mirror of https://github.com/redis/redis.git
				
				
				
			LOLWUT: split the command from version-specific implementations.
This commit is contained in:
		
							parent
							
								
									411f4b4c12
								
							
						
					
					
						commit
						c560ade831
					
				| 
						 | 
				
			
			@ -144,7 +144,7 @@ endif
 | 
			
		|||
 | 
			
		||||
REDIS_SERVER_NAME=redis-server
 | 
			
		||||
REDIS_SENTINEL_NAME=redis-sentinel
 | 
			
		||||
REDIS_SERVER_OBJ=adlist.o quicklist.o ae.o anet.o dict.o server.o sds.o zmalloc.o lzf_c.o lzf_d.o pqsort.o zipmap.o sha1.o ziplist.o release.o networking.o util.o object.o db.o replication.o rdb.o t_string.o t_list.o t_set.o t_zset.o t_hash.o config.o aof.o pubsub.o multi.o debug.o sort.o intset.o syncio.o cluster.o crc16.o endianconv.o slowlog.o scripting.o bio.o rio.o rand.o memtest.o crc64.o bitops.o sentinel.o notify.o setproctitle.o blocked.o hyperloglog.o latency.o sparkline.o redis-check-rdb.o redis-check-aof.o geo.o lazyfree.o module.o evict.o expire.o geohash.o geohash_helper.o childinfo.o defrag.o siphash.o rax.o t_stream.o listpack.o localtime.o lolwut.o
 | 
			
		||||
REDIS_SERVER_OBJ=adlist.o quicklist.o ae.o anet.o dict.o server.o sds.o zmalloc.o lzf_c.o lzf_d.o pqsort.o zipmap.o sha1.o ziplist.o release.o networking.o util.o object.o db.o replication.o rdb.o t_string.o t_list.o t_set.o t_zset.o t_hash.o config.o aof.o pubsub.o multi.o debug.o sort.o intset.o syncio.o cluster.o crc16.o endianconv.o slowlog.o scripting.o bio.o rio.o rand.o memtest.o crc64.o bitops.o sentinel.o notify.o setproctitle.o blocked.o hyperloglog.o latency.o sparkline.o redis-check-rdb.o redis-check-aof.o geo.o lazyfree.o module.o evict.o expire.o geohash.o geohash_helper.o childinfo.o defrag.o siphash.o rax.o t_stream.o listpack.o localtime.o lolwut.o lolwut5.o
 | 
			
		||||
REDIS_CLI_NAME=redis-cli
 | 
			
		||||
REDIS_CLI_OBJ=anet.o adlist.o dict.o redis-cli.o zmalloc.o release.o anet.o ae.o crc64.o siphash.o crc16.o
 | 
			
		||||
REDIS_BENCHMARK_NAME=redis-benchmark
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										254
									
								
								src/lolwut.c
								
								
								
								
							
							
						
						
									
										254
									
								
								src/lolwut.c
								
								
								
								
							| 
						 | 
				
			
			@ -34,249 +34,23 @@
 | 
			
		|||
 */
 | 
			
		||||
 | 
			
		||||
#include "server.h"
 | 
			
		||||
#include <math.h>
 | 
			
		||||
 | 
			
		||||
/* This structure represents our canvas. Drawing functions will take a pointer
 | 
			
		||||
 * to a canvas to write to it. Later the canvas can be rendered to a string
 | 
			
		||||
 * suitable to be printed on the screen, using unicode Braille characters. */
 | 
			
		||||
typedef struct lwCanvas {
 | 
			
		||||
    int width;
 | 
			
		||||
    int height;
 | 
			
		||||
    char *pixels;
 | 
			
		||||
} lwCanvas;
 | 
			
		||||
void lolwut5Command(client *c);
 | 
			
		||||
 | 
			
		||||
/* Translate a group of 8 pixels (2x4 vertical rectangle) to the corresponding
 | 
			
		||||
 * braille character. The byte should correspond to the pixels arranged as
 | 
			
		||||
 * follows, where 0 is the least significant bit, and 7 the most significant
 | 
			
		||||
 * bit:
 | 
			
		||||
 *
 | 
			
		||||
 *   0 3
 | 
			
		||||
 *   1 4
 | 
			
		||||
 *   2 5
 | 
			
		||||
 *   6 7
 | 
			
		||||
 *
 | 
			
		||||
 * The corresponding utf8 encoded character is set into the three bytes
 | 
			
		||||
 * pointed by 'output'.
 | 
			
		||||
 */
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
void lwTranslatePixelsGroup(int byte, char *output) {
 | 
			
