spring-framework/framework-docs/modules/ROOT/pages/testing/testcontext-framework.adoc

4726 lines
179 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[[testcontext-framework]]
= Spring TestContext Framework
The Spring TestContext Framework (located in the `org.springframework.test.context`
package) provides generic, annotation-driven unit and integration testing support that is
agnostic of the testing framework in use. The TestContext framework also places a great
deal of importance on convention over configuration, with reasonable defaults that you
can override through annotation-based configuration.
In addition to generic testing infrastructure, the TestContext framework provides
explicit support for JUnit 4, JUnit Jupiter (AKA JUnit 5), and TestNG. For JUnit 4 and
TestNG, Spring provides `abstract` support classes. Furthermore, Spring provides a custom
JUnit `Runner` and custom JUnit `Rules` for JUnit 4 and a custom `Extension` for JUnit
Jupiter that let you write so-called POJO test classes. POJO test classes are not
required to extend a particular class hierarchy, such as the `abstract` support classes.
The following section provides an overview of the internals of the TestContext framework.
If you are interested only in using the framework and are not interested in extending it
with your own custom listeners or custom loaders, feel free to go directly to the
configuration (<<testcontext-ctx-management, context management>>,
<<testcontext-fixture-di, dependency injection>>, <<testcontext-tx,transaction
management>>), <<testcontext-support-classes, support classes>>, and
<<integration-testing-annotations, annotation support>> sections.
[[testcontext-key-abstractions]]
== Key Abstractions
The core of the framework consists of the `TestContextManager` class and the
`TestContext`, `TestExecutionListener`, and `SmartContextLoader` interfaces. A
`TestContextManager` is created for each test class (for example, for the execution of
all test methods within a single test class in JUnit Jupiter). The `TestContextManager`,
in turn, manages a `TestContext` that holds the context of the current test. The
`TestContextManager` also updates the state of the `TestContext` as the test progresses
and delegates to `TestExecutionListener` implementations, which instrument the actual
test execution by providing dependency injection, managing transactions, and so on. A
`SmartContextLoader` is responsible for loading an `ApplicationContext` for a given test
class. See the {api-spring-framework}/test/context/package-summary.html[javadoc] and the
Spring test suite for further information and examples of various implementations.
=== `TestContext`
`TestContext` encapsulates the context in which a test is run (agnostic of the
actual testing framework in use) and provides context management and caching support for
the test instance for which it is responsible. The `TestContext` also delegates to a
`SmartContextLoader` to load an `ApplicationContext` if requested.
=== `TestContextManager`
`TestContextManager` is the main entry point into the Spring TestContext Framework and is
responsible for managing a single `TestContext` and signaling events to each registered
`TestExecutionListener` at well-defined test execution points:
* Prior to any "`before class`" or "`before all`" methods of a particular testing framework.
* Test instance post-processing.
* Prior to any "`before`" or "`before each`" methods of a particular testing framework.
* Immediately before execution of the test method but after test setup.
* Immediately after execution of the test method but before test tear down.
* After any "`after`" or "`after each`" methods of a particular testing framework.
* After any "`after class`" or "`after all`" methods of a particular testing framework.
=== `TestExecutionListener`
`TestExecutionListener` defines the API for reacting to test-execution events published by
the `TestContextManager` with which the listener is registered. See <<testcontext-tel-config>>.
=== Context Loaders
`ContextLoader` is a strategy interface for loading an `ApplicationContext` for an
integration test managed by the Spring TestContext Framework. You should implement
`SmartContextLoader` instead of this interface to provide support for component classes,
active bean definition profiles, test property sources, context hierarchies, and
`WebApplicationContext` support.
`SmartContextLoader` is an extension of the `ContextLoader` interface that supersedes the
original minimal `ContextLoader` SPI. Specifically, a `SmartContextLoader` can choose to
process resource locations, component classes, or context initializers. Furthermore, a
`SmartContextLoader` can set active bean definition profiles and test property sources in
the context that it loads.
Spring provides the following implementations:
* `DelegatingSmartContextLoader`: One of two default loaders, it delegates internally to
an `AnnotationConfigContextLoader`, a `GenericXmlContextLoader`, or a
`GenericGroovyXmlContextLoader`, depending either on the configuration declared for the
test class or on the presence of default locations or default configuration classes.
Groovy support is enabled only if Groovy is on the classpath.
* `WebDelegatingSmartContextLoader`: One of two default loaders, it delegates internally
to an `AnnotationConfigWebContextLoader`, a `GenericXmlWebContextLoader`, or a
`GenericGroovyXmlWebContextLoader`, depending either on the configuration declared for
the test class or on the presence of default locations or default configuration
classes. A web `ContextLoader` is used only if `@WebAppConfiguration` is present on the
test class. Groovy support is enabled only if Groovy is on the classpath.
* `AnnotationConfigContextLoader`: Loads a standard `ApplicationContext` from component
classes.
* `AnnotationConfigWebContextLoader`: Loads a `WebApplicationContext` from component
classes.
* `GenericGroovyXmlContextLoader`: Loads a standard `ApplicationContext` from resource
locations that are either Groovy scripts or XML configuration files.
* `GenericGroovyXmlWebContextLoader`: Loads a `WebApplicationContext` from resource
locations that are either Groovy scripts or XML configuration files.
* `GenericXmlContextLoader`: Loads a standard `ApplicationContext` from XML resource
locations.
* `GenericXmlWebContextLoader`: Loads a `WebApplicationContext` from XML resource
locations.
[[testcontext-bootstrapping]]
== Bootstrapping the TestContext Framework
The default configuration for the internals of the Spring TestContext Framework is
sufficient for all common use cases. However, there are times when a development team or
third party framework would like to change the default `ContextLoader`, implement a
custom `TestContext` or `ContextCache`, augment the default sets of
`ContextCustomizerFactory` and `TestExecutionListener` implementations, and so on. For
such low-level control over how the TestContext framework operates, Spring provides a
bootstrapping strategy.
`TestContextBootstrapper` defines the SPI for bootstrapping the TestContext framework. A
`TestContextBootstrapper` is used by the `TestContextManager` to load the
`TestExecutionListener` implementations for the current test and to build the
`TestContext` that it manages. You can configure a custom bootstrapping strategy for a
test class (or test class hierarchy) by using `@BootstrapWith`, either directly or as a
meta-annotation. If a bootstrapper is not explicitly configured by using
`@BootstrapWith`, either the `DefaultTestContextBootstrapper` or the
`WebTestContextBootstrapper` is used, depending on the presence of `@WebAppConfiguration`.
Since the `TestContextBootstrapper` SPI is likely to change in the future (to accommodate
new requirements), we strongly encourage implementers not to implement this interface
directly but rather to extend `AbstractTestContextBootstrapper` or one of its concrete
subclasses instead.
[[testcontext-tel-config]]
== `TestExecutionListener` Configuration
Spring provides the following `TestExecutionListener` implementations that are registered
by default, exactly in the following order:
* `ServletTestExecutionListener`: Configures Servlet API mocks for a
`WebApplicationContext`.
* `DirtiesContextBeforeModesTestExecutionListener`: Handles the `@DirtiesContext`
annotation for "`before`" modes.
* `ApplicationEventsTestExecutionListener`: Provides support for
<<testcontext-application-events, `ApplicationEvents`>>.
* `DependencyInjectionTestExecutionListener`: Provides dependency injection for the test
instance.
* `DirtiesContextTestExecutionListener`: Handles the `@DirtiesContext` annotation for
"`after`" modes.
* `TransactionalTestExecutionListener`: Provides transactional test execution with
default rollback semantics.
* `SqlScriptsTestExecutionListener`: Runs SQL scripts configured by using the `@Sql`
annotation.
* `EventPublishingTestExecutionListener`: Publishes test execution events to the test's
`ApplicationContext` (see <<testcontext-test-execution-events>>).
[[testcontext-tel-config-registering-tels]]
=== Registering `TestExecutionListener` Implementations
You can register `TestExecutionListener` implementations explicitly for a test class, its
subclasses, and its nested classes by using the `@TestExecutionListeners` annotation. See
<<integration-testing-annotations, annotation support>> and the javadoc for
{api-spring-framework}/test/context/TestExecutionListeners.html[`@TestExecutionListeners`]
for details and examples.
