 and v2 address formats overlapped and behaved differently
for example for:
```
/queue/:queue
/exchange/:exchange
```

This PR changes the v2 format to:
```
/e/:exchange/:routing-key
/e/:exchange
/q/:queue
```
to distinguish between v1 and v2 addresses.

This allows to call `rabbit_deprecated_features:is_permitted(amqp_address_v1)`
only if we know that the user requests address format v1.

Note that `rabbit_deprecated_features:is_permitted/1` should only
be called when the old feature is actually used.

Use percent encoding / decoding for address URI format v2.
This allows to use any UTF-8 encoded characters including slashes (`/`)
in routing keys, exchange names, and queue names and is more future
safe.
2024-07-03 16:36:03 +02:00
Loïc Hoguin 18f8ee1457
Merge pull request #11549 from rabbitmq/loic-make-cleanups
Various make cleanup/consolidation
2024-06-27 11:42:24 +02:00
Loïc Hoguin a64d1e67fc
Remove looking_glass
It has largely been superseded by `perf`. It is no longer
generally useful. It can always be added to BUILD_DEPS for
the rare cases it is needed, or installed locally and
pointed to by setting its path to ERL_LIBS.
2024-06-26 09:56:46 +02:00
Loïc Hoguin 5c8366f753
Remove file_handle_cache_stats module
The stats were not removed from management agent, instead
they are hardcoded to zero in the agent itself.
2024-06-24 12:07:51 +02:00
Loïc Hoguin 1ca46f1c63
CQ: Remove rabbit_memory_monitor and RAM durations
CQs have not used RAM durations for some time, following
the introduction of v2.
2024-06-20 15:19:51 +02:00
Loïc Hoguin 41ce4da5ca
CQ: Remove ability to change shared store index module
It will always use the ETS index. This change lets us
do optimisations that would otherwise not be possible,
including 81b2c39834953d9e1bd28938b7a6e472498fdf13.

A small functional change is included in this commit:
we now always use ets:update_counter to update the
ref_count, instead of a mix of update_{counter,fields}.

When upgrading to 4.0, the index will be rebuilt for
all users that were using a custom index module.
2024-06-14 11:52:03 +02:00
Karl Nilsson cca64e8ed6 Add new local random exchange type.
This exchange type will only bind classic queues and will only return
routes for queues that are local to the publishing connection. If more than
one queue is bound it will make a random choice of the locally bound queues.

This exchange type is suitable as a component in systems that run
highly available low-latency RPC workloads.

Co-authored-by: Marcial Rosales <mrosales@pivotal.io>
2024-06-12 17:16:45 +01:00
Michael Klishin 37778fd934 Periodically reconcile virtual host processes
for up to 10 times.

When a cluster is formed from scratch and a virtual
host is declared in the process (can be via
definitions, or plugins, or any other way),
that virtual host's process tree will be started
on all reachable cluster nodes at that moment
in time.

However, this can be just a subset of all nodes
expected to join the cluster.

The most effective solution is to run this
reconciliation process on a timer for up to
5 minutes by default. This matches how long
some other parts of RabbitMQ (3.x) expect
cluster formation to take, at most.

Per discussion with @dcorbacho @mkuratczyk.
2024-06-06 21:21:26 -04:00
Simon Unge 80f3a5d2dd Remove mirror modules 2024-06-05 18:22:42 +00:00
Michal Kuratczyk ad06ad2552
bazel run gazelle-update-repos -- hex.pm/jose@1.11.10 2024-06-03 08:51:39 +02:00
Michal Kuratczyk cfa3de4b2b
Remove unused imports (thanks elp!) 2024-05-23 16:36:08 +02:00
GitHub 46565f4dea bazel run gazelle 2024-05-17 09:24:33 +00:00
David Ansari e8e9ef32cb Delete unused module rabbit_msg_record 2024-05-02 07:56:00 +00:00
Karl Nilsson 5b2da75b5e Ra 2.10.0
This Ra release contains a number of fixes and improvements including:

* Much improved resiliency when Ra infrastructure such as the WAL or
segment writer encounters unexpected errors during disk operations.

It also includes the following features that are RabbitMQ does not
yet make use of (but will in the near future).

* Checkpoints: allow non truncating snapshots to be written
to allow faster recovery of quorum queues with long backlogs for example.
* Server recovery strategy configuration: allow dynamically started
ra servers to be optionally restarted.
* New handle_aux/5 callback with a better and safer API
2024-04-29 11:41:57 +01:00
David Ansari b0260cf4b3 Avoid creation of binaries in AMQP 1.0 generator
When generating iodata() in the AMQP 1.0 generator, prefer integers over
binaries.

Rename functions and variable names to better reflect the AMQP 1.0 spec
instead of using AMQP 0.9.1 wording.
2024-04-10 17:11:34 +02:00
David Ansari 8a3f3c6f34 Enable AMQP 1.0 clients to manage topologies
## What?

* Allow AMQP 1.0 clients to dynamically create and delete RabbitMQ
  topologies (exchanges, queues, bindings).
* Provide an Erlang AMQP 1.0 client that manages topologies.

 ## Why?

Today, RabbitMQ topologies can be created via:
* [Management HTTP API](https://www.rabbitmq.com/docs/management#http-api)
  (including Management UI and
  [messaging-topology-operator](https://github.com/rabbitmq/messaging-topology-operator))
* [Definition Import](https://www.rabbitmq.com/docs/definitions#import)
* AMQP 0.9.1 clients

Up to RabbitMQ 3.13 the RabbitMQ AMQP 1.0 plugin auto creates queues
and bindings depending on the terminus [address
format](https://github.com/rabbitmq/rabbitmq-server/tree/v3.13.x/deps/rabbitmq_amqp1_0#routing-and-addressing).

Such implicit creation of topologies is limiting and obscure.
For some address formats, queues will be created, but not deleted.

Some of RabbitMQ's success is due to its flexible routing topologies
that AMQP 0.9.1 clients can create and delete dynamically.

This commit allows dynamic management of topologies for AMQP 1.0 clients.
This commit builds on top of Native AMQP 1.0 (PR #9022) and will be
available in RabbitMQ 4.0.

 ## How?

This commits adds the following management operations for AMQP 1.0 clients:
* declare queue
* delete queue
* purge queue
* bind queue to exchange
* unbind queue from exchange
* declare exchange
* delete exchange
* bind exchange to exchange
* unbind exchange from exchange

Hence, at least the AMQP 0.9.1 management operations are supported for
AMQP 1.0 clients.

In addition the operation
* get queue

is provided which - similar to `declare queue` - returns queue
information including the current leader and replicas.
This allows clients to publish or consume locally on the node that hosts
the queue.