		||||
    int code = 0x2800 + byte;
 | 
			
		||||
    /* Convert to unicode. This is in the U0800-UFFFF range, so we need to
 | 
			
		||||
     * emit it like this in three bytes:
 | 
			
		||||
     * 1110xxxx 10xxxxxx 10xxxxxx. */
 | 
			
		||||
    output[0] = 0xE0 | (code >> 12);          /* 1110-xxxx */
 | 
			
		||||
    output[1] = 0x80 | ((code >> 6) & 0x3F);  /* 10-xxxxxx */
 | 
			
		||||
    output[2] = 0x80 | (code & 0x3F);         /* 10-xxxxxx */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Allocate and return a new canvas of the specified size. */
 | 
			
		||||
lwCanvas *lwCreateCanvas(int width, int height) {
 | 
			
		||||
    lwCanvas *canvas = zmalloc(sizeof(*canvas));
 | 
			
		||||
    canvas->width = width;
 | 
			
		||||
    canvas->height = height;
 | 
			
		||||
    canvas->pixels = zmalloc(width*height);
 | 
			
		||||
    memset(canvas->pixels,0,width*height);
 | 
			
		||||
    return canvas;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Free the canvas created by lwCreateCanvas(). */
 | 
			
		||||
void lwFreeCanvas(lwCanvas *canvas) {
 | 
			
		||||
    zfree(canvas->pixels);
 | 
			
		||||
    zfree(canvas);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Set a pixel to the specified color. Color is 0 or 1, where zero means no
 | 
			
		||||
 * dot will be displyed, and 1 means dot will be displayed.
 | 
			
		||||
 * Coordinates are arranged so that left-top corner is 0,0. You can write
 | 
			
		||||
 * out of the size of the canvas without issues. */
 | 
			
		||||
void lwDrawPixel(lwCanvas *canvas, int x, int y, int color) {
 | 
			
		||||
    if (x < 0 || x >= canvas->width ||
 | 
			
		||||
        y < 0 || y >= canvas->height) return;
 | 
			
		||||
    canvas->pixels[x+y*canvas->width] = color;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Return the value of the specified pixel on the canvas. */
 | 
			
		||||
int lwGetPixel(lwCanvas *canvas, int x, int y) {
 | 
			
		||||
    if (x < 0 || x >= canvas->width ||
 | 
			
		||||
        y < 0 || y >= canvas->height) return 0;
 | 
			
		||||
    return canvas->pixels[x+y*canvas->width];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Draw a line from x1,y1 to x2,y2 using the Bresenham algorithm. */
 | 
			
		||||
void lwDrawLine(lwCanvas *canvas, int x1, int y1, int x2, int y2, int color) {
 | 
			
		||||
    int dx = abs(x2-x1);
 | 
			
		||||
    int dy = abs(y2-y1);
 | 
			
		||||
    int sx = (x1 < x2) ? 1 : -1;
 | 
			
		||||
    int sy = (y1 < y2) ? 1 : -1;
 | 
			
		||||
    int err = dx-dy, e2;
 | 
			
		||||
 | 
			
		||||
    while(1) {
 | 
			
		||||
        lwDrawPixel(canvas,x1,y1,color);
 | 
			
		||||
        if (x1 == x2 && y1 == y2) break;
 | 
			
		||||
        e2 = err*2;
 | 
			
		||||
        if (e2 > -dy) {
 | 
			
		||||
            err -= dy;
 | 
			
		||||
            x1 += sx;
 | 
			
		||||
        }
 | 
			
		||||
        if (e2 < dx) {
 | 
			
		||||
            err += dx;
 | 
			
		||||
            y1 += sy;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Draw a square centered at the specified x,y coordinates, with the specified
 | 
			
		||||
 * rotation angle and size. In order to write a rotated square, we use the
 | 
			
		||||
 * trivial fact that the parametric equation:
 | 
			
		||||
 *
 | 
			
		||||
 *  x = sin(k)
 | 
			
		||||
 *  y = cos(k)
 | 
			
		||||
 *
 | 
			
		||||
 * Describes a circle for values going from 0 to 2*PI. So basically if we start
 | 
			
		||||
 * at 45 degrees, that is k = PI/4, with the first point, and then we find
 | 
			
		||||
 * the other three points incrementing K by PI/2 (90 degrees), we'll have the
 | 
			
		||||
 * points of the square. In order to rotate the square, we just start with
 | 
			