.Switching to default `TestExecutionListener` implementations
[NOTE]
====
If you extend a class that is annotated with `@TestExecutionListeners` and you need to
switch to using the default set of listeners, you can annotate your class with the
following.
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// Switch to default listeners
@TestExecutionListeners(
listeners = {},
inheritListeners = false,
mergeMode = MERGE_WITH_DEFAULTS)
class MyTest extends BaseTest {
// class body...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// Switch to default listeners
@TestExecutionListeners(
listeners = [],
inheritListeners = false,
mergeMode = MERGE_WITH_DEFAULTS)
class MyTest : BaseTest {
// class body...
}
----
====
[[testcontext-tel-config-automatic-discovery]]
=== Automatic Discovery of Default `TestExecutionListener` Implementations
Registering `TestExecutionListener` implementations by using `@TestExecutionListeners` is
suitable for custom listeners that are used in limited testing scenarios. However, it can
become cumbersome if a custom listener needs to be used across an entire test suite. This
issue is addressed through support for automatic discovery of default
`TestExecutionListener` implementations through the `SpringFactoriesLoader` mechanism.
Specifically, the `spring-test` module declares all core default `TestExecutionListener`
implementations under the `org.springframework.test.context.TestExecutionListener` key in
its `META-INF/spring.factories` properties file. Third-party frameworks and developers
can contribute their own `TestExecutionListener` implementations to the list of default
listeners in the same manner through their own `META-INF/spring.factories` properties
file.
[[testcontext-tel-config-ordering]]
=== Ordering `TestExecutionListener` Implementations
When the TestContext framework discovers default `TestExecutionListener` implementations
through the <<testcontext-tel-config-automatic-discovery, aforementioned>>
`SpringFactoriesLoader` mechanism, the instantiated listeners are sorted by using
Spring's `AnnotationAwareOrderComparator`, which honors Spring's `Ordered` interface and
`@Order` annotation for ordering. `AbstractTestExecutionListener` and all default
`TestExecutionListener` implementations provided by Spring implement `Ordered` with
appropriate values. Third-party frameworks and developers should therefore make sure that
their default `TestExecutionListener` implementations are registered in the proper order
by implementing `Ordered` or declaring `@Order`. See the javadoc for the `getOrder()`
methods of the core default `TestExecutionListener` implementations for details on what
values are assigned to each core listener.
[[testcontext-tel-config-merging]]
=== Merging `TestExecutionListener` Implementations
If a custom `TestExecutionListener` is registered via `@TestExecutionListeners`, the
default listeners are not registered. In most common testing scenarios, this effectively
forces the developer to manually declare all default listeners in addition to any custom
listeners. The following listing demonstrates this style of configuration:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ContextConfiguration
@TestExecutionListeners({
MyCustomTestExecutionListener.class,
ServletTestExecutionListener.class,
DirtiesContextBeforeModesTestExecutionListener.class,
DependencyInjectionTestExecutionListener.class,
DirtiesContextTestExecutionListener.class,
TransactionalTestExecutionListener.class,
SqlScriptsTestExecutionListener.class
})
class MyTest {
// class body...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ContextConfiguration
@TestExecutionListeners(
MyCustomTestExecutionListener::class,
ServletTestExecutionListener::class,
DirtiesContextBeforeModesTestExecutionListener::class,
DependencyInjectionTestExecutionListener::class,
DirtiesContextTestExecutionListener::class,
TransactionalTestExecutionListener::class,
SqlScriptsTestExecutionListener::class
)
class MyTest {
// class body...
}
----
The challenge with this approach is that it requires that the developer know exactly
which listeners are registered by default. Moreover, the set of default listeners can
change from release to release -- for example, `SqlScriptsTestExecutionListener` was
introduced in Spring Framework 4.1, and `DirtiesContextBeforeModesTestExecutionListener`
was introduced in Spring Framework 4.2. Furthermore, third-party frameworks like Spring
Boot and Spring Security register their own default `TestExecutionListener`
implementations by using the aforementioned <<testcontext-tel-config-automatic-discovery,
automatic discovery mechanism>>.
To avoid having to be aware of and re-declare all default listeners, you can set the
`mergeMode` attribute of `@TestExecutionListeners` to `MergeMode.MERGE_WITH_DEFAULTS`.
`MERGE_WITH_DEFAULTS` indicates that locally declared listeners should be merged with the
default listeners. The merging algorithm ensures that duplicates are removed from the
list and that the resulting set of merged listeners is sorted according to the semantics
of `AnnotationAwareOrderComparator`, as described in <<testcontext-tel-config-ordering>>.
If a listener implements `Ordered` or is annotated with `@Order`, it can influence the
position in which it is merged with the defaults. Otherwise, locally declared listeners
are appended to the list of default listeners when merged.
For example, if the `MyCustomTestExecutionListener` class in the previous example
configures its `order` value (for example, `500`) to be less than the order of the
`ServletTestExecutionListener` (which happens to be `1000`), the
`MyCustomTestExecutionListener` can then be automatically merged with the list of
defaults in front of the `ServletTestExecutionListener`, and the previous example could
be replaced with the following:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ContextConfiguration
@TestExecutionListeners(
listeners = MyCustomTestExecutionListener.class,
mergeMode = MERGE_WITH_DEFAULTS
)
class MyTest {
// class body...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ContextConfiguration
@TestExecutionListeners(
listeners = [MyCustomTestExecutionListener::class],
mergeMode = MERGE_WITH_DEFAULTS
)
class MyTest {
// class body...
}
----
[[testcontext-application-events]]
== Application Events
Since Spring Framework 5.3.3, the TestContext framework provides support for recording
<<core.adoc#context-functionality-events, application events>> published in the
`ApplicationContext` so that assertions can be performed against those events within
tests. All events published during the execution of a single test are made available via
the `ApplicationEvents` API which allows you to process the events as a
`java.util.Stream`.
To use `ApplicationEvents` in your tests, do the following.
* Ensure that your test class is annotated or meta-annotated with
<<spring-testing-annotation-recordapplicationevents>>.
* Ensure that the `ApplicationEventsTestExecutionListener` is registered. Note, however,
that `ApplicationEventsTestExecutionListener` is registered by default and only needs
to be manually registered if you have custom configuration via
`@TestExecutionListeners` that does not include the default listeners.
* Annotate a field of type `ApplicationEvents` with `@Autowired` and use that instance of
`ApplicationEvents` in your test and lifecycle methods (such as `@BeforeEach` and
`@AfterEach` methods in JUnit Jupiter).
** When using the <<testcontext-junit-jupiter-extension>>, you may declare a method
parameter of type `ApplicationEvents` in a test or lifecycle method as an alternative
to an `@Autowired` field in the test class.
The following test class uses the `SpringExtension` for JUnit Jupiter and
https://assertj.github.io/doc/[AssertJ] to assert the types of application events
published while invoking a method in a Spring-managed component:
// Don't use "quotes" in the "subs" section because of the asterisks in /* ... */
[source,java,indent=0,subs="verbatim",role="primary"]
.Java
----
@SpringJUnitConfig(/* ... */)
@RecordApplicationEvents // <1>
class OrderServiceTests {
@Autowired
OrderService orderService;
@Autowired
ApplicationEvents events; // <2>
@Test
void submitOrder() {
// Invoke method in OrderService that publishes an event
orderService.submitOrder(new Order(/* ... */));
// Verify that an OrderSubmitted event was published
long numEvents = events.stream(OrderSubmitted.class).count(); // <3>
assertThat(numEvents).isEqualTo(1);
}
}
----
<1> Annotate the test class with `@RecordApplicationEvents`.
<2> Inject the `ApplicationEvents` instance for the current test.
<3> Use the `ApplicationEvents` API to count how many `OrderSubmitted` events were published.
