scipy/doc/source/tutorial/io.rst

360 lines
8.2 KiB
ReStructuredText

File IO (:mod:`scipy.io`)
=========================
.. sectionauthor:: Matthew Brett
.. currentmodule:: scipy.io
.. seealso:: `NumPy IO routines <https://www.numpy.org/devdocs/reference/routines.io.html>`__
MATLAB files
------------
.. autosummary::
loadmat
savemat
whosmat
The basic functions
```````````````````
We'll start by importing :mod:`scipy.io` and calling it ``sio`` for
convenience:
>>> import scipy.io as sio
If you are using IPython, try tab-completing on ``sio``. Among the many
options, you will find::
sio.loadmat
sio.savemat
sio.whosmat
These are the high-level functions you will most likely use when working
with MATLAB files. You'll also find::
sio.matlab
This is the package from which ``loadmat``, ``savemat``, and ``whosmat``
are imported. Within ``sio.matlab``, you will find the ``mio`` module
This module contains the machinery that ``loadmat`` and ``savemat`` use.
From time to time you may find yourself re-using this machinery.
How do I start?
```````````````
You may have a ``.mat`` file that you want to read into SciPy. Or, you
want to pass some variables from SciPy / NumPy into MATLAB.
To save us using a MATLAB license, let's start in Octave_. Octave has
MATLAB-compatible save and load functions. Start Octave (``octave`` at
the command line for me):
.. sourcecode:: octave
octave:1> a = 1:12
a =
1 2 3 4 5 6 7 8 9 10 11 12
octave:2> a = reshape(a, [1 3 4])
a =
ans(:,:,1) =
1 2 3
ans(:,:,2) =
4 5 6
ans(:,:,3) =
7 8 9
ans(:,:,4) =
10 11 12
octave:3> save -6 octave_a.mat a % MATLAB 6 compatible
octave:4> ls octave_a.mat
octave_a.mat
Now, to Python:
>>> mat_contents = sio.loadmat('octave_a.mat')
>>> mat_contents
{'__header__': b'MATLAB 5.0 MAT-file, written
by Octave 3.2.3, 2010-05-30 02:13:40 UTC',
'__version__': '1.0',
'__globals__': [],
'a': array([[[ 1., 4., 7., 10.],
[ 2., 5., 8., 11.],
[ 3., 6., 9., 12.]]])}
>>> oct_a = mat_contents['a']
>>> oct_a
array([[[ 1., 4., 7., 10.],
[ 2., 5., 8., 11.],
[ 3., 6., 9., 12.]]])
>>> oct_a.shape
(1, 3, 4)
Now let's try the other way round:
>>> import numpy as np
>>> vect = np.arange(10)
>>> vect.shape
(10,)
>>> sio.savemat('np_vector.mat', {'vect':vect})
Then back to Octave:
.. sourcecode:: octave
octave:8> load np_vector.mat
octave:9> vect
vect =
0 1 2 3 4 5 6 7 8 9
octave:10> size(vect)
ans =
1 10
If you want to inspect the contents of a MATLAB file without reading the
data into memory, use the ``whosmat`` command:
>>> sio.whosmat('octave_a.mat')
[('a', (1, 3, 4), 'double')]
``whosmat`` returns a list of tuples, one for each array (or other object)
in the file. Each tuple contains the name, shape and data type of the
array.
MATLAB structs
``````````````
MATLAB structs are a little bit like Python dicts, except the field
names must be strings. Any MATLAB object can be a value of a field. As
for all objects in MATLAB, structs are, in fact, arrays of structs, where
a single struct is an array of shape (1, 1).
.. sourcecode:: octave
octave:11> my_struct = struct('field1', 1, 'field2', 2)
my_struct =
{
field1 = 1
field2 = 2
}
octave:12> save -6 octave_struct.mat my_struct
We can load this in Python:
>>> mat_contents = sio.loadmat('octave_struct.mat')
>>> mat_contents
{'__header__': b'MATLAB 5.0 MAT-file, written by Octave 3.2.3, 2010-05-30 02:00:26 UTC',
'__version__': '1.0',
'__globals__': [],
'my_struct': array([[(array([[1.]]), array([[2.]]))]], dtype=[('field1', 'O'), ('field2', 'O')])
}
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape
(1, 1)
>>> val = oct_struct[0, 0]
>>> val
np.void((array([[1.]]), array([[2.]])), dtype=[('field1', 'O'), ('field2', 'O')])
>>> val['field1']
array([[ 1.]])