		||||
 * k = PI/4 + rotation_angle, and we are done.
 | 
			
		||||
 *
 | 
			
		||||
 * Of course the vanilla equations above will describe the square inside a
 | 
			
		||||
 * circle of radius 1, so in order to draw larger squares we'll have to
 | 
			
		||||
 * multiply the obtained coordinates, and then translate them. However this
 | 
			
		||||
 * is much simpler than implementing the abstract concept of 2D shape and then
 | 
			
		||||
 * performing the rotation/translation transformation, so for LOLWUT it's
 | 
			
		||||
 * a good approach. */
 | 
			
		||||
void lwDrawSquare(lwCanvas *canvas, int x, int y, float size, float angle) {
 | 
			
		||||
    int px[4], py[4];
 | 
			
		||||
 | 
			
		||||
    /* Adjust the desired size according to the fact that the square inscribed
 | 
			
		||||
     * into a circle of radius 1 has the side of length SQRT(2). This way
 | 
			
		||||
     * size becomes a simple multiplication factor we can use with our
 | 
			
		||||
     * coordinates to magnify them. */
 | 
			
		||||
    size /= 1.4142135623;
 | 
			
		||||
    size = round(size);
 | 
			
		||||
 | 
			
		||||
    /* Compute the four points. */
 | 
			
		||||
    float k = M_PI/4 + angle;
 | 
			
		||||
    for (int j = 0; j < 4; j++) {
 | 
			
		||||
        px[j] = round(sin(k) * size + x);
 | 
			
		||||
        py[j] = round(cos(k) * size + y);
 | 
			
		||||
        k += M_PI/2;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* Draw the square. */
 | 
			
		||||
    for (int j = 0; j < 4; j++)
 | 
			
		||||
        lwDrawLine(canvas,px[j],py[j],px[(j+1)%4],py[(j+1)%4],1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Schotter, the output of LOLWUT of Redis 5, is a computer graphic art piece
 | 
			
		||||
 * generated by Georg Nees in the 60s. It explores the relationship between
 | 
			
		||||
 * caos and order.
 | 
			
		||||
 *
 | 
			
		||||
 * The function creates the canvas itself, depending on the columns available
 | 
			
		||||
 * in the output display and the number of squares per row and per column
 | 
			
		||||
 * requested by the caller. */
 | 
			
		||||
lwCanvas *lwDrawSchotter(int console_cols, int squares_per_row, int squares_per_col) {
 | 
			
		||||
    /* Calculate the canvas size. */
 | 
			
		||||
    int canvas_width = console_cols*2;
 | 
			
		||||
    int padding = canvas_width > 4 ? 2 : 0;
 | 
			
		||||
    float square_side = (float)(canvas_width-padding*2) / squares_per_row;
 | 
			
		||||
    int canvas_height = square_side * squares_per_col + padding*2;
 | 
			
		||||
    lwCanvas *canvas = lwCreateCanvas(canvas_width, canvas_height);
 | 
			
		||||
 | 
			
		||||
    for (int y = 0; y < squares_per_col; y++) {
 | 
			
		||||
        for (int x = 0; x < squares_per_row; x++) {
 | 
			
		||||
            int sx = x * square_side + square_side/2 + padding;
 | 
			
		||||
            int sy = y * square_side + square_side/2 + padding;
 | 
			
		||||
            /* Rotate and translate randomly as we go down to lower
 | 
			
		||||
             * rows. */
 | 
			
		||||
            float angle = 0;
 | 
			
		||||
            if (y > 1) {
 | 
			
		||||
                float r1 = (float)rand() / RAND_MAX / squares_per_col * y;
 | 
			
		||||
                float r2 = (float)rand() / RAND_MAX / squares_per_col * y;
 | 
			
		||||
                float r3 = (float)rand() / RAND_MAX / squares_per_col * y;
 | 
			
		||||
                if (rand() % 2) r1 = -r1;
 | 
			
		||||
                if (rand() % 2) r2 = -r2;
 | 
			
		||||
                if (rand() % 2) r3 = -r3;
 | 
			
		||||
                angle = r1;
 | 
			
		||||
                sx += r2*square_side/3;
 | 
			
		||||
                sy += r3*square_side/3;
 | 
			
		||||
            }
 | 
			
		||||
            lwDrawSquare(canvas,sx,sy,square_side,angle);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return canvas;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Converts the canvas to an SDS string representing the UTF8 characters to
 | 
			