// Don't use "quotes" in the "subs" section because of the asterisks in /* ... */
[source,kotlin,indent=0,subs="verbatim",role="secondary"]
.Kotlin
----
@SpringJUnitConfig(/* ... */)
@RecordApplicationEvents // <1>
class OrderServiceTests {
@Autowired
lateinit var orderService: OrderService
@Autowired
lateinit var events: ApplicationEvents // <2>
@Test
fun submitOrder() {
// Invoke method in OrderService that publishes an event
orderService.submitOrder(Order(/* ... */))
// Verify that an OrderSubmitted event was published
val numEvents = events.stream(OrderSubmitted::class).count() // <3>
assertThat(numEvents).isEqualTo(1)
}
}
----
<1> Annotate the test class with `@RecordApplicationEvents`.
<2> Inject the `ApplicationEvents` instance for the current test.
<3> Use the `ApplicationEvents` API to count how many `OrderSubmitted` events were published.
See the
{api-spring-framework}/test/context/event/ApplicationEvents.html[`ApplicationEvents`
javadoc] for further details regarding the `ApplicationEvents` API.
[[testcontext-test-execution-events]]
== Test Execution Events
The `EventPublishingTestExecutionListener` introduced in Spring Framework 5.2 offers an
alternative approach to implementing a custom `TestExecutionListener`. Components in the
test's `ApplicationContext` can listen to the following events published by the
`EventPublishingTestExecutionListener`, each of which corresponds to a method in the
`TestExecutionListener` API.
* `BeforeTestClassEvent`
* `PrepareTestInstanceEvent`
* `BeforeTestMethodEvent`
* `BeforeTestExecutionEvent`
* `AfterTestExecutionEvent`
* `AfterTestMethodEvent`
* `AfterTestClassEvent`
These events may be consumed for various reasons, such as resetting mock beans or tracing
test execution. One advantage of consuming test execution events rather than implementing
a custom `TestExecutionListener` is that test execution events may be consumed by any
Spring bean registered in the test `ApplicationContext`, and such beans may benefit
directly from dependency injection and other features of the `ApplicationContext`. In
contrast, a `TestExecutionListener` is not a bean in the `ApplicationContext`.
[NOTE]
====
The `EventPublishingTestExecutionListener` is registered by default; however, it only
publishes events if the `ApplicationContext` has _already been loaded_. This prevents the
`ApplicationContext` from being loaded unnecessarily or too early.
Consequently, a `BeforeTestClassEvent` will not be published until after the
`ApplicationContext` has been loaded by another `TestExecutionListener`. For example, with
the default set of `TestExecutionListener` implementations registered, a
`BeforeTestClassEvent` will not be published for the first test class that uses a
particular test `ApplicationContext`, but a `BeforeTestClassEvent` _will_ be published for
any subsequent test class in the same test suite that uses the same test
`ApplicationContext` since the context will already have been loaded when subsequent test
classes run (as long as the context has not been removed from the `ContextCache` via
`@DirtiesContext` or the max-size eviction policy).
If you wish to ensure that a `BeforeTestClassEvent` is always published for every test
class, you need to register a `TestExecutionListener` that loads the `ApplicationContext`
in the `beforeTestClass` callback, and that `TestExecutionListener` must be registered
_before_ the `EventPublishingTestExecutionListener`.
Similarly, if `@DirtiesContext` is used to remove the `ApplicationContext` from the
context cache after the last test method in a given test class, the `AfterTestClassEvent`
will not be published for that test class.
====
In order to listen to test execution events, a Spring bean may choose to implement the
`org.springframework.context.ApplicationListener` interface. Alternatively, listener
methods can be annotated with `@EventListener` and configured to listen to one of the
particular event types listed above (see
<<core.adoc#context-functionality-events-annotation, Annotation-based Event Listeners>>).
Due to the popularity of this approach, Spring provides the following dedicated
`@EventListener` annotations to simplify registration of test execution event listeners.
These annotations reside in the `org.springframework.test.context.event.annotation`
package.
* `@BeforeTestClass`
* `@PrepareTestInstance`
* `@BeforeTestMethod`
* `@BeforeTestExecution`
* `@AfterTestExecution`
* `@AfterTestMethod`
* `@AfterTestClass`
[[testcontext-test-execution-events-exception-handling]]
=== Exception Handling
By default, if a test execution event listener throws an exception while consuming an
event, that exception will propagate to the underlying testing framework in use (such as
JUnit or TestNG). For example, if the consumption of a `BeforeTestMethodEvent` results in
an exception, the corresponding test method will fail as a result of the exception. In
contrast, if an asynchronous test execution event listener throws an exception, the
exception will not propagate to the underlying testing framework. For further details on
asynchronous exception handling, consult the class-level javadoc for `@EventListener`.
[[testcontext-test-execution-events-async]]
=== Asynchronous Listeners
If you want a particular test execution event listener to process events asynchronously,
you can use Spring's <<integration.adoc#scheduling-annotation-support-async,regular
`@Async` support>>. For further details, consult the class-level javadoc for
`@EventListener`.
[[testcontext-ctx-management]]
== Context Management
Each `TestContext` provides context management and caching support for the test instance
for which it is responsible. Test instances do not automatically receive access to the
configured `ApplicationContext`. However, if a test class implements the
`ApplicationContextAware` interface, a reference to the `ApplicationContext` is supplied
to the test instance. Note that `AbstractJUnit4SpringContextTests` and
`AbstractTestNGSpringContextTests` implement `ApplicationContextAware` and, therefore,
provide access to the `ApplicationContext` automatically.
.@Autowired ApplicationContext
[TIP]
=====
As an alternative to implementing the `ApplicationContextAware` interface, you can inject
the application context for your test class through the `@Autowired` annotation on either
a field or setter method, as the following example shows:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig
class MyTest {
@Autowired // <1>
ApplicationContext applicationContext;
// class body...
}
----
<1> Injecting the `ApplicationContext`.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig
class MyTest {
@Autowired // <1>
lateinit var applicationContext: ApplicationContext
// class body...
}
----
<1> Injecting the `ApplicationContext`.
Similarly, if your test is configured to load a `WebApplicationContext`, you can inject
the web application context into your test, as follows:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitWebConfig // <1>
class MyWebAppTest {
@Autowired // <2>
WebApplicationContext wac;
// class body...
}
----
<1> Configuring the `WebApplicationContext`.
<2> Injecting the `WebApplicationContext`.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitWebConfig // <1>
class MyWebAppTest {
@Autowired // <2>
lateinit var wac: WebApplicationContext
// class body...
}
----
<1> Configuring the `WebApplicationContext`.
<2> Injecting the `WebApplicationContext`.
Dependency injection by using `@Autowired` is provided by the
`DependencyInjectionTestExecutionListener`, which is configured by default
(see <<testcontext-fixture-di>>).
=====
Test classes that use the TestContext framework do not need to extend any particular
class or implement a specific interface to configure their application context. Instead,
configuration is achieved by declaring the `@ContextConfiguration` annotation at the
class level. If your test class does not explicitly declare application context resource
locations or component classes, the configured `ContextLoader` determines how to load a
context from a default location or default configuration classes. In addition to context
resource locations and component classes, an application context can also be configured
through application context initializers.
The following sections explain how to use Spring's `@ContextConfiguration` annotation to
configure a test `ApplicationContext` by using XML configuration files, Groovy scripts,
component classes (typically `@Configuration` classes), or context initializers.
Alternatively, you can implement and configure your own custom `SmartContextLoader` for
advanced use cases.
* <<testcontext-ctx-management-xml>>
* <<testcontext-ctx-management-groovy>>
* <<testcontext-ctx-management-javaconfig>>
* <<testcontext-ctx-management-mixed-config>>
* <<testcontext-ctx-management-initializers>>
* <<testcontext-ctx-management-inheritance>>
* <<testcontext-ctx-management-env-profiles>>
* <<testcontext-ctx-management-property-sources>>
* <<testcontext-ctx-management-dynamic-property-sources>>
* <<testcontext-ctx-management-web>>
* <<testcontext-ctx-management-caching>>
* <<testcontext-ctx-management-ctx-hierarchies>>
[[testcontext-ctx-management-xml]]
=== Context Configuration with XML resources
To load an `ApplicationContext` for your tests by using XML configuration files, annotate
your test class with `@ContextConfiguration` and configure the `locations` attribute with
an array that contains the resource locations of XML configuration metadata. A plain or
relative path (for example, `context.xml`) is treated as a classpath resource that is
relative to the package in which the test class is defined. A path starting with a slash
is treated as an absolute classpath location (for example, `/org/example/config.xml`). A
path that represents a resource URL (i.e., a path prefixed with `classpath:`, `file:`,
`http:`, etc.) is used _as is_.