Compared to AMQP 0.9.1 whose commands and command fields are fixed, the
new AMQP Management API is extensible: New operations and new fields can
easily be added in the future.

There are different design options how management operations could be
supported for AMQP 1.0 clients:
1. Use a special exchange type as done in https://github.com/rabbitmq/rabbitmq-management-exchange
  This has the advantage that any protocol client (e.g. also STOMP clients) could
  dynamically manage topologies. However, a special exchange type is the wrong abstraction.
2. Clients could send "special" messages with special headers that the broker interprets.

This commit decided for a variation of the 2nd option using a more
standardized way by re-using a subest of the following latest AMQP 1.0 extension
specifications:
* [AMQP Request-Response Messaging with Link Pairing Version 1.0 - Committee Specification 01](https://docs.oasis-open.org/amqp/linkpair/v1.0/cs01/linkpair-v1.0-cs01.html) (February 2021)
* [HTTP Semantics and Content over AMQP Version 1.0 - Working Draft 06](https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=65571) (July 2019)
* [AMQP Management Version 1.0 - Working Draft 16](https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=65575) (July 2019)

An important goal is to keep the interaction between AMQP 1.0 client and RabbitMQ
simple to increase usage, development and adoptability of future RabbitMQ AMQP 1.0
client library wrappers.

The AMQP 1.0 client has to create a link pair to the special `/management` node.
This allows the client to send and receive from the management node.
Similar to AMQP 0.9.1, there is no need for a reply queue since the reply
will be sent directly to the client.

Requests and responses are modelled via HTTP, but sent via AMQP using
the `HTTP Semantics and Content over AMQP` extension (henceforth `HTTP
over AMQP` extension).

This commit tries to follow the `HTTP over AMQP` extension as much as
possible but deviates where this draft spec doesn't make sense.

The projected mode §4.1 is used as opposed to tunneled mode §4.2.
A named relay `/management` is used (§6.3) where the message field `to` is the URL.

Deviations are
* §3.1 mandates that URIs are not encoded in an AMQP message.
  However, we percent encode URIs in the AMQP message. Otherwise there
  is for example no way to distinguish a `/` in a queue name from the
  URI path separator `/`.
* §4.1.4 mandates a data section. This commit uses an amqp-value section
  as it's a better fit given that the content is AMQP encoded data.

Using an HTTP API allows for a common well understood interface and future extensibility.
Instead of re-using the current RabbitMQ HTTP API, this commit uses a
new HTTP API (let's call it v2) which could be used as a future API for
plain HTTP clients.

 ### HTTP API v1

The current HTTP API (let's call it v1) is **not** used since v1
comes with a couple of weaknesses:

1. Deep level of nesting becomes confusing and difficult to manage.

Examples of deep nesting in v1:
```
/api/bindings/vhost/e/source/e/destination/props
/api/bindings/vhost/e/exchange/q/queue/props
```

2. Redundant endpoints returning the same resources

v1 has 9 endpoints to list binding(s):
```
/api/exchanges/vhost/name/bindings/source
/api/exchanges/vhost/name/bindings/destination
/api/queues/vhost/name/bindings
/api/bindings
/api/bindings/vhost
/api/bindings/vhost/e/exchange/q/queue
/api/bindings/vhost/e/exchange/q/queue/props
/api/bindings/vhost/e/source/e/destination
/api/bindings/vhost/e/source/e/destination/props
```

3. Verbs in path names
Path names should be nouns instead.
v1 contains verbs:
```
/api/queues/vhost/name/get
/api/exchanges/vhost/name/publish
```

 ### AMQP Management extension

Only few aspects of the AMQP Management extension are used.

The central idea of the AMQP management spec is **dynamic discovery** such that broker independent AMQP 1.0
clients can discover objects, types, operations, and HTTP endpoints of specific brokers.
In fact, clients are only conformant if:
> All request addresses are dynamically discovered starting from the discovery document.
> A requesting container MUST NOT use fixed assumptions about the addressing structure of the management API.

While this is a nice and powerful idea, no AMQP 1.0 client and no AMQP 1.0 server implement the
latest AMQP 1.0 management spec from 2019, partly presumably due to its complexity.
Therefore, the idea of such dynamic discovery has failed to be implemented in practice.

The AMQP management spec mandates that the management endpoint returns a discovery document containing
broker specific collections, types, configuration, and operations including their endpoints.

The API endpoints of the AMQP management spec are therefore all designed around dynamic discovery.

For example, to create either a queue or an exchange, the client has to
```
POST /$management/entities
```
which shows that the entities collection acts as a generic factory, see section 2.2.
The server will then create the resource and reply with a location header containing a URI pointing to the resource.
For RabbitMQ, we don’t need such a generic factory to create queues or exchanges.

To list bindings for a queue Q1, the spec suggests
```
GET /$management/Queues/Q1/$management/entities
```
which again shows the generic entities endpoint as well as a `$management` endpoint under Q1 to
allow a queue to return a discovery document.
For RabbitMQ, we don’t need such generic endpoints and discovery documents.

Given we aim for our own thin RabbitMQ AMQP 1.0 client wrapper libraries which expose
the RabbitMQ model to the developer, we can directly use fixed HTTP endpoint assumptions
in our RabbitMQ specific libraries.

This is by far simpler than using the dynamic endpoints of the management spec.
Simplicity leads to higher adoption and enables more developers to write RabbitMQ AMQP 1.0 client
library wrappers.

The AMQP Management extension also suffers from deep level of nesting in paths
Examples:
```
/$management/Queues/Q1/$management/entities
/$management/Queues/Q1/Bindings/Binding1
```
as well as verbs in path names: Section 7.1.4 suggests using verbs in path names,
for example “purge”, due to the dynamic operations discovery document.

 ### HTTP API v2

This commit introduces a new HTTP API v2 following best practices.
It could serve as a future API for plain HTTP clients.

This commit and RabbitMQ 4.0 will only implement a minimal set of
HTTP API v2 endpoints and only for HTTP over AMQP.
In other words, the existing HTTP API v1 Cowboy handlers will continue to be
used for all plain HTTP requests in RabbitMQ 4.0 and will remain untouched for RabbitMQ 4.0.
Over time, after 4.0 shipped, we could ship a pure HTTP API implementation for HTTP API v2.
Hence, the new HTTP API v2 endpoints for HTTP over AMQP should be designed such that they
can be re-used in the future for a pure HTTP implementation.