		||||
 * print to the terminal in order to obtain a graphical representaiton of the
 | 
			
		||||
 * logical canvas. The actual returned string will require a terminal that is
 | 
			
		||||
 * width/2 large and height/4 tall in order to hold the whole image without
 | 
			
		||||
 * overflowing or scrolling, since each Barille character is 2x4. */
 | 
			
		||||
sds lwRenderCanvas(lwCanvas *canvas) {
 | 
			
		||||
    sds text = sdsempty();
 | 
			
		||||
    for (int y = 0; y < canvas->height; y += 4) {
 | 
			
		||||
        for (int x = 0; x < canvas->width; x += 2) {
 | 
			
		||||
            /* We need to emit groups of 8 bits according to a specific
 | 
			
		||||
             * arrangement. See lwTranslatePixelsGroup() for more info. */
 | 
			
		||||
            int byte = 0;
 | 
			
		||||
            if (lwGetPixel(canvas,x,y)) byte |= (1<<0);
 | 
			
		||||
            if (lwGetPixel(canvas,x,y+1)) byte |= (1<<1);
 | 
			
		||||
            if (lwGetPixel(canvas,x,y+2)) byte |= (1<<2);
 | 
			
		||||
            if (lwGetPixel(canvas,x+1,y)) byte |= (1<<3);
 | 
			
		||||
            if (lwGetPixel(canvas,x+1,y+1)) byte |= (1<<4);
 | 
			
		||||
            if (lwGetPixel(canvas,x+1,y+2)) byte |= (1<<5);
 | 
			
		||||
            if (lwGetPixel(canvas,x,y+3)) byte |= (1<<6);
 | 
			
		||||
            if (lwGetPixel(canvas,x+1,y+3)) byte |= (1<<7);
 | 
			
		||||
            char unicode[3];
 | 
			
		||||
            lwTranslatePixelsGroup(byte,unicode);
 | 
			
		||||
            text = sdscatlen(text,unicode,3);
 | 
			
		||||
        }
 | 
			
		||||
        if (y != canvas->height-1) text = sdscatlen(text,"\n",1);
 | 
			
		||||
    }
 | 
			
		||||
    return text;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* The LOLWUT command:
 | 
			
		||||
 *
 | 
			
		||||
 * LOLWUT [terminal columns] [squares-per-row] [squares-per-col]
 | 
			
		||||
 *
 | 
			
		||||
 * By default the command uses 66 columns, 8 squares per row, 12 squares
 | 
			
		||||
 * per column.
 | 
			
		||||
 */
 | 
			
		||||
void lolwutCommand(client *c) {
 | 
			
		||||
    long cols = 66;
 | 
			
		||||
    long squares_per_row = 8;
 | 
			
		||||
    long squares_per_col = 12;
 | 
			
		||||
 | 
			
		||||
    /* Parse the optional arguments if any. */
 | 
			
		||||
    if (c->argc > 1 &&
 | 
			
		||||
        getLongFromObjectOrReply(c,c->argv[1],&cols,NULL) != C_OK)
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
    if (c->argc > 2 &&
 | 
			
		||||
        getLongFromObjectOrReply(c,c->argv[2],&squares_per_row,NULL) != C_OK)
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
    if (c->argc > 3 &&
 | 
			
		||||
        getLongFromObjectOrReply(c,c->argv[3],&squares_per_col,NULL) != C_OK)
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
    /* Limits. We want LOLWUT to be always reasonably fast and cheap to execute
 | 
			
		||||
     * so we have maximum number of columns, rows, and output resulution. */
 | 
			
		||||
    if (cols < 1) cols = 1;
 | 
			
		||||
    if (cols > 1000) cols = 1000;
 | 
			
		||||
    if (squares_per_row < 1) squares_per_row = 1;
 | 
			
		||||
    if (squares_per_row > 200) squares_per_row = 200;
 | 
			
		||||
    if (squares_per_col < 1) squares_per_col = 1;
 | 
			
		||||
    if (squares_per_col > 200) squares_per_col = 200;
 | 
			
		||||
 | 
			
		||||
    /* Generate some computer art and reply. */
 | 
			
		||||
    lwCanvas *canvas = lwDrawSchotter(cols,squares_per_row,squares_per_col);
 | 
			