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from "/app-config.xml" and
// "/test-config.xml" in the root of the classpath
@ContextConfiguration(locations = {"/app-config.xml", "/test-config.xml"}) // <1>
class MyTest {
// class body...
}
----
<1> Setting the locations attribute to a list of XML files.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from "/app-config.xml" and
// "/test-config.xml" in the root of the classpath
@ContextConfiguration(locations = ["/app-config.xml", "/test-config.xml"]) // <1>
class MyTest {
// class body...
}
----
<1> Setting the locations attribute to a list of XML files.
`@ContextConfiguration` supports an alias for the `locations` attribute through the
standard Java `value` attribute. Thus, if you do not need to declare additional
attributes in `@ContextConfiguration`, you can omit the declaration of the `locations`
attribute name and declare the resource locations by using the shorthand format
demonstrated in the following example:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
@ContextConfiguration({"/app-config.xml", "/test-config.xml"}) <1>
class MyTest {
// class body...
}
----
<1> Specifying XML files without using the `locations` attribute.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
@ContextConfiguration("/app-config.xml", "/test-config.xml") // <1>
class MyTest {
// class body...
}
----
<1> Specifying XML files without using the `locations` attribute.
If you omit both the `locations` and the `value` attributes from the
`@ContextConfiguration` annotation, the TestContext framework tries to detect a default
XML resource location. Specifically, `GenericXmlContextLoader` and
`GenericXmlWebContextLoader` detect a default location based on the name of the test
class. If your class is named `com.example.MyTest`, `GenericXmlContextLoader` loads your
application context from `"classpath:com/example/MyTest-context.xml"`. The following
example shows how to do so:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from
// "classpath:com/example/MyTest-context.xml"
@ContextConfiguration // <1>
class MyTest {
// class body...
}
----
<1> Loading configuration from the default location.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from
// "classpath:com/example/MyTest-context.xml"
@ContextConfiguration // <1>
class MyTest {
// class body...
}
----
<1> Loading configuration from the default location.
[[testcontext-ctx-management-groovy]]
=== Context Configuration with Groovy Scripts
To load an `ApplicationContext` for your tests by using Groovy scripts that use the
<<core.adoc#groovy-bean-definition-dsl, Groovy Bean Definition DSL>>, you can annotate
your test class with `@ContextConfiguration` and configure the `locations` or `value`
attribute with an array that contains the resource locations of Groovy scripts. Resource
lookup semantics for Groovy scripts are the same as those described for
<<testcontext-ctx-management-xml, XML configuration files>>.
.Enabling Groovy script support
TIP: Support for using Groovy scripts to load an `ApplicationContext` in the Spring
TestContext Framework is enabled automatically if Groovy is on the classpath.
The following example shows how to specify Groovy configuration files:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from "/AppConfig.groovy" and
// "/TestConfig.groovy" in the root of the classpath
@ContextConfiguration({"/AppConfig.groovy", "/TestConfig.Groovy"}) <1>
class MyTest {
// class body...
}
----
<1> Specifying the location of Groovy configuration files.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from "/AppConfig.groovy" and
// "/TestConfig.groovy" in the root of the classpath
@ContextConfiguration("/AppConfig.groovy", "/TestConfig.Groovy") // <1>
class MyTest {
// class body...
}
----
<1> Specifying the location of Groovy configuration files.
If you omit both the `locations` and `value` attributes from the `@ContextConfiguration`
annotation, the TestContext framework tries to detect a default Groovy script.
Specifically, `GenericGroovyXmlContextLoader` and `GenericGroovyXmlWebContextLoader`
detect a default location based on the name of the test class. If your class is named
`com.example.MyTest`, the Groovy context loader loads your application context from
`"classpath:com/example/MyTestContext.groovy"`. The following example shows how to use
the default:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from
// "classpath:com/example/MyTestContext.groovy"
@ContextConfiguration // <1>
class MyTest {
// class body...
}
----
<1> Loading configuration from the default location.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from
// "classpath:com/example/MyTestContext.groovy"
@ContextConfiguration // <1>
class MyTest {
// class body...
}
----
<1> Loading configuration from the default location.
.Declaring XML configuration and Groovy scripts simultaneously
[TIP]
=====
You can declare both XML configuration files and Groovy scripts simultaneously by using
the `locations` or `value` attribute of `@ContextConfiguration`. If the path to a
configured resource location ends with `.xml`, it is loaded by using an
`XmlBeanDefinitionReader`. Otherwise, it is loaded by using a
`GroovyBeanDefinitionReader`.
The following listing shows how to combine both in an integration test:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from
// "/app-config.xml" and "/TestConfig.groovy"
@ContextConfiguration({ "/app-config.xml", "/TestConfig.groovy" })
class MyTest {
// class body...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from
// "/app-config.xml" and "/TestConfig.groovy"
@ContextConfiguration("/app-config.xml", "/TestConfig.groovy")
class MyTest {
// class body...
}
----
=====
[[testcontext-ctx-management-javaconfig]]
=== Context Configuration with Component Classes
To load an `ApplicationContext` for your tests by using component classes (see
<<core.adoc#beans-java, Java-based container configuration>>), you can annotate your test
class with `@ContextConfiguration` and configure the `classes` attribute with an array
that contains references to component classes. The following example shows how to do so:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from AppConfig and TestConfig
@ContextConfiguration(classes = {AppConfig.class, TestConfig.class}) // <1>
class MyTest {
// class body...
}
----
<1> Specifying component classes.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from AppConfig and TestConfig
@ContextConfiguration(classes = [AppConfig::class, TestConfig::class]) // <1>
class MyTest {
// class body...
}
----
<1> Specifying component classes.
[[testcontext-ctx-management-javaconfig-component-classes]]
.Component Classes
[TIP]
====
The term "`component class`" can refer to any of the following:
* A class annotated with `@Configuration`.
* A component (that is, a class annotated with `@Component`, `@Service`, `@Repository`, or other stereotype annotations).
* A JSR-330 compliant class that is annotated with `jakarta.inject` annotations.
* Any class that contains `@Bean`-methods.
* Any other class that is intended to be registered as a Spring component (i.e., a Spring
bean in the `ApplicationContext`), potentially taking advantage of automatic autowiring
of a single constructor without the use of Spring annotations.
See the javadoc of
{api-spring-framework}/context/annotation/Configuration.html[`@Configuration`] and
{api-spring-framework}/context/annotation/Bean.html[`@Bean`] for further information
regarding the configuration and semantics of component classes, paying special attention
to the discussion of `@Bean` Lite Mode.
====
If you omit the `classes` attribute from the `@ContextConfiguration` annotation, the
TestContext framework tries to detect the presence of default configuration classes.
Specifically, `AnnotationConfigContextLoader` and `AnnotationConfigWebContextLoader`
detect all `static` nested classes of the test class that meet the requirements for
configuration class implementations, as specified in the
{api-spring-framework}/context/annotation/Configuration.html[`@Configuration`] javadoc.
Note that the name of the configuration class is arbitrary. In addition, a test class can
contain more than one `static` nested configuration class if desired. In the following
example, the `OrderServiceTest` class declares a `static` nested configuration class
named `Config` that is automatically used to load the `ApplicationContext` for the test
class:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig <1>
// ApplicationContext will be loaded from the static nested Config class
class OrderServiceTest {
@Configuration
static class Config {
// this bean will be injected into the OrderServiceTest class
@Bean
OrderService orderService() {
OrderService orderService = new OrderServiceImpl();
// set properties, etc.
return orderService;
}
}
@Autowired
OrderService orderService;
@Test
void testOrderService() {
// test the orderService
}
}
----
<1> Loading configuration information from the nested `Config` class.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig <1>
// ApplicationContext will be loaded from the nested Config class
class OrderServiceTest {
@Autowired
lateinit var orderService: OrderService
@Configuration
class Config {
// this bean will be injected into the OrderServiceTest class
@Bean
fun orderService(): OrderService {
// set properties, etc.
return OrderServiceImpl()
}
}
@Test
fun testOrderService() {
// test the orderService
}
}
----
<1> Loading configuration information from the nested `Config` class.