The minimal set of endpoints for RabbitMQ 4.0 are:

``
GET / PUT / DELETE
/vhosts/:vhost/queues/:queue
```
read, create, delete a queue

```
DELETE
/vhosts/:vhost/queues/:queue/messages
```
purges a queue

```
GET / DELETE
/vhosts/:vhost/bindings/:binding
```
read, delete bindings
where `:binding` is a binding ID of the following path segment:
```
src=e1;dstq=q2;key=my-key;args=
```
Binding arguments `args` has an empty value by default, i.e. there are no binding arguments.
If the binding includes binding arguments, `args` will be an Erlang portable term hash
provided by the server similar to what’s provided in HTTP API v1 today.
Alternatively, we could use an arguments scheme of:
```
args=k1,utf8,v1&k2,uint,3
```
However, such a scheme leads to long URIs when there are many binding arguments.
Note that it’s perfectly fine for URI producing applications to include URI
reserved characters `=` / `;` / `,` / `$` in a path segment.

To create a binding, the client therefore needs to POST to a bindings factory URI:
```
POST
/vhosts/:vhost/bindings
```

To list all bindings between a source exchange e1 and destination exchange e2 with binding key k1:
```
GET
/vhosts/:vhost/bindings?src=e1&dste=e2&key=k1
```

This endpoint will be called by the RabbitMQ AMQP 1.0 client library to unbind a
binding with non-empty binding arguments to get the binding ID before invoking a
```
DELETE
/vhosts/:vhost/bindings/:binding
```

In future, after RabbitMQ 4.0 shipped, new API endpoints could be added.
The following is up for discussion and is only meant to show the clean and simple design of HTTP API v2.

Bindings endpoint can be queried as follows:

to list all bindings for a given source exchange e1:
```
GET
/vhosts/:vhost/bindings?src=e1
```

to list all bindings for a given destination queue q1:
```
GET
/vhosts/:vhost/bindings?dstq=q1
```

to list all bindings between a source exchange e1 and destination queue q1:
```
GET
/vhosts/:vhost/bindings?src=e1&dstq=q1
```

multiple bindings between source exchange e1 and destination queue q1 could be deleted at once as follows:
```
DELETE /vhosts/:vhost/bindings?src=e1&dstq=q1
```

GET could be supported globally across all vhosts:
```
/exchanges
/queues
/bindings
```

Publish a message:
```
POST
/vhosts/:vhost/queues/:queue/messages
```

Consume or peek a message (depending on query parameters):
```
GET
/vhosts/:vhost/queues/:queue/messages
```

Note that the AMQP 1.0 client omits the `/vhost/:vhost` path prefix.
Since an AMQP connection belongs to a single vhost, there is no need to
additionally include the vhost in every HTTP request.

Pros of HTTP API v2:

1. Low level of nesting

Queues, exchanges, bindings are top level entities directly under vhosts.
Although the HTTP API doesn’t have to reflect how resources are stored in the database,
v2 does nicely reflect the Khepri tree structure.

2. Nouns instead of verbs
HTTP API v2 is very simple to read and understand as shown by
```
POST    /vhosts/:vhost/queues/:queue/messages	to post messages, i.e. publish to a queue.
GET     /vhosts/:vhost/queues/:queue/messages	to get messages, i.e. consume or peek from a queue.
DELETE  /vhosts/:vhost/queues/:queue/messages	to delete messages, i.e. purge a queue.
```

A separate new HTTP API v2 allows us to ship only handlers for HTTP over AMQP for RabbitMQ 4.0
and therefore move faster while still keeping the option on the table to re-use the new v2 API
for pure HTTP in the future.
In contrast, re-using the HTTP API v1 for HTTP over AMQP is possible, but dirty because separate handlers
(HTTP over AMQP and pure HTTP) replying differently will be needed for the same v1 endpoints.
2024-03-28 11:36:56 +01:00
Rin Kuryloski e2a913a44a Regenerate bazel/BUILD.cowboy with gazelle
`bazel run gazelle-update-repos -- hex.pm/cowboy@2.12.0`
2024-03-26 16:01:09 +01:00
Michael Klishin f193ce1650 bazel run gazelle for #10693 2024-03-16 13:38:11 -04:00
Michael Klishin de6cff6dda
Merge pull request #10721 from rabbitmq/ik-10345-prometheus-federation-collector
Close #10345. Add prometheus_rabbitmq_federation_collector.
2024-03-14 21:50:34 -04:00
Iliia Khaprov 8925dfa916 Close #10345. Add promtheus_rabbitmq_federation_collector.
rabbitmq_federation_links gauge metric with status lable.
2024-03-14 09:29:01 +01:00
Loïc Hoguin adda48184d
Remove rabbit_msg_file from Bazel files 2024-03-11 13:17:16 +01:00
David Ansari fae3a482a5 Bump ActiveMQ to 5.18.3
Remove bean `logQuery` as described in
https://github.com/spring-attic/spring-native/issues/1708#issuecomment-1384669898
to avoid ActiveMQ start up failure with reason
```
java.lang.ClassNotFoundException: io.fabric8.insight.log.log4j.Log4jLogQuery
```
2024-02-28 14:15:20 +01:00
David Ansari b0142287c7 Protect receiving app from being overloaded
What?

Protect receiving application from being overloaded with new messages
while still processing existing messages if the auto credit renewal
feature of the Erlang AMQP 1.0 client library is used.

This feature can therefore be thought of as a prefetch window equivalent
in AMQP 0.9.1 or MQTT 5.0 property Receive Maximum.

How?

The credit auto renewal feature in RabbitMQ 3.x was wrongly implemented.
This commit takes the same approach as done in the server:
The incoming_unsettled map is hold in the link instead of in the session
to accurately and quickly determine the number of unsettled messages for
a receiving link.

The amqp10_client lib will grant more credits to the sender when the sum
of remaining link credits and number of unsettled deliveries falls below
the threshold RenewWhenBelow.

This avoids maintaning additional state like the `link_credit_unsettled`
or an alternative delivery_count_settled sequence number which is more
complex to implement correctly.

This commit breaks the amqp10_client_session:disposition/6 API:
This commit forces the client application to only range settle for a
given link, i.e. not across multiple links on a given session at once.
The latter is allowed according to the AMQP spec.
2024-02-28 14:15:20 +01:00
David Ansari 8cb313d5a1 Support AMQP 1.0 natively
## What

Similar to Native MQTT in #5895, this commits implements Native AMQP 1.0.
By "native", we mean do not proxy via AMQP 0.9.1 anymore.

  ## Why

Native AMQP 1.0 comes with the following major benefits:
1. Similar to Native MQTT, this commit provides better throughput, latency,
   scalability, and resource usage for AMQP 1.0.
   See https://blog.rabbitmq.com/posts/2023/03/native-mqtt for native MQTT improvements.
   See further below for some benchmarks.
2. Since AMQP 1.0 is not limited anymore by the AMQP 0.9.1 protocol,
   this commit allows implementing more AMQP 1.0 features in the future.
   Some features are already implemented in this commit (see next section).
3. Simpler, better understandable, and more maintainable code.

Native AMQP 1.0 as implemented in this commit has the
following major benefits compared to AMQP 0.9.1:
4. Memory and disk alarms will only stop accepting incoming TRANSFER frames.
   New connections can still be created to consume from RabbitMQ to empty queues.
5. Due to 4. no need anymore for separate connections for publishers and
   consumers as we currently recommended for AMQP 0.9.1. which potentially
   halves the number of physical TCP connections.
6. When a single connection sends to multiple target queues, a single
   slow target queue won't block the entire connection.
   Publisher can still send data quickly to all other target queues.
7. A publisher can request whether it wants publisher confirmation on a per-message basis.
   In AMQP 0.9.1 publisher confirms are configured per channel only.
8. Consumers can change their "prefetch count" dynamically which isn't