		||||
    sds rendered = lwRenderCanvas(canvas);
 | 
			
		||||
    rendered = sdscat(rendered,
 | 
			
		||||
        "\nGeorg nees - schotter, plotter on paper, 1968. Redis ver. ");
 | 
			
		||||
/* The default target for LOLWUT if no matching version was found.
 | 
			
		||||
 * This is what unstable versions of Redis will display. */
 | 
			
		||||
void lolwutUnstableCommand(client *c) {
 | 
			
		||||
    sds rendered = sdsnew("Redis ver. ");
 | 
			
		||||
    rendered = sdscat(rendered,REDIS_VERSION);
 | 
			
		||||
    rendered = sdscatlen(rendered,"\n",1);
 | 
			
		||||
    addReplyBulkSds(c,rendered);
 | 
			
		||||
    lwFreeCanvas(canvas);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void lolwutCommand(client *c) {
 | 
			
		||||
    char *v = REDIS_VERSION;
 | 
			
		||||
    if ((v[0] == '5' && v[1] == '.') ||
 | 
			
		||||
        (v[0] == '4' && v[1] == '.' && v[2] == '9'))
 | 
			
		||||
        lolwut5Command(c);
 | 
			
		||||
    else
 | 
			
		||||
        lolwutUnstableCommand(c);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,282 @@
 | 
			
		|||
/*
 | 
			
		||||
 * Copyright (c) 2018, Salvatore Sanfilippo <antirez at gmail dot com>
 | 
			
		||||
 * All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * Redistribution and use in source and binary forms, with or without
 | 
			
		||||
 * modification, are permitted provided that the following conditions are met:
 | 
			
		||||
 *
 | 
			
		||||
 *   * Redistributions of source code must retain the above copyright notice,
 | 
			
		||||
 *     this list of conditions and the following disclaimer.
 | 
			
		||||
 *   * Redistributions in binary form must reproduce the above copyright
 | 
			
		||||
 *     notice, this list of conditions and the following disclaimer in the
 | 
			
		||||
 *     documentation and/or other materials provided with the distribution.
 | 
			
		||||
 *   * Neither the name of Redis nor the names of its contributors may be used
 | 
			
		||||
 *     to endorse or promote products derived from this software without
 | 
			
		||||
 *     specific prior written permission.
 | 
			
		||||
 *
 | 
			
		||||
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
			
		||||
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
			
		||||
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
			
		||||
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | 
			
		||||
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | 
			
		||||
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | 
			
		||||
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | 
			
		||||
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | 
			
		||||
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
			
		||||
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
			
		||||
 * POSSIBILITY OF SUCH DAMAGE.
 | 
			
		||||
 *
 | 
			
		||||
 * ----------------------------------------------------------------------------
 | 
			
		||||
 *
 | 
			
		||||
 * This file implements the LOLWUT command. The command should do something
 | 
			
		||||
 * fun and interesting, and should be replaced by a new implementation at
 | 
			
		||||
 * each new version of Redis.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "server.h"
 | 
			
		||||
#include <math.h>
 | 
			
		||||
 | 
			
		||||
/* This structure represents our canvas. Drawing functions will take a pointer
 | 
			
		||||
 * to a canvas to write to it. Later the canvas can be rendered to a string
 | 
			
		||||
 * suitable to be printed on the screen, using unicode Braille characters. */
 | 
			
		||||
typedef struct lwCanvas {
 | 
			
		||||
    int width;
 | 
			
		||||
    int height;
 | 
			
		||||
    char *pixels;
 | 
			
		||||
} lwCanvas;
 | 
			
		||||
 | 
			
		||||
/* Translate a group of 8 pixels (2x4 vertical rectangle) to the corresponding
 | 
			
		||||
 * braille character. The byte should correspond to the pixels arranged as
 | 
			
		||||
 * follows, where 0 is the least significant bit, and 7 the most significant
 | 
			
		||||
 * bit:
 | 
			
		||||
 *
 | 
			
		||||
 *   0 3
 | 
			
		||||
 *   1 4
 | 
			
		||||
 *   2 5
 | 
			
		||||
 *   6 7
 | 
			
		||||
 *
 | 
			
		||||
 * The corresponding utf8 encoded character is set into the three bytes
 | 
			
		||||
 * pointed by 'output'.
 | 
			
		||||
 */
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
void lwTranslatePixelsGroup(int byte, char *output) {
 | 
			
		||||
    int code = 0x2800 + byte;
 | 
			
		||||
    /* Convert to unicode. This is in the U0800-UFFFF range, so we need to
 | 
			