[[testcontext-ctx-management-mixed-config]]
=== Mixing XML, Groovy Scripts, and Component Classes
It may sometimes be desirable to mix XML configuration files, Groovy scripts, and
component classes (typically `@Configuration` classes) to configure an
`ApplicationContext` for your tests. For example, if you use XML configuration in
production, you may decide that you want to use `@Configuration` classes to configure
specific Spring-managed components for your tests, or vice versa.
Furthermore, some third-party frameworks (such as Spring Boot) provide first-class
support for loading an `ApplicationContext` from different types of resources
simultaneously (for example, XML configuration files, Groovy scripts, and
`@Configuration` classes). The Spring Framework, historically, has not supported this for
standard deployments. Consequently, most of the `SmartContextLoader` implementations that
the Spring Framework delivers in the `spring-test` module support only one resource type
for each test context. However, this does not mean that you cannot use both. One
exception to the general rule is that the `GenericGroovyXmlContextLoader` and
`GenericGroovyXmlWebContextLoader` support both XML configuration files and Groovy
scripts simultaneously. Furthermore, third-party frameworks may choose to support the
declaration of both `locations` and `classes` through `@ContextConfiguration`, and, with
the standard testing support in the TestContext framework, you have the following options.
If you want to use resource locations (for example, XML or Groovy) and `@Configuration`
classes to configure your tests, you must pick one as the entry point, and that one must
include or import the other. For example, in XML or Groovy scripts, you can include
`@Configuration` classes by using component scanning or defining them as normal Spring
beans, whereas, in a `@Configuration` class, you can use `@ImportResource` to import XML
configuration files or Groovy scripts. Note that this behavior is semantically equivalent
to how you configure your application in production: In production configuration, you
define either a set of XML or Groovy resource locations or a set of `@Configuration`
classes from which your production `ApplicationContext` is loaded, but you still have the
freedom to include or import the other type of configuration.
[[testcontext-ctx-management-initializers]]
=== Context Configuration with Context Initializers
To configure an `ApplicationContext` for your tests by using context initializers,
annotate your test class with `@ContextConfiguration` and configure the `initializers`
attribute with an array that contains references to classes that implement
`ApplicationContextInitializer`. The declared context initializers are then used to
initialize the `ConfigurableApplicationContext` that is loaded for your tests. Note that
the concrete `ConfigurableApplicationContext` type supported by each declared initializer
must be compatible with the type of `ApplicationContext` created by the
`SmartContextLoader` in use (typically a `GenericApplicationContext`). Furthermore, the
order in which the initializers are invoked depends on whether they implement Spring's
`Ordered` interface or are annotated with Spring's `@Order` annotation or the standard
`@Priority` annotation. The following example shows how to use initializers:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from TestConfig
// and initialized by TestAppCtxInitializer
@ContextConfiguration(
classes = TestConfig.class,
initializers = TestAppCtxInitializer.class) // <1>
class MyTest {
// class body...
}
----
<1> Specifying configuration by using a configuration class and an initializer.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from TestConfig
// and initialized by TestAppCtxInitializer
@ContextConfiguration(
classes = [TestConfig::class],
initializers = [TestAppCtxInitializer::class]) // <1>
class MyTest {
// class body...
}
----
<1> Specifying configuration by using a configuration class and an initializer.
You can also omit the declaration of XML configuration files, Groovy scripts, or
component classes in `@ContextConfiguration` entirely and instead declare only
`ApplicationContextInitializer` classes, which are then responsible for registering beans
in the context -- for example, by programmatically loading bean definitions from XML
files or configuration classes. The following example shows how to do so:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// ApplicationContext will be initialized by EntireAppInitializer
// which presumably registers beans in the context
@ContextConfiguration(initializers = EntireAppInitializer.class) <1>
class MyTest {
// class body...
}
----
<1> Specifying configuration by using only an initializer.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// ApplicationContext will be initialized by EntireAppInitializer
// which presumably registers beans in the context
@ContextConfiguration(initializers = [EntireAppInitializer::class]) // <1>
class MyTest {
// class body...
}
----
<1> Specifying configuration by using only an initializer.
[[testcontext-ctx-management-inheritance]]
=== Context Configuration Inheritance
`@ContextConfiguration` supports boolean `inheritLocations` and `inheritInitializers`
attributes that denote whether resource locations or component classes and context
initializers declared by superclasses should be inherited. The default value for both
flags is `true`. This means that a test class inherits the resource locations or
component classes as well as the context initializers declared by any superclasses.
Specifically, the resource locations or component classes for a test class are appended
to the list of resource locations or annotated classes declared by superclasses.
Similarly, the initializers for a given test class are added to the set of initializers
defined by test superclasses. Thus, subclasses have the option of extending the resource
locations, component classes, or context initializers.
If the `inheritLocations` or `inheritInitializers` attribute in `@ContextConfiguration`
is set to `false`, the resource locations or component classes and the context
initializers, respectively, for the test class shadow and effectively replace the
configuration defined by superclasses.
NOTE: As of Spring Framework 5.3, test configuration may also be inherited from enclosing
classes. See <<testcontext-junit-jupiter-nested-test-configuration>> for details.
In the next example, which uses XML resource locations, the `ApplicationContext` for
`ExtendedTest` is loaded from `base-config.xml` and `extended-config.xml`, in that order.
Beans defined in `extended-config.xml` can, therefore, override (that is, replace) those
defined in `base-config.xml`. The following example shows how one class can extend
another and use both its own configuration file and the superclass's configuration file:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from "/base-config.xml"
// in the root of the classpath
@ContextConfiguration("/base-config.xml") <1>
class BaseTest {
// class body...
}
// ApplicationContext will be loaded from "/base-config.xml" and
// "/extended-config.xml" in the root of the classpath
@ContextConfiguration("/extended-config.xml") <2>
class ExtendedTest extends BaseTest {
// class body...
}
----
<1> Configuration file defined in the superclass.
<2> Configuration file defined in the subclass.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from "/base-config.xml"
// in the root of the classpath
@ContextConfiguration("/base-config.xml") // <1>
open class BaseTest {
// class body...
}
// ApplicationContext will be loaded from "/base-config.xml" and
// "/extended-config.xml" in the root of the classpath
@ContextConfiguration("/extended-config.xml") // <2>
class ExtendedTest : BaseTest() {
// class body...
}
----
<1> Configuration file defined in the superclass.
<2> Configuration file defined in the subclass.
Similarly, in the next example, which uses component classes, the `ApplicationContext`
for `ExtendedTest` is loaded from the `BaseConfig` and `ExtendedConfig` classes, in that
order. Beans defined in `ExtendedConfig` can, therefore, override (that is, replace)
those defined in `BaseConfig`. The following example shows how one class can extend
another and use both its own configuration class and the superclass's configuration class:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// ApplicationContext will be loaded from BaseConfig
@SpringJUnitConfig(BaseConfig.class) // <1>
class BaseTest {
// class body...
}
// ApplicationContext will be loaded from BaseConfig and ExtendedConfig
@SpringJUnitConfig(ExtendedConfig.class) // <2>
class ExtendedTest extends BaseTest {
// class body...
}
----
<1> Configuration class defined in the superclass.
<2> Configuration class defined in the subclass.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// ApplicationContext will be loaded from BaseConfig
@SpringJUnitConfig(BaseConfig::class) // <1>
open class BaseTest {
// class body...
}
// ApplicationContext will be loaded from BaseConfig and ExtendedConfig
@SpringJUnitConfig(ExtendedConfig::class) // <2>
class ExtendedTest : BaseTest() {
// class body...
}
----
<1> Configuration class defined in the superclass.
<2> Configuration class defined in the subclass.