   possible in our AMQP 0.9.1 implementation. See #10174
9. AMQP 1.0 is an extensible protocol

This commit also fixes dozens of bugs present in the AMQP 1.0 plugin in
RabbitMQ 3.x - most of which cannot be backported due to the complexity
and limitations of the old 3.x implementation.

This commit contains breaking changes and is therefore targeted for RabbitMQ 4.0.

 ## Implementation details

1. Breaking change: With Native AMQP, the behaviour of
```
Convert AMQP 0.9.1 message headers to application properties for an AMQP 1.0 consumer
amqp1_0.convert_amqp091_headers_to_app_props = false | true (default false)
Convert AMQP 1.0 Application Properties to AMQP 0.9.1 headers
amqp1_0.convert_app_props_to_amqp091_headers = false | true (default false)
```
will break because we always convert according to the message container conversions.
For example, AMQP 0.9.1 x-headers will go into message-annotations instead of application properties.
Also, `false` won’t be respected since we always convert the headers with message containers.

2. Remove rabbit_queue_collector

rabbit_queue_collector is responsible for synchronously deleting
exclusive queues. Since the AMQP 1.0 plugin never creates exclusive
queues, rabbit_queue_collector doesn't need to be started in the first
place. This will save 1 Erlang process per AMQP 1.0 connection.

3. 7 processes per connection + 1 process per session in this commit instead of
   7 processes per connection + 15 processes per session in 3.x
Supervision hierarchy got re-designed.

4. Use 1 writer process per AMQP 1.0 connection
AMQP 0.9.1 uses a separate rabbit_writer Erlang process per AMQP 0.9.1 channel.
Prior to this commit, AMQP 1.0 used a separate rabbit_amqp1_0_writer process per AMQP 1.0 session.
Advantage of single writer proc per session (prior to this commit):
* High parallelism for serialising packets if multiple sessions within
  a connection write heavily at the same time.

This commit uses a single writer process per AMQP 1.0 connection that is
shared across all AMQP 1.0 sessions.
Advantages of single writer proc per connection (this commit):
* Lower memory usage with hundreds of thousands of AMQP 1.0 sessions
* Less TCP and IP header overhead given that the single writer process
  can accumulate across all sessions bytes before flushing the socket.

In other words, this commit decides that a reader / writer process pair
per AMQP 1.0 connection is good enough for bi-directional TRANSFER flows.
Having a writer per session is too heavy.
We still ensure high throughput by having separate reader, writer, and
session processes.

5. Transform rabbit_amqp1_0_writer into gen_server
Why:
Prior to this commit, when clicking on the AMQP 1.0 writer process in
observer, the process crashed.
Instead of handling all these debug messages of the sys module, it's better
to implement a gen_server.
There is no advantage of using a special OTP process over gen_server
for the AMQP 1.0 writer.
gen_server also provides cleaner format status output.

How:
Message callbacks return a timeout of 0.
After all messages in the inbox are processed, the timeout message is
handled by flushing any pending bytes.

6. Remove stats timer from writer
AMQP 1.0 connections haven't emitted any stats previously.

7. When there are contiguous queue confirmations in the session process
mailbox, batch them. When the confirmations are sent to the publisher, a
single DISPOSITION frame is sent for contiguously confirmed delivery
IDs.
This approach should be good enough. However it's sub optimal in
scenarios where contiguous delivery IDs that need confirmations are rare,
for example:
* There are multiple links in the session with different sender
  settlement modes and sender publishes across these links interleaved.
* sender settlement mode is mixed and sender publishes interleaved settled
  and unsettled TRANSFERs.

8. Introduce credit API v2
Why:
The AMQP 0.9.1 credit extension which is to be removed in 4.0 was poorly
designed since basic.credit is a synchronous call into the queue process
blocking the entire AMQP 1.0 session process.

How:
Change the interactions between queue clients and queue server
implementations:
* Clients only request a credit reply if the FLOW's `echo` field is set
* Include all link flow control state held by the queue process into a
  new credit_reply queue event:
  * `available` after the queue sends any deliveries
  * `link-credit` after the queue sends any deliveries
  * `drain` which allows us to combine the old queue events
    send_credit_reply and send_drained into a single new queue event
    credit_reply.
* Include the consumer tag into the credit_reply queue event such that
  the AMQP 1.0 session process can process any credit replies
  asynchronously.

Link flow control state `delivery-count` also moves to the queue processes.

The new interactions are hidden behind feature flag credit_api_v2 to
allow for rolling upgrades from 3.13 to 4.0.

9. Use serial number arithmetic in quorum queues and session process.

10. Completely bypass the rabbit_limiter module for AMQP 1.0
flow control. The goal is to eventually remove the rabbit_limiter module
in 4.0 since AMQP 0.9.1 global QoS will be unsupported in 4.0. This
commit lifts the AMQP 1.0 link flow control logic out of rabbit_limiter
into rabbit_queue_consumers.

11. Fix credit bug for streams:
AMQP 1.0 settlements shouldn't top up link credit,
only FLOW frames should top up link credit.

12. Allow sender settle mode unsettled for streams
since AMQP 1.0 acknowledgements to streams are no-ops (currently).

13. Fix AMQP 1.0 client bugs
Auto renewing credits should not be related to settling TRANSFERs.
Remove field link_credit_unsettled as it was wrong and confusing.
Prior to this commit auto renewal did not work when the sender uses
sender settlement mode settled.

14. Fix AMQP 1.0 client bugs
The wrong outdated Link was passed to function auto_flow/2

15. Use osiris chunk iterator
Only hold messages of uncompressed sub batches in memory if consumer
doesn't have sufficient credits.
Compressed sub batches are skipped for non Stream protocol consumers.

16. Fix incoming link flow control
Always use confirms between AMQP 1.0 queue clients and queue servers.
As already done internally by rabbit_fifo_client and
rabbit_stream_queue, use confirms for classic queues as well.

17. Include link handle into correlation when publishing messages to target queues
such that session process can correlate confirms from target queues to
incoming links.

18. Only grant more credits to publishers if publisher hasn't sufficient credits
anymore and there are not too many unconfirmed messages on the link.

19. Completely ignore `block` and `unblock` queue actions and RabbitMQ credit flow
between classic queue process and session process.

20. Link flow control is independent between links.
A client can refer to a queue or to an exchange with multiple
dynamically added target queues. Multiple incoming links can also fan
in to the same queue. However the link topology looks like, this
commit ensures that each link is only granted more credits if that link
isn't overloaded.

21. A connection or a session can send to many different queues.
In AMQP 0.9.1, a single slow queue will lead to the entire channel, and
then entire connection being blocked.
This commit makes sure that a single slow queue from one link won't slow
down sending on other links.
For example, having link A sending to a local classic queue and
link B sending to 5 replica quorum queue, link B will naturally
grant credits slower than link A. So, despite the quorum queue being
slower in confirming messages, the same AMQP 1.0 connection and session
can still pump data very fast into the classic queue.