		||||
     * emit it like this in three bytes:
 | 
			
		||||
     * 1110xxxx 10xxxxxx 10xxxxxx. */
 | 
			
		||||
    output[0] = 0xE0 | (code >> 12);          /* 1110-xxxx */
 | 
			
		||||
    output[1] = 0x80 | ((code >> 6) & 0x3F);  /* 10-xxxxxx */
 | 
			
		||||
    output[2] = 0x80 | (code & 0x3F);         /* 10-xxxxxx */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Allocate and return a new canvas of the specified size. */
 | 
			
		||||
lwCanvas *lwCreateCanvas(int width, int height) {
 | 
			
		||||
    lwCanvas *canvas = zmalloc(sizeof(*canvas));
 | 
			
		||||
    canvas->width = width;
 | 
			
		||||
    canvas->height = height;
 | 
			
		||||
    canvas->pixels = zmalloc(width*height);
 | 
			
		||||
    memset(canvas->pixels,0,width*height);
 | 
			
		||||
    return canvas;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Free the canvas created by lwCreateCanvas(). */
 | 
			
		||||
void lwFreeCanvas(lwCanvas *canvas) {
 | 
			
		||||
    zfree(canvas->pixels);
 | 
			
		||||
    zfree(canvas);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Set a pixel to the specified color. Color is 0 or 1, where zero means no
 | 
			
		||||
 * dot will be displyed, and 1 means dot will be displayed.
 | 
			
		||||
 * Coordinates are arranged so that left-top corner is 0,0. You can write
 | 
			
		||||
 * out of the size of the canvas without issues. */
 | 
			
		||||
void lwDrawPixel(lwCanvas *canvas, int x, int y, int color) {
 | 
			
		||||
    if (x < 0 || x >= canvas->width ||
 | 
			
		||||
        y < 0 || y >= canvas->height) return;
 | 
			
		||||
    canvas->pixels[x+y*canvas->width] = color;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Return the value of the specified pixel on the canvas. */
 | 
			
		||||
int lwGetPixel(lwCanvas *canvas, int x, int y) {
 | 
			
		||||
    if (x < 0 || x >= canvas->width ||
 | 
			
		||||
        y < 0 || y >= canvas->height) return 0;
 | 
			
		||||
    return canvas->pixels[x+y*canvas->width];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Draw a line from x1,y1 to x2,y2 using the Bresenham algorithm. */
 | 
			
		||||
void lwDrawLine(lwCanvas *canvas, int x1, int y1, int x2, int y2, int color) {
 | 
			
		||||
    int dx = abs(x2-x1);
 | 
			
		||||
    int dy = abs(y2-y1);
 | 
			
		||||
    int sx = (x1 < x2) ? 1 : -1;
 | 
			
		||||
    int sy = (y1 < y2) ? 1 : -1;
 | 
			
		||||
    int err = dx-dy, e2;
 | 
			
		||||
 | 
			
		||||
    while(1) {
 | 
			
		||||
        lwDrawPixel(canvas,x1,y1,color);
 | 
			
		||||
        if (x1 == x2 && y1 == y2) break;
 | 
			
		||||
        e2 = err*2;
 | 
			
		||||
        if (e2 > -dy) {
 | 
			
		||||
            err -= dy;
 | 
			
		||||
            x1 += sx;
 | 
			
		||||
        }
 | 
			
		||||
        if (e2 < dx) {
 | 
			
		||||
            err += dx;
 | 
			
		||||
            y1 += sy;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Draw a square centered at the specified x,y coordinates, with the specified
 | 
			
		||||
 * rotation angle and size. In order to write a rotated square, we use the
 | 
			
		||||
 * trivial fact that the parametric equation:
 | 
			
		||||
 *
 | 
			
		||||
 *  x = sin(k)
 | 
			
		||||
 *  y = cos(k)
 | 
			
		||||
 *
 | 
			
		||||
 * Describes a circle for values going from 0 to 2*PI. So basically if we start
 | 
			
		||||
 * at 45 degrees, that is k = PI/4, with the first point, and then we find
 | 
			
		||||
 * the other three points incrementing K by PI/2 (90 degrees), we'll have the
 | 
			
		||||
 * points of the square. In order to rotate the square, we just start with
 | 
			
		||||
 * k = PI/4 + rotation_angle, and we are done.
 | 
			
		||||
 *
 | 
			
		||||
 * Of course the vanilla equations above will describe the square inside a
 | 
			
		||||
 * circle of radius 1, so in order to draw larger squares we'll have to
 | 
			
		||||
 * multiply the obtained coordinates, and then translate them. However this
 | 
			