In the next example, which uses context initializers, the `ApplicationContext` for
`ExtendedTest` is initialized by using `BaseInitializer` and `ExtendedInitializer`. Note,
however, that the order in which the initializers are invoked depends on whether they
implement Spring's `Ordered` interface or are annotated with Spring's `@Order` annotation
or the standard `@Priority` annotation. The following example shows how one class can
extend another and use both its own initializer and the superclass's initializer:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// ApplicationContext will be initialized by BaseInitializer
@SpringJUnitConfig(initializers = BaseInitializer.class) // <1>
class BaseTest {
// class body...
}
// ApplicationContext will be initialized by BaseInitializer
// and ExtendedInitializer
@SpringJUnitConfig(initializers = ExtendedInitializer.class) // <2>
class ExtendedTest extends BaseTest {
// class body...
}
----
<1> Initializer defined in the superclass.
<2> Initializer defined in the subclass.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// ApplicationContext will be initialized by BaseInitializer
@SpringJUnitConfig(initializers = [BaseInitializer::class]) // <1>
open class BaseTest {
// class body...
}
// ApplicationContext will be initialized by BaseInitializer
// and ExtendedInitializer
@SpringJUnitConfig(initializers = [ExtendedInitializer::class]) // <2>
class ExtendedTest : BaseTest() {
// class body...
}
----
<1> Initializer defined in the superclass.
<2> Initializer defined in the subclass.
[[testcontext-ctx-management-env-profiles]]
=== Context Configuration with Environment Profiles
The Spring Framework has first-class support for the notion of environments and profiles
(AKA "bean definition profiles"), and integration tests can be configured to activate
particular bean definition profiles for various testing scenarios. This is achieved by
annotating a test class with the `@ActiveProfiles` annotation and supplying a list of
profiles that should be activated when loading the `ApplicationContext` for the test.
NOTE: You can use `@ActiveProfiles` with any implementation of the `SmartContextLoader`
SPI, but `@ActiveProfiles` is not supported with implementations of the older
`ContextLoader` SPI.
Consider two examples with XML configuration and `@Configuration` classes:
[source,xml,indent=0,subs="verbatim,quotes"]
----
<!-- app-config.xml -->
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemaLocation="...">
<bean id="transferService"
class="com.bank.service.internal.DefaultTransferService">
<constructor-arg ref="accountRepository"/>
<constructor-arg ref="feePolicy"/>
</bean>
<bean id="accountRepository"
class="com.bank.repository.internal.JdbcAccountRepository">
<constructor-arg ref="dataSource"/>
</bean>
<bean id="feePolicy"
class="com.bank.service.internal.ZeroFeePolicy"/>
<beans profile="dev">
<jdbc:embedded-database id="dataSource">
<jdbc:script
location="classpath:com/bank/config/sql/schema.sql"/>
<jdbc:script
location="classpath:com/bank/config/sql/test-data.sql"/>
</jdbc:embedded-database>
</beans>
<beans profile="production">
<jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/>
</beans>
<beans profile="default">
<jdbc:embedded-database id="dataSource">
<jdbc:script
location="classpath:com/bank/config/sql/schema.sql"/>
</jdbc:embedded-database>
</beans>
</beans>
----
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// ApplicationContext will be loaded from "classpath:/app-config.xml"
@ContextConfiguration("/app-config.xml")
@ActiveProfiles("dev")
class TransferServiceTest {
@Autowired
TransferService transferService;
@Test
void testTransferService() {
// test the transferService
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// ApplicationContext will be loaded from "classpath:/app-config.xml"
@ContextConfiguration("/app-config.xml")
@ActiveProfiles("dev")
class TransferServiceTest {
@Autowired
lateinit var transferService: TransferService
@Test
fun testTransferService() {
// test the transferService
}
}
----
When `TransferServiceTest` is run, its `ApplicationContext` is loaded from the
`app-config.xml` configuration file in the root of the classpath. If you inspect
`app-config.xml`, you can see that the `accountRepository` bean has a dependency on a
`dataSource` bean. However, `dataSource` is not defined as a top-level bean. Instead,
`dataSource` is defined three times: in the `production` profile, in the `dev` profile,
and in the `default` profile.
By annotating `TransferServiceTest` with `@ActiveProfiles("dev")`, we instruct the Spring
TestContext Framework to load the `ApplicationContext` with the active profiles set to
`{"dev"}`. As a result, an embedded database is created and populated with test data, and
the `accountRepository` bean is wired with a reference to the development `DataSource`.
That is likely what we want in an integration test.
It is sometimes useful to assign beans to a `default` profile. Beans within the default
profile are included only when no other profile is specifically activated. You can use
this to define "`fallback`" beans to be used in the application's default state. For
example, you may explicitly provide a data source for `dev` and `production` profiles,
but define an in-memory data source as a default when neither of these is active.
The following code listings demonstrate how to implement the same configuration and
integration test with `@Configuration` classes instead of XML:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@Configuration
@Profile("dev")
public class StandaloneDataConfig {
@Bean
public DataSource dataSource() {
return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.addScript("classpath:com/bank/config/sql/test-data.sql")
.build();
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@Configuration
@Profile("dev")
class StandaloneDataConfig {
@Bean
fun dataSource(): DataSource {
return EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.addScript("classpath:com/bank/config/sql/test-data.sql")
.build()
}
}
----
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@Configuration
@Profile("production")
public class JndiDataConfig {
@Bean(destroyMethod="")
public DataSource dataSource() throws Exception {
Context ctx = new InitialContext();
return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@Configuration
@Profile("production")
class JndiDataConfig {
@Bean(destroyMethod = "")
fun dataSource(): DataSource {
val ctx = InitialContext()
return ctx.lookup("java:comp/env/jdbc/datasource") as DataSource
}
}
----
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@Configuration
@Profile("default")
public class DefaultDataConfig {
@Bean
public DataSource dataSource() {
return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.build();
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@Configuration
@Profile("default")
class DefaultDataConfig {
@Bean
fun dataSource(): DataSource {
return EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.build()
}
}
----
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@Configuration
public class TransferServiceConfig {
@Autowired DataSource dataSource;
@Bean
public TransferService transferService() {
return new DefaultTransferService(accountRepository(), feePolicy());
}
@Bean
public AccountRepository accountRepository() {
return new JdbcAccountRepository(dataSource);
}
@Bean
public FeePolicy feePolicy() {
return new ZeroFeePolicy();
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@Configuration
class TransferServiceConfig {
@Autowired
lateinit var dataSource: DataSource
@Bean
fun transferService(): TransferService {
return DefaultTransferService(accountRepository(), feePolicy())
}
@Bean
fun accountRepository(): AccountRepository {
return JdbcAccountRepository(dataSource)
}
@Bean
fun feePolicy(): FeePolicy {
return ZeroFeePolicy()
}
}
----
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig({
TransferServiceConfig.class,
StandaloneDataConfig.class,
JndiDataConfig.class,
DefaultDataConfig.class})
@ActiveProfiles("dev")
class TransferServiceTest {
@Autowired
TransferService transferService;
@Test
void testTransferService() {
// test the transferService
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig(
TransferServiceConfig::class,
StandaloneDataConfig::class,
JndiDataConfig::class,
DefaultDataConfig::class)
@ActiveProfiles("dev")
class TransferServiceTest {
@Autowired
lateinit var transferService: TransferService
@Test
fun testTransferService() {
// test the transferService
}
}
----
In this variation, we have split the XML configuration into four independent
`@Configuration` classes:
* `TransferServiceConfig`: Acquires a `dataSource` through dependency injection by using
`@Autowired`.
* `StandaloneDataConfig`: Defines a `dataSource` for an embedded database suitable for
developer tests.
* `JndiDataConfig`: Defines a `dataSource` that is retrieved from JNDI in a production
environment.
* `DefaultDataConfig`: Defines a `dataSource` for a default embedded database, in case no
profile is active.
As with the XML-based configuration example, we still annotate `TransferServiceTest` with
`@ActiveProfiles("dev")`, but this time we specify all four configuration classes by
using the `@ContextConfiguration` annotation. The body of the test class itself remains
completely unchanged.