22. If cluster wide memory or disk alarm occurs.
Each session sends a FLOW with incoming-window to 0 to sending client.
If sending clients don’t obey, force disconnect the client.

If cluster wide memory alarm clears:
Each session resumes with a FLOW defaulting to initial incoming-window.

23. All operations apart of publishing TRANSFERS to RabbitMQ can continue during cluster wide alarms,
specifically, attaching consumers and consuming, i.e. emptying queues.
There is no need for separate AMQP 1.0 connections for publishers and consumers as recommended in our AMQP 0.9.1 implementation.

24. Flow control summary:
* If queue becomes bottleneck, that’s solved by slowing down individual sending links (AMQP 1.0 link flow control).
* If session becomes bottleneck (more unlikely), that’s solved by AMQP 1.0 session flow control.
* If connection becomes bottleneck, it naturally won’t read fast enough from the socket causing TCP backpressure being applied.
Nowhere will RabbitMQ internal credit based flow control (i.e. module credit_flow) be used on the incoming AMQP 1.0 message path.

25. Register AMQP sessions
Prefer local-only pg over our custom pg_local implementation as
pg is a better process group implementation than pg_local.
pg_local was identified as bottleneck in tests where many MQTT clients were disconnected at once.

26. Start a local-only pg when Rabbit boots:
> A scope can be kept local-only by using a scope name that is unique cluster-wide, e.g. the node name:
> pg:start_link(node()).
Register AMQP 1.0 connections and sessions with pg.

In future we should remove pg_local and instead use the new local-only
pg for all registered processes such as AMQP 0.9.1 connections and channels.

27. Requeue messages if link detached
Although the spec allows to settle delivery IDs on detached links, RabbitMQ does not respect the 'closed'
field of the DETACH frame and therefore handles every DETACH frame as closed. Since the link is closed,
we expect every outstanding delivery to be requeued.
In addition to consumer cancellation, detaching a link therefore causes in flight deliveries to be requeued.
Note that this behaviour is different from merely consumer cancellation in AMQP 0.9.1:
"After a consumer is cancelled there will be no future deliveries dispatched to it. Note that there can
still be "in flight" deliveries dispatched previously. Cancelling a consumer will neither discard nor requeue them."
[https://www.rabbitmq.com/consumers.html#unsubscribing]
An AMQP receiver can first drain, and then detach to prevent "in flight" deliveries

28. Init AMQP session with BEGIN frame
Similar to how there can't be an MQTT processor without a CONNECT
frame, there can't be an AMQP session without a BEGIN frame.
This allows having strict dialyzer types for session flow control
fields (i.e. not allowing 'undefined').

29. Move serial_number to AMQP 1.0 common lib
such that it can be used by both AMQP 1.0 server and client

30. Fix AMQP client to do serial number arithmetic.

31. AMQP client: Differentiate between delivery-id and transfer-id for better
understandability.

32. Fix link flow control in classic queues
This commit fixes
```
java -jar target/perf-test.jar -ad false -f persistent -u cq -c 3000 -C 1000000 -y 0
```
followed by
```
./omq -x 0 amqp -T /queue/cq -D 1000000 --amqp-consumer-credits 2
```
Prior to this commit, (and on RabbitMQ 3.x) the consuming would halt after around
8 - 10,000 messages.

The bug was that in flight messages from classic queue process to
session process were not taken into account when topping up credit to
the classic queue process.
Fixes #2597

The solution to this bug (and a much cleaner design anyway independent of
this bug) is that queues should hold all link flow control state including
the delivery-count.

Hence, when credit API v2 is used the delivery-count will be held by the
classic queue process, quorum queue process, and stream queue client
instead of managing the delivery-count in the session.

33. The double level crediting between (a) session process and
rabbit_fifo_client, and (b) rabbit_fifo_client and rabbit_fifo was
removed. Therefore, instead of managing 3 separate delivery-counts (i. session,
ii. rabbit_fifo_client, iii. rabbit_fifo), only 1 delivery-count is used
in rabbit_fifo. This is a big simplification.

34. This commit fixes quorum queues without bumping the machine version
nor introducing new rabbit_fifo commands.

Whether credit API v2 is used is solely determined at link attachment time
depending on whether feature flag credit_api_v2 is enabled.

Even when that feature flag will be enabled later on, this link will
keep using credit API v1 until detached (or the node is shut down).

Eventually, after feature flag credit_api_v2 has been enabled and a
subsequent rolling upgrade, all links will use credit API v2.

This approach is safe and simple.

The 2 alternatives to move delivery-count from the session process to the
queue processes would have been:

i. Explicit feature flag credit_api_v2 migration function
* Can use a gen_server:call and only finish migration once all delivery-counts were migrated.
Cons:
* Extra new message format just for migration is required.
* Risky as migration will fail if a target queue doesn’t reply.

ii. Session always includes DeliveryCountSnd when crediting to the queue:
Cons:
* 2 delivery counts will be hold simultaneously in session proc and queue proc;
could be solved by deleting the session proc’s delivery-count for credit-reply
* What happens if the receiver doesn’t provide credit for a very long time? Is that a problem?

35. Support stream filtering in AMQP 1.0 (by @acogoluegnes)
Use the x-stream-filter-value message annotation
to carry the filter value in a published message.
Use the rabbitmq:stream-filter and rabbitmq:stream-match-unfiltered
filters when creating a receiver that wants to filter
out messages from a stream.

36. Remove credit extension from AMQP 0.9.1 client

37. Support maintenance mode closing AMQP 1.0 connections.

38. Remove AMQP 0.9.1 client dependency from AMQP 1.0 implementation.

39. Move AMQP 1.0 plugin to the core. AMQP 1.0 is enabled by default.
    The old rabbitmq_amqp1_0 plugin will be kept as a no-op plugin to prevent deployment
    tools from failing that execute:
```
rabbitmq-plugins enable rabbitmq_amqp1_0
rabbitmq-plugins disable rabbitmq_amqp1_0
```

40. Breaking change: Remove CLI command `rabbitmqctl list_amqp10_connections`.
Instead, list both AMQP 0.9.1 and AMQP 1.0 connections in `list_connections`:
```
rabbitmqctl list_connections protocol
Listing connections ...
protocol
{1, 0}
{0,9,1}
```

 ## Benchmarks

 ### Throughput & Latency

Setup:
* Single node Ubuntu 22.04
* Erlang 26.1.1

Start RabbitMQ:
```
make run-broker PLUGINS="rabbitmq_management rabbitmq_amqp1_0" FULL=1 RABBITMQ_SERVER_ADDITIONAL_ERL_ARGS="+S 3"
```

Predeclare durable classic queue cq1, durable quorum queue qq1, durable stream queue sq1.

Start client:
https://github.com/ssorj/quiver
https://hub.docker.com/r/ssorj/quiver/tags (digest 453a2aceda64)
```
docker run -it --rm --add-host host.docker.internal:host-gateway ssorj/quiver:latest
bash-5.1# quiver --version
quiver 0.4.0-SNAPSHOT
```

1. Classic queue
```
quiver //host.docker.internal//amq/queue/cq1 --durable --count 1m --duration 10m --body-size 12 --credit 1000
```

This commit:
```
Count ............................................. 1,000,000 messages
Duration ............................................... 73.8 seconds
Sender rate .......................................... 13,548 messages/s
Receiver rate ........................................ 13,547 messages/s
End-to-end rate ...................................... 13,547 messages/s