		||||
 * is much simpler than implementing the abstract concept of 2D shape and then
 | 
			
		||||
 * performing the rotation/translation transformation, so for LOLWUT it's
 | 
			
		||||
 * a good approach. */
 | 
			
		||||
void lwDrawSquare(lwCanvas *canvas, int x, int y, float size, float angle) {
 | 
			
		||||
    int px[4], py[4];
 | 
			
		||||
 | 
			
		||||
    /* Adjust the desired size according to the fact that the square inscribed
 | 
			
		||||
     * into a circle of radius 1 has the side of length SQRT(2). This way
 | 
			
		||||
     * size becomes a simple multiplication factor we can use with our
 | 
			
		||||
     * coordinates to magnify them. */
 | 
			
		||||
    size /= 1.4142135623;
 | 
			
		||||
    size = round(size);
 | 
			
		||||
 | 
			
		||||
    /* Compute the four points. */
 | 
			
		||||
    float k = M_PI/4 + angle;
 | 
			
		||||
    for (int j = 0; j < 4; j++) {
 | 
			
		||||
        px[j] = round(sin(k) * size + x);
 | 
			
		||||
        py[j] = round(cos(k) * size + y);
 | 
			
		||||
        k += M_PI/2;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* Draw the square. */
 | 
			
		||||
    for (int j = 0; j < 4; j++)
 | 
			
		||||
        lwDrawLine(canvas,px[j],py[j],px[(j+1)%4],py[(j+1)%4],1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Schotter, the output of LOLWUT of Redis 5, is a computer graphic art piece
 | 
			
		||||
 * generated by Georg Nees in the 60s. It explores the relationship between
 | 
			
		||||
 * caos and order.
 | 
			
		||||
 *
 | 
			
		||||
 * The function creates the canvas itself, depending on the columns available
 | 
			
		||||
 * in the output display and the number of squares per row and per column
 | 
			
		||||
 * requested by the caller. */
 | 
			
		||||
lwCanvas *lwDrawSchotter(int console_cols, int squares_per_row, int squares_per_col) {
 | 
			
		||||
    /* Calculate the canvas size. */
 | 
			
		||||
    int canvas_width = console_cols*2;
 | 
			
		||||
    int padding = canvas_width > 4 ? 2 : 0;
 | 
			
		||||
    float square_side = (float)(canvas_width-padding*2) / squares_per_row;
 | 
			
		||||
    int canvas_height = square_side * squares_per_col + padding*2;
 | 
			
		||||
    lwCanvas *canvas = lwCreateCanvas(canvas_width, canvas_height);
 | 
			
		||||
 | 
			
		||||
    for (int y = 0; y < squares_per_col; y++) {
 | 
			
		||||
        for (int x = 0; x < squares_per_row; x++) {
 | 
			
		||||
            int sx = x * square_side + square_side/2 + padding;
 | 
			
		||||
            int sy = y * square_side + square_side/2 + padding;
 | 
			
		||||
            /* Rotate and translate randomly as we go down to lower
 | 
			
		||||
             * rows. */
 | 
			
		||||
            float angle = 0;
 | 
			
		||||
            if (y > 1) {
 | 
			
		||||
                float r1 = (float)rand() / RAND_MAX / squares_per_col * y;
 | 
			
		||||
                float r2 = (float)rand() / RAND_MAX / squares_per_col * y;
 | 
			
		||||
                float r3 = (float)rand() / RAND_MAX / squares_per_col * y;
 | 
			
		||||
                if (rand() % 2) r1 = -r1;
 | 
			
		||||
                if (rand() % 2) r2 = -r2;
 | 
			
		||||
                if (rand() % 2) r3 = -r3;
 | 
			
		||||
                angle = r1;
 | 
			
		||||
                sx += r2*square_side/3;
 | 
			
		||||
                sy += r3*square_side/3;
 | 
			
		||||
            }
 | 
			
		||||
            lwDrawSquare(canvas,sx,sy,square_side,angle);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return canvas;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Converts the canvas to an SDS string representing the UTF8 characters to
 | 
			
		||||
 * print to the terminal in order to obtain a graphical representaiton of the
 | 
			
		||||
 * logical canvas. The actual returned string will require a terminal that is
 | 
			
		||||
 * width/2 large and height/4 tall in order to hold the whole image without
 | 
			