>>> val['field2']
array([[ 2.]])
>>> val.dtype
dtype([('field1', 'O'), ('field2', 'O')])
In the SciPy versions from 0.12.0, MATLAB structs come back as NumPy
structured arrays, with fields named for the struct fields. You can see
the field names in the ``dtype`` output above. Note also:
>>> val = oct_struct[0, 0]
and:
.. sourcecode:: octave
octave:13> size(my_struct)
ans =
1 1
So, in MATLAB, the struct array must be at least 2-D, and we replicate
that when we read into SciPy. If you want all length 1 dimensions
squeezed out, try this:
>>> mat_contents = sio.loadmat('octave_struct.mat', squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape
()
Sometimes, it's more convenient to load the MATLAB structs as Python
objects rather than NumPy structured arrays - it can make the access
syntax in Python a bit more similar to that in MATLAB. In order to do
this, use the ``struct_as_record=False`` parameter setting to ``loadmat``.
>>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct[0,0].field1
array([[ 1.]])
``struct_as_record=False`` works nicely with ``squeeze_me``:
>>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False, squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape # but no - it's a scalar
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'mat_struct' object has no attribute 'shape'
>>> type(oct_struct)
<class 'scipy.io.matlab._mio5_params.mat_struct'>
>>> oct_struct.field1
1.0
Saving struct arrays can be done in various ways. One simple method is
to use dicts:
>>> a_dict = {'field1': 0.5, 'field2': 'a string'}
>>> sio.savemat('saved_struct.mat', {'a_dict': a_dict})
loaded as:
.. sourcecode:: octave
octave:21> load saved_struct
octave:22> a_dict
a_dict =
scalar structure containing the fields:
field2 = a string
field1 = 0.50000
You can also save structs back again to MATLAB (or Octave in our case)
like this:
>>> dt = [('f1', 'f8'), ('f2', 'S10')]
>>> arr = np.zeros((2,), dtype=dt)
>>> arr
array([(0.0, ''), (0.0, '')],
dtype=[('f1', '<f8'), ('f2', 'S10')])
>>> arr[0]['f1'] = 0.5
>>> arr[0]['f2'] = 'python'
>>> arr[1]['f1'] = 99
>>> arr[1]['f2'] = 'not perl'
>>> sio.savemat('np_struct_arr.mat', {'arr': arr})
MATLAB cell arrays
``````````````````
Cell arrays in MATLAB are rather like Python lists, in the sense that
the elements in the arrays can contain any type of MATLAB object. In
fact, they are most similar to NumPy object arrays, and that is how we
load them into NumPy.
.. sourcecode:: octave
octave:14> my_cells = {1, [2, 3]}
my_cells =
{
[1,1] = 1
[1,2] =
2 3
}
octave:15> save -6 octave_cells.mat my_cells
Back to Python:
>>> mat_contents = sio.loadmat('octave_cells.mat')
>>> oct_cells = mat_contents['my_cells']
>>> print(oct_cells.dtype)
object
>>> val = oct_cells[0,0]
>>> val
array([[ 1.]])
>>> print(val.dtype)
float64
Saving to a MATLAB cell array just involves making a NumPy object array:
>>> obj_arr = np.zeros((2,), dtype=object)
>>> obj_arr[0] = 1
>>> obj_arr[1] = 'a string'
>>> obj_arr
array([1, 'a string'], dtype=object)
>>> sio.savemat('np_cells.mat', {'obj_arr': obj_arr})
.. sourcecode:: octave
octave:16> load np_cells.mat
octave:17> obj_arr
obj_arr =
{
[1,1] = 1
[2,1] = a string
}
IDL files
---------
.. autosummary::
readsav
Matrix Market files
-------------------
.. autosummary::
mminfo
mmread
mmwrite
Wav sound files (:mod:`scipy.io.wavfile`)
-----------------------------------------
.. currentmodule:: scipy.io.wavfile
.. autosummary::
read
write
Arff files (:mod:`scipy.io.arff`)
---------------------------------
.. currentmodule:: scipy.io.arff
.. autosummary::
loadarff
Netcdf
------
.. currentmodule:: scipy.io
.. autosummary::
netcdf_file
Allows reading of NetCDF files (version of pupynere_ package)
.. _pupynere: https://pypi.org/project/pupynere/
.. _octave: https://www.gnu.org/software/octave
.. _matlab: https://www.mathworks.com/