Latencies by percentile:

          0% ........ 0 ms       90.00% ........ 9 ms
         25% ........ 2 ms       99.00% ....... 14 ms
         50% ........ 4 ms       99.90% ....... 17 ms
        100% ....... 26 ms       99.99% ....... 24 ms
```

RabbitMQ 3.x (main branch as of 30 January 2024):
```
---------------------- Sender -----------------------  --------------------- Receiver ----------------------  --------
Time [s]      Count [m]  Rate [m/s]  CPU [%]  RSS [M]  Time [s]      Count [m]  Rate [m/s]  CPU [%]  RSS [M]  Lat [ms]
-----------------------------------------------------  -----------------------------------------------------  --------
     2.1        130,814      65,342        6     73.6       2.1          3,217       1,607        0      8.0       511
     4.1        163,580      16,367        2     74.1       4.1          3,217           0        0      8.0         0
     6.1        229,114      32,767        3     74.1       6.1          3,217           0        0      8.0         0
     8.1        261,880      16,367        2     74.1       8.1         67,874      32,296        8      8.2     7,662
    10.1        294,646      16,367        2     74.1      10.1         67,874           0        0      8.2         0
    12.1        360,180      32,734        3     74.1      12.1         67,874           0        0      8.2         0
    14.1        392,946      16,367        3     74.1      14.1         68,604         365        0      8.2    12,147
    16.1        458,480      32,734        3     74.1      16.1         68,604           0        0      8.2         0
    18.1        491,246      16,367        2     74.1      18.1         68,604           0        0      8.2         0
    20.1        556,780      32,767        4     74.1      20.1         68,604           0        0      8.2         0
    22.1        589,546      16,375        2     74.1      22.1         68,604           0        0      8.2         0
receiver timed out
    24.1        622,312      16,367        2     74.1      24.1         68,604           0        0      8.2         0
quiver:  error: PlanoProcessError: Command 'quiver-arrow receive //host.docker.internal//amq/queue/cq1 --impl qpid-proton-c --duration 10m --count 1m --rate 0 --body-size 12 --credit 1000 --transaction-size 0 --timeout 10 --durable --output /tmp/quiver-otujr23y' returned non-zero exit status 1.
Traceback (most recent call last):
  File "/usr/local/lib/quiver/python/quiver/pair.py", line 144, in run
    _plano.wait(receiver, check=True)
  File "/usr/local/lib/quiver/python/plano/main.py", line 1243, in wait
    raise PlanoProcessError(proc)
plano.main.PlanoProcessError: Command 'quiver-arrow receive //host.docker.internal//amq/queue/cq1 --impl qpid-proton-c --duration 10m --count 1m --rate 0 --body-size 12 --credit 1000 --transaction-size 0 --timeout 10 --durable --output /tmp/quiver-otujr23y' returned non-zero exit status 1.
```

2. Quorum queue:
```
quiver //host.docker.internal//amq/queue/qq1 --durable --count 1m --duration 10m --body-size 12 --credit 1000
```
This commit:
```
Count ............................................. 1,000,000 messages
Duration .............................................. 101.4 seconds
Sender rate ........................................... 9,867 messages/s
Receiver rate ......................................... 9,868 messages/s
End-to-end rate ....................................... 9,865 messages/s

Latencies by percentile:

          0% ....... 11 ms       90.00% ....... 23 ms
         25% ....... 15 ms       99.00% ....... 28 ms
         50% ....... 18 ms       99.90% ....... 33 ms
        100% ....... 49 ms       99.99% ....... 47 ms
```

RabbitMQ 3.x:
```
---------------------- Sender -----------------------  --------------------- Receiver ----------------------  --------
Time [s]      Count [m]  Rate [m/s]  CPU [%]  RSS [M]  Time [s]      Count [m]  Rate [m/s]  CPU [%]  RSS [M]  Lat [ms]
-----------------------------------------------------  -----------------------------------------------------  --------
     2.1        130,814      65,342        9     69.9       2.1         18,430       9,206        5      7.6     1,221
     4.1        163,580      16,375        5     70.2       4.1         18,867         218        0      7.6     2,168
     6.1        229,114      32,767        6     70.2       6.1         18,867           0        0      7.6         0
     8.1        294,648      32,734        7     70.2       8.1         18,867           0        0      7.6         0
    10.1        360,182      32,734        6     70.2      10.1         18,867           0        0      7.6         0
    12.1        425,716      32,767        6     70.2      12.1         18,867           0        0      7.6         0
receiver timed out
    14.1        458,482      16,367        5     70.2      14.1         18,867           0        0      7.6         0
quiver:  error: PlanoProcessError: Command 'quiver-arrow receive //host.docker.internal//amq/queue/qq1 --impl qpid-proton-c --duration 10m --count 1m --rate 0 --body-size 12 --credit 1000 --transaction-size 0 --timeout 10 --durable --output /tmp/quiver-b1gcup43' returned non-zero exit status 1.
Traceback (most recent call last):
  File "/usr/local/lib/quiver/python/quiver/pair.py", line 144, in run
    _plano.wait(receiver, check=True)
  File "/usr/local/lib/quiver/python/plano/main.py", line 1243, in wait
    raise PlanoProcessError(proc)
plano.main.PlanoProcessError: Command 'quiver-arrow receive //host.docker.internal//amq/queue/qq1 --impl qpid-proton-c --duration 10m --count 1m --rate 0 --body-size 12 --credit 1000 --transaction-size 0 --timeout 10 --durable --output /tmp/quiver-b1gcup43' returned non-zero exit status 1.
```

3. Stream:
```
quiver-arrow send //host.docker.internal//amq/queue/sq1 --durable --count 1m -d 10m --summary --verbose
```

This commit:
```
Count ............................................. 1,000,000 messages
Duration ................................................ 8.7 seconds
Message rate ........................................ 115,154 messages/s
```

RabbitMQ 3.x:
```
Count ............................................. 1,000,000 messages
Duration ............................................... 21.2 seconds
Message rate ......................................... 47,232 messages/s
```

 ### Memory usage

Start RabbitMQ:
```
ERL_MAX_PORTS=3000000 RABBITMQ_SERVER_ADDITIONAL_ERL_ARGS="+P 3000000 +S 6" make run-broker PLUGINS="rabbitmq_amqp1_0" FULL=1 RABBITMQ_CONFIG_FILE="rabbitmq.conf"
```