It is often the case that a single set of profiles is used across multiple test classes
within a given project. Thus, to avoid duplicate declarations of the `@ActiveProfiles`
annotation, you can declare `@ActiveProfiles` once on a base class, and subclasses
automatically inherit the `@ActiveProfiles` configuration from the base class. In the
following example, the declaration of `@ActiveProfiles` (as well as other annotations)
has been moved to an abstract superclass, `AbstractIntegrationTest`:
NOTE: As of Spring Framework 5.3, test configuration may also be inherited from enclosing
classes. See <<testcontext-junit-jupiter-nested-test-configuration>> for details.
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig({
TransferServiceConfig.class,
StandaloneDataConfig.class,
JndiDataConfig.class,
DefaultDataConfig.class})
@ActiveProfiles("dev")
abstract class AbstractIntegrationTest {
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig(
TransferServiceConfig::class,
StandaloneDataConfig::class,
JndiDataConfig::class,
DefaultDataConfig::class)
@ActiveProfiles("dev")
abstract class AbstractIntegrationTest {
}
----
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// "dev" profile inherited from superclass
class TransferServiceTest extends AbstractIntegrationTest {
@Autowired
TransferService transferService;
@Test
void testTransferService() {
// test the transferService
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// "dev" profile inherited from superclass
class TransferServiceTest : AbstractIntegrationTest() {
@Autowired
lateinit var transferService: TransferService
@Test
fun testTransferService() {
// test the transferService
}
}
----
`@ActiveProfiles` also supports an `inheritProfiles` attribute that can be used to
disable the inheritance of active profiles, as the following example shows:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// "dev" profile overridden with "production"
@ActiveProfiles(profiles = "production", inheritProfiles = false)
class ProductionTransferServiceTest extends AbstractIntegrationTest {
// test body
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// "dev" profile overridden with "production"
@ActiveProfiles("production", inheritProfiles = false)
class ProductionTransferServiceTest : AbstractIntegrationTest() {
// test body
}
----
[[testcontext-ctx-management-env-profiles-ActiveProfilesResolver]]
Furthermore, it is sometimes necessary to resolve active profiles for tests
programmatically instead of declaratively -- for example, based on:
* The current operating system.
* Whether tests are being run on a continuous integration build server.
* The presence of certain environment variables.
* The presence of custom class-level annotations.
* Other concerns.
To resolve active bean definition profiles programmatically, you can implement
a custom `ActiveProfilesResolver` and register it by using the `resolver`
attribute of `@ActiveProfiles`. For further information, see the corresponding
{api-spring-framework}/test/context/ActiveProfilesResolver.html[javadoc].
The following example demonstrates how to implement and register a custom
`OperatingSystemActiveProfilesResolver`:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// "dev" profile overridden programmatically via a custom resolver
@ActiveProfiles(
resolver = OperatingSystemActiveProfilesResolver.class,
inheritProfiles = false)
class TransferServiceTest extends AbstractIntegrationTest {
// test body
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// "dev" profile overridden programmatically via a custom resolver
@ActiveProfiles(
resolver = OperatingSystemActiveProfilesResolver::class,
inheritProfiles = false)
class TransferServiceTest : AbstractIntegrationTest() {
// test body
}
----
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
public class OperatingSystemActiveProfilesResolver implements ActiveProfilesResolver {
@Override
public String[] resolve(Class<?> testClass) {
String profile = ...;
// determine the value of profile based on the operating system
return new String[] {profile};
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
class OperatingSystemActiveProfilesResolver : ActiveProfilesResolver {
override fun resolve(testClass: Class<*>): Array<String> {
val profile: String = ...
// determine the value of profile based on the operating system
return arrayOf(profile)
}
}
----
[[testcontext-ctx-management-property-sources]]
=== Context Configuration with Test Property Sources
The Spring Framework has first-class support for the notion of an environment with a
hierarchy of property sources, and you can configure integration tests with test-specific
property sources. In contrast to the `@PropertySource` annotation used on
`@Configuration` classes, you can declare the `@TestPropertySource` annotation on a test
class to declare resource locations for test properties files or inlined properties.
These test property sources are added to the set of `PropertySources` in the
`Environment` for the `ApplicationContext` loaded for the annotated integration test.
[NOTE]
====
You can use `@TestPropertySource` with any implementation of the `SmartContextLoader`
SPI, but `@TestPropertySource` is not supported with implementations of the older
`ContextLoader` SPI.
Implementations of `SmartContextLoader` gain access to merged test property source values
through the `getPropertySourceLocations()` and `getPropertySourceProperties()` methods in
`MergedContextConfiguration`.
====
==== Declaring Test Property Sources
You can configure test properties files by using the `locations` or `value` attribute of
`@TestPropertySource`.
Both traditional and XML-based properties file formats are supported -- for example,
`"classpath:/com/example/test.properties"` or `"file:///path/to/file.xml"`.
Each path is interpreted as a Spring `Resource`. A plain path (for example,
`"test.properties"`) is treated as a classpath resource that is relative to the package
in which the test class is defined. A path starting with a slash is treated as an
absolute classpath resource (for example: `"/org/example/test.xml"`). A path that
references a URL (for example, a path prefixed with `classpath:`, `file:`, or `http:`) is
loaded by using the specified resource protocol. Resource location wildcards (such as
`**/*.properties`) are not permitted: Each location must evaluate to exactly one
`.properties` or `.xml` resource.
The following example uses a test properties file:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ContextConfiguration
@TestPropertySource("/test.properties") // <1>
class MyIntegrationTests {
// class body...
}
----
<1> Specifying a properties file with an absolute path.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ContextConfiguration
@TestPropertySource("/test.properties") // <1>
class MyIntegrationTests {
// class body...
}
----
<1> Specifying a properties file with an absolute path.
You can configure inlined properties in the form of key-value pairs by using the
`properties` attribute of `@TestPropertySource`, as shown in the next example. All
key-value pairs are added to the enclosing `Environment` as a single test
`PropertySource` with the highest precedence.
The supported syntax for key-value pairs is the same as the syntax defined for entries in
a Java properties file:
* `key=value`
* `key:value`
* `key value`
The following example sets two inlined properties:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ContextConfiguration
@TestPropertySource(properties = {"timezone = GMT", "port: 4242"}) // <1>
class MyIntegrationTests {
// class body...
}
----
<1> Setting two properties by using two variations of the key-value syntax.
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ContextConfiguration
@TestPropertySource(properties = ["timezone = GMT", "port: 4242"]) // <1>
class MyIntegrationTests {
// class body...
}
----
<1> Setting two properties by using two variations of the key-value syntax.
[NOTE]
====
As of Spring Framework 5.2, `@TestPropertySource` can be used as _repeatable annotation_.
That means that you can have multiple declarations of `@TestPropertySource` on a single
test class, with the `locations` and `properties` from later `@TestPropertySource`
annotations overriding those from previous `@TestPropertySource` annotations.
In addition, you may declare multiple composed annotations on a test class that are each
meta-annotated with `@TestPropertySource`, and all of those `@TestPropertySource`
declarations will contribute to your test property sources.
Directly present `@TestPropertySource` annotations always take precedence over
meta-present `@TestPropertySource` annotations. In other words, `locations` and
`properties` from a directly present `@TestPropertySource` annotation will override the
`locations` and `properties` from a `@TestPropertySource` annotation used as a
meta-annotation.
====
==== Default Properties File Detection
If `@TestPropertySource` is declared as an empty annotation (that is, without explicit
values for the `locations` or `properties` attributes), an attempt is made to detect a
default properties file relative to the class that declared the annotation. For example,
if the annotated test class is `com.example.MyTest`, the corresponding default properties
file is `classpath:com/example/MyTest.properties`. If the default cannot be detected, an
`IllegalStateException` is thrown.
==== Precedence
Test properties have higher precedence than those defined in the operating system's
environment, Java system properties, or property sources added by the application
declaratively by using `@PropertySource` or programmatically. Thus, test properties can
be used to selectively override properties loaded from system and application property
sources. Furthermore, inlined properties have higher precedence than properties loaded
from resource locations. Note, however, that properties registered via
<<testcontext-ctx-management-dynamic-property-sources, `@DynamicPropertySource`>> have
higher precedence than those loaded via `@TestPropertySource`.