		||||
 * overflowing or scrolling, since each Barille character is 2x4. */
 | 
			
		||||
sds lwRenderCanvas(lwCanvas *canvas) {
 | 
			
		||||
    sds text = sdsempty();
 | 
			
		||||
    for (int y = 0; y < canvas->height; y += 4) {
 | 
			
		||||
        for (int x = 0; x < canvas->width; x += 2) {
 | 
			
		||||
            /* We need to emit groups of 8 bits according to a specific
 | 
			
		||||
             * arrangement. See lwTranslatePixelsGroup() for more info. */
 | 
			
		||||
            int byte = 0;
 | 
			
		||||
            if (lwGetPixel(canvas,x,y)) byte |= (1<<0);
 | 
			
		||||
            if (lwGetPixel(canvas,x,y+1)) byte |= (1<<1);
 | 
			
		||||
            if (lwGetPixel(canvas,x,y+2)) byte |= (1<<2);
 | 
			
		||||
            if (lwGetPixel(canvas,x+1,y)) byte |= (1<<3);
 | 
			
		||||
            if (lwGetPixel(canvas,x+1,y+1)) byte |= (1<<4);
 | 
			
		||||
            if (lwGetPixel(canvas,x+1,y+2)) byte |= (1<<5);
 | 
			
		||||
            if (lwGetPixel(canvas,x,y+3)) byte |= (1<<6);
 | 
			
		||||
            if (lwGetPixel(canvas,x+1,y+3)) byte |= (1<<7);
 | 
			
		||||
            char unicode[3];
 | 
			
		||||
            lwTranslatePixelsGroup(byte,unicode);
 | 
			
		||||
            text = sdscatlen(text,unicode,3);
 | 
			
		||||
        }
 | 
			
		||||
        if (y != canvas->height-1) text = sdscatlen(text,"\n",1);
 | 
			
		||||
    }
 | 
			
		||||
    return text;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* The LOLWUT command:
 | 
			
		||||
 *
 | 
			
		||||
 * LOLWUT [terminal columns] [squares-per-row] [squares-per-col]
 | 
			
		||||
 *
 | 
			
		||||
 * By default the command uses 66 columns, 8 squares per row, 12 squares
 | 
			
		||||
 * per column.
 | 
			
		||||
 */
 | 
			
		||||
void lolwut5Command(client *c) {
 | 
			
		||||
    long cols = 66;
 | 
			
		||||
    long squares_per_row = 8;
 | 
			
		||||
    long squares_per_col = 12;
 | 
			
		||||
 | 
			
		||||
    /* Parse the optional arguments if any. */
 | 
			
		||||
    if (c->argc > 1 &&
 | 
			
		||||
        getLongFromObjectOrReply(c,c->argv[1],&cols,NULL) != C_OK)
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
    if (c->argc > 2 &&
 | 
			
		||||
        getLongFromObjectOrReply(c,c->argv[2],&squares_per_row,NULL) != C_OK)
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
    if (c->argc > 3 &&
 | 
			
		||||
        getLongFromObjectOrReply(c,c->argv[3],&squares_per_col,NULL) != C_OK)
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
    /* Limits. We want LOLWUT to be always reasonably fast and cheap to execute
 | 
			
		||||
     * so we have maximum number of columns, rows, and output resulution. */
 | 
			
		||||
    if (cols < 1) cols = 1;
 | 
			
		||||
    if (cols > 1000) cols = 1000;
 | 
			
		||||
    if (squares_per_row < 1) squares_per_row = 1;
 | 
			
		||||
    if (squares_per_row > 200) squares_per_row = 200;
 | 
			
		||||
    if (squares_per_col < 1) squares_per_col = 1;
 | 
			
		||||
    if (squares_per_col > 200) squares_per_col = 200;
 | 
			
		||||
 | 
			
		||||
    /* Generate some computer art and reply. */
 | 
			
		||||
    lwCanvas *canvas = lwDrawSchotter(cols,squares_per_row,squares_per_col);
 | 
			
		||||
    sds rendered = lwRenderCanvas(canvas);
 | 
			
		||||
    rendered = sdscat(rendered,
 | 
			
		||||
        "\nGeorg nees - schotter, plotter on paper, 1968. Redis ver. ");
 | 
			
		||||
    rendered = sdscat(rendered,REDIS_VERSION);
 | 
			
		||||
    rendered = sdscatlen(rendered,"\n",1);
 | 
			
		||||
    addReplyBulkSds(c,rendered);
 | 
			
		||||
    lwFreeCanvas(canvas);
 | 
			
		||||
}
 | 
			
		||||
		Loading…
	
		Reference in New Issue