```
/bin/cat rabbitmq.conf

tcp_listen_options.sndbuf  = 2048
tcp_listen_options.recbuf  = 2048
vm_memory_high_watermark.relative = 0.95
vm_memory_high_watermark_paging_ratio = 0.95
loopback_users = none
```

Create 50k connections with 2 sessions per connection, i.e. 100k session in total:

```go
package main

import (
	"context"
	"log"
	"time"

	"github.com/Azure/go-amqp"
)

func main() {
	for i := 0; i < 50000; i++ {
		conn, err := amqp.Dial(context.TODO(), "amqp://nuc", &amqp.ConnOptions{SASLType: amqp.SASLTypeAnonymous()})
		if err != nil {
			log.Fatal("dialing AMQP server:", err)
		}
		_, err = conn.NewSession(context.TODO(), nil)
		if err != nil {
			log.Fatal("creating AMQP session:", err)
		}
		_, err = conn.NewSession(context.TODO(), nil)
		if err != nil {
			log.Fatal("creating AMQP session:", err)
		}
	}
	log.Println("opened all connections")
	time.Sleep(5 * time.Hour)
}
```

This commit:
```
erlang:memory().
[{total,4586376480},
 {processes,4025898504},
 {processes_used,4025871040},
 {system,560477976},
 {atom,1048841},
 {atom_used,1042841},
 {binary,233228608},
 {code,21449982},
 {ets,108560464}]

erlang:system_info(process_count).
450289
```
7 procs per connection + 1 proc per session.
(7 + 2*1) * 50,000 = 450,000 procs

RabbitMQ 3.x:
```
erlang:memory().
[{total,15168232704},
 {processes,14044779256},
 {processes_used,14044755120},
 {system,1123453448},
 {atom,1057033},
 {atom_used,1052587},
 {binary,236381264},
 {code,21790238},
 {ets,391423744}]