In the next example, the `timezone` and `port` properties and any properties defined in
`"/test.properties"` override any properties of the same name that are defined in system
and application property sources. Furthermore, if the `"/test.properties"` file defines
entries for the `timezone` and `port` properties those are overridden by the inlined
properties declared by using the `properties` attribute. The following example shows how
to specify properties both in a file and inline:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ContextConfiguration
@TestPropertySource(
locations = "/test.properties",
properties = {"timezone = GMT", "port: 4242"}
)
class MyIntegrationTests {
// class body...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ContextConfiguration
@TestPropertySource("/test.properties",
properties = ["timezone = GMT", "port: 4242"]
)
class MyIntegrationTests {
// class body...
}
----
==== Inheriting and Overriding Test Property Sources
`@TestPropertySource` supports boolean `inheritLocations` and `inheritProperties`
attributes that denote whether resource locations for properties files and inlined
properties declared by superclasses should be inherited. The default value for both flags
is `true`. This means that a test class inherits the locations and inlined properties
declared by any superclasses. Specifically, the locations and inlined properties for a
test class are appended to the locations and inlined properties declared by superclasses.
Thus, subclasses have the option of extending the locations and inlined properties. Note
that properties that appear later shadow (that is, override) properties of the same name
that appear earlier. In addition, the aforementioned precedence rules apply for inherited
test property sources as well.
If the `inheritLocations` or `inheritProperties` attribute in `@TestPropertySource` is
set to `false`, the locations or inlined properties, respectively, for the test class
shadow and effectively replace the configuration defined by superclasses.
NOTE: As of Spring Framework 5.3, test configuration may also be inherited from enclosing
classes. See <<testcontext-junit-jupiter-nested-test-configuration>> for details.
In the next example, the `ApplicationContext` for `BaseTest` is loaded by using only the
`base.properties` file as a test property source. In contrast, the `ApplicationContext`
for `ExtendedTest` is loaded by using the `base.properties` and `extended.properties`
files as test property source locations. The following example shows how to define
properties in both a subclass and its superclass by using `properties` files:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@TestPropertySource("base.properties")
@ContextConfiguration
class BaseTest {
// ...
}
@TestPropertySource("extended.properties")
@ContextConfiguration
class ExtendedTest extends BaseTest {
// ...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@TestPropertySource("base.properties")
@ContextConfiguration
open class BaseTest {
// ...
}
@TestPropertySource("extended.properties")
@ContextConfiguration
class ExtendedTest : BaseTest() {
// ...
}
----
In the next example, the `ApplicationContext` for `BaseTest` is loaded by using only the
inlined `key1` property. In contrast, the `ApplicationContext` for `ExtendedTest` is
loaded by using the inlined `key1` and `key2` properties. The following example shows how
to define properties in both a subclass and its superclass by using inline properties:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@TestPropertySource(properties = "key1 = value1")
@ContextConfiguration
class BaseTest {
// ...
}
@TestPropertySource(properties = "key2 = value2")
@ContextConfiguration
class ExtendedTest extends BaseTest {
// ...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@TestPropertySource(properties = ["key1 = value1"])
@ContextConfiguration
open class BaseTest {
// ...
}
@TestPropertySource(properties = ["key2 = value2"])
@ContextConfiguration
class ExtendedTest : BaseTest() {
// ...
}
----
[[testcontext-ctx-management-dynamic-property-sources]]
=== Context Configuration with Dynamic Property Sources
As of Spring Framework 5.2.5, the TestContext framework provides support for _dynamic_
properties via the `@DynamicPropertySource` annotation. This annotation can be used in
integration tests that need to add properties with dynamic values to the set of
`PropertySources` in the `Environment` for the `ApplicationContext` loaded for the
integration test.
[NOTE]
====
The `@DynamicPropertySource` annotation and its supporting infrastructure were
originally designed to allow properties from
https://www.testcontainers.org/[Testcontainers] based tests to be exposed easily to
Spring integration tests. However, this feature may also be used with any form of
external resource whose lifecycle is maintained outside the test's `ApplicationContext`.
====
In contrast to the <<testcontext-ctx-management-property-sources,`@TestPropertySource`>>
annotation that is applied at the class level, `@DynamicPropertySource` must be applied
to a `static` method that accepts a single `DynamicPropertyRegistry` argument which is
used to add _name-value_ pairs to the `Environment`. Values are dynamic and provided via
a `Supplier` which is only invoked when the property is resolved. Typically, method
references are used to supply values, as can be seen in the following example which uses
the Testcontainers project to manage a Redis container outside of the Spring
`ApplicationContext`. The IP address and port of the managed Redis container are made
available to components within the test's `ApplicationContext` via the `redis.host` and
`redis.port` properties. These properties can be accessed via Spring's `Environment`
abstraction or injected directly into Spring-managed components for example, via
`@Value("${redis.host}")` and `@Value("${redis.port}")`, respectively.
[TIP]
====
If you use `@DynamicPropertySource` in a base class and discover that tests in subclasses
fail because the dynamic properties change between subclasses, you may need to annotate
your base class with <<spring-testing-annotation-dirtiescontext, `@DirtiesContext`>> to
ensure that each subclass gets its own `ApplicationContext` with the correct dynamic
properties.
====
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig(/* ... */)
@Testcontainers
class ExampleIntegrationTests {
@Container
static GenericContainer redis =
new GenericContainer("redis:5.0.3-alpine").withExposedPorts(6379);
@DynamicPropertySource
static void redisProperties(DynamicPropertyRegistry registry) {
registry.add("redis.host", redis::getHost);
registry.add("redis.port", redis::getFirstMappedPort);
}
// tests ...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig(/* ... */)
@Testcontainers
class ExampleIntegrationTests {
companion object {
@Container
@JvmStatic
val redis: GenericContainer =
GenericContainer("redis:5.0.3-alpine").withExposedPorts(6379)
@DynamicPropertySource
@JvmStatic
fun redisProperties(registry: DynamicPropertyRegistry) {
registry.add("redis.host", redis::getHost)
registry.add("redis.port", redis::getFirstMappedPort)
}
}
// tests ...
}
----
==== Precedence
Dynamic properties have higher precedence than those loaded from `@TestPropertySource`,
the operating system's environment, Java system properties, or property sources added by
the application declaratively by using `@PropertySource` or programmatically. Thus,
dynamic properties can be used to selectively override properties loaded via
`@TestPropertySource`, system property sources, and application property sources.
[[testcontext-ctx-management-web]]
=== Loading a `WebApplicationContext`
To instruct the TestContext framework to load a `WebApplicationContext` instead of a
standard `ApplicationContext`, you can annotate the respective test class with
`@WebAppConfiguration`.
The presence of `@WebAppConfiguration` on your test class instructs the TestContext
framework (TCF) that a `WebApplicationContext` (WAC) should be loaded for your
integration tests. In the background, the TCF makes sure that a `MockServletContext` is
created and supplied to your test's WAC. By default, the base resource path for your
`MockServletContext` is set to `src/main/webapp`. This is interpreted as a path relative
to the root of your JVM (normally the path to your project). If you are familiar with the
directory structure of a web application in a Maven project, you know that
`src/main/webapp` is the default location for the root of your WAR. If you need to
override this default, you can provide an alternate path to the `@WebAppConfiguration`
annotation (for example, `@WebAppConfiguration("src/test/webapp")`). If you wish to
reference a base resource path from the classpath instead of the file system, you can use
Spring's `classpath:` prefix.
Note that Spring's testing support for `WebApplicationContext` implementations is on par
with its support for standard `ApplicationContext` implementations. When testing with a
`WebApplicationContext`, you are free to declare XML configuration files, Groovy scripts,
or `@Configuration` classes by using `@ContextConfiguration`. You are also free to use
any other test annotations, such as `@ActiveProfiles`, `@TestExecutionListeners`, `@Sql`,
`@Rollback`, and others.
The remaining examples in this section show some of the various configuration options for
loading a `WebApplicationContext`. The following example shows the TestContext
framework's support for convention over configuration:
.Conventions
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// defaults to "file:src/main/webapp"
@WebAppConfiguration
// detects "WacTests-context.xml" in the same package
// or static nested @Configuration classes
@ContextConfiguration
class WacTests {
//...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// defaults to "file:src/main/webapp"