erlang:system_info(process_count).
1850309
```
7 procs per connection + 15 per session
(7 + 2*15) * 50,000 = 1,850,000 procs

50k connections + 100k session require
with this commit: 4.5 GB
in RabbitMQ 3.x: 15 GB

 ## Future work

1. More efficient parser and serializer
2. TODO in mc_amqp: Do not store the parsed message on disk.
3. Implement both AMQP HTTP extension and AMQP management extension to allow AMQP
clients to create RabbitMQ objects (queues, exchanges, ...).
2024-02-28 14:15:20 +01:00
GitHub 97f9311438 bazel run gazelle 2024-02-21 04:02:24 +00:00
Rin Kuryloski fc5f22b205 Clean up moduleindex.yaml by regenerating it 2024-02-20 11:11:33 +01:00
Marcial Rosales 41237fbb3b Fix gaxelle issues around oauth2 dependencies 2024-02-14 18:55:39 +01:00
Jean-Sébastien Pédron 9dcf7c322e
Revert "Merge pull request #10096 from rabbitmq/upgrade-mirroring-sup-childspec"
This reverts commit 75773e6d9b, reversing
changes made to e40367f264.
2024-02-13 13:29:16 +01:00
Marcial Rosales d827b72ce1 Create Oauth2 client 2024-02-10 20:12:04 +01:00
Michael Klishin 0c0e2ca932 An alternative to #10415, closes #10330
Per discussion in #10415, this introduces a new module,
rabbit_mgmt_nodes, which provides a couple of helpers
that can be used to implement Cowboy REST's
resource_exists/2 in the modules that return
information about cluster members.
2024-01-25 18:41:56 -05:00
Michael Klishin 1556fec127 Make 'rabbitmqctl rename_cluster_node' a no-op
This makes a command that renames cluster members
a no-op. This command is really complex under
the hood and is fundamentally incompatible
with a few key Raft-based features:

 * Khepri
 * Quorum queues
 * Streams

Because Khepri first ships in RabbitMQ 3.13,
now is the time to effectively eliminate this
command.

It will be permanently removed together with
other deprecated CLI commands in 4.0.

Per discussion with the team.

Closes #10367.
2024-01-19 11:22:16 -05:00
Michael Klishin 75773e6d9b
Merge pull request #10096 from rabbitmq/upgrade-mirroring-sup-childspec
Khepri migration: upgrade #mirrored_sup_childspec{} records for shovel & federation
2023-12-14 09:29:18 -05:00
GitHub 0a219ef95e bazel run gazelle 2023-12-14 04:35:35 +00:00
Diana Parra Corbacho 9abe1d9eae Khepri migration: upgrade #mirrored_sup_childspec{} records for shovel & federation 2023-12-13 15:03:59 -05:00
GitHub 58bdb750c6 bazel run gazelle 2023-12-13 04:02:34 +00:00
GitHub 4328cbb0c8 bazel run gazelle 2023-10-11 04:03:50 +00:00
Diana Parra Corbacho 5f0981c5a3
Allow to use Khepri database to store metadata instead of Mnesia
[Why]

Mnesia is a very powerful and convenient tool for Erlang applications:
it is a persistent disc-based database, it handles replication accross
multiple Erlang nodes and it is available out-of-the-box from the
Erlang/OTP distribution. RabbitMQ relies on Mnesia to manage all its
metadata:

* virtual hosts' properties
* intenal users
* queue, exchange and binding declarations (not queues data)
* runtime parameters and policies
* ...

Unfortunately Mnesia makes it difficult to handle network partition and,
as a consequence, the merge conflicts between Erlang nodes once the
network partition is resolved. RabbitMQ provides several partition
handling strategies but they are not bullet-proof. Users still hit
situations where it is a pain to repair a cluster following a network
partition.

[How]

@kjnilsson created Ra [1], a Raft consensus library that RabbitMQ
already uses successfully to implement quorum queues and streams for
instance. Those queues do not suffer from network partitions.

We created Khepri [2], a new persistent and replicated database engine
based on Ra and we want to use it in place of Mnesia in RabbitMQ to
solve the problems with network partitions.

This patch integrates Khepri as an experimental feature. When enabled,
RabbitMQ will store all its metadata in Khepri instead of Mnesia.

This change comes with behavior changes. While Khepri remains disabled,
you should see no changes to the behavior of RabbitMQ. If there are
changes, it is a bug. After Khepri is enabled, there are significant
changes of behavior that you should be aware of.

Because it is based on the Raft consensus algorithm, when there is a
network partition, only the cluster members that are in the partition
with at least `(Number of nodes in the cluster ÷ 2) + 1` number of nodes
can "make progress". In other words, only those nodes may write to the
Khepri database and read from the database and expect a consistent
result.

For instance in a cluster of 5 RabbitMQ nodes:
* If there are two partitions, one with 3 nodes, one with 2 nodes, only
  the group of 3 nodes will be able to write to the database.
* If there are three partitions, two with 2 nodes, one with 1 node, none
  of the group can write to the database.

Because the Khepri database will be used for all kind of metadata, it
means that RabbitMQ nodes that can't write to the database will be
unable to perform some operations. A list of operations and what to
expect is documented in the associated pull request and the RabbitMQ
website.

This requirement from Raft also affects the startup of RabbitMQ nodes in
a cluster. Indeed, at least a quorum number of nodes must be started at
once to allow nodes to become ready.

To enable Khepri, you need to enable the `khepri_db` feature flag:

    rabbitmqctl enable_feature_flag khepri_db

When the `khepri_db` feature flag is enabled, the migration code
performs the following two tasks:
1. It synchronizes the Khepri cluster membership from the Mnesia
   cluster. It uses `mnesia_to_khepri:sync_cluster_membership/1` from
   the `khepri_mnesia_migration` application [3].
2. It copies data from relevant Mnesia tables to Khepri, doing some
   conversion if necessary on the way. Again, it uses
   `mnesia_to_khepri:copy_tables/4` from `khepri_mnesia_migration` to do
   it.

This can be performed on a running standalone RabbitMQ node or cluster.
Data will be migrated from Mnesia to Khepri without any service
interruption. Note that during the migration, the performance may
decrease and the memory footprint may go up.

Because this feature flag is considered experimental, it is not enabled
by default even on a brand new RabbitMQ deployment.

More about the implementation details below:

In the past months, all accesses to Mnesia were isolated in a collection
of `rabbit_db*` modules. This is where the integration of Khepri mostly
takes place: we use a function called `rabbit_khepri:handle_fallback/1`
which selects the database and perform the query or the transaction.
Here is an example from `rabbit_db_vhost`:

* Up until RabbitMQ 3.12.x:

        get(VHostName) when is_binary(VHostName) ->
            get_in_mnesia(VHostName).

* Starting with RabbitMQ 3.13.0:

        get(VHostName) when is_binary(VHostName) ->
            rabbit_khepri:handle_fallback(
              #{mnesia => fun() -> get_in_mnesia(VHostName) end,
                khepri => fun() -> get_in_khepri(VHostName) end}).

This `rabbit_khepri:handle_fallback/1` function relies on two things:
1. the fact that the `khepri_db` feature flag is enabled, in which case
   it always executes the Khepri-based variant.
4. the ability or not to read and write to Mnesia tables otherwise.

Before the feature flag is enabled, or during the migration, the
function will try to execute the Mnesia-based variant. If it succeeds,
then it returns the result. If it fails because one or more Mnesia
tables can't be used, it restarts from scratch: it means the feature
flag is being enabled and depending on the outcome, either the
Mnesia-based variant will succeed (the feature flag couldn't be enabled)
or the feature flag will be marked as enabled and it will call the
Khepri-based variant. The meat of this function really lives in the
`khepri_mnesia_migration` application [3] and
`rabbit_khepri:handle_fallback/1` is a wrapper on top of it that knows
about the feature flag.

However, some calls to the database do not depend on the existence of
Mnesia tables, such as functions where we need to learn about the
members of a cluster. For those, we can't rely on exceptions from
Mnesia. Therefore, we just look at the state of the feature flag to
determine which database to use. There are two situations though:

* Sometimes, we need the feature flag state query to block because the
  function interested in it can't return a valid answer during the
  migration. Here is an example:

        case rabbit_khepri:is_enabled(RemoteNode) of
            true  -> can_join_using_khepri(RemoteNode);
            false -> can_join_using_mnesia(RemoteNode)
        end

* Sometimes, we need the feature flag state query to NOT block (for
  instance because it would cause a deadlock). Here is an example:

        case rabbit_khepri:get_feature_state() of
            enabled -> members_using_khepri();
            _       -> members_using_mnesia()
        end

Direct accesses to Mnesia still exists. They are limited to code that is
specific to Mnesia such as classic queue mirroring or network partitions
handling strategies.

Now, to discover the Mnesia tables to migrate and how to migrate them,
we use an Erlang module attribute called
`rabbit_mnesia_tables_to_khepri_db` which indicates a list of Mnesia
tables and an associated converter module. Here is an example in the
`rabbitmq_recent_history_exchange` plugin:

    -rabbit_mnesia_tables_to_khepri_db(
       [{?RH_TABLE, rabbit_db_rh_exchange_m2k_converter}]).

The converter module  — `rabbit_db_rh_exchange_m2k_converter` in this
example  — is is fact a "sub" converter module called but
`rabbit_db_m2k_converter`. See the documentation of a `mnesia_to_khepri`
converter module to learn more about these modules.

[1] https://github.com/rabbitmq/ra
[2] https://github.com/rabbitmq/khepri
[3] https://github.com/rabbitmq/khepri_mnesia_migration

See #7206.

Co-authored-by: Jean-Sébastien Pédron <jean-sebastien@rabbitmq.com>
Co-authored-by: Diana Parra Corbacho <dparracorbac@vmware.com>
Co-authored-by: Michael Davis <mcarsondavis@gmail.com>
2023-09-29 16:00:11 +02:00
GitHub 6a78a2bb9b bazel run gazelle 2023-09-20 04:03:13 +00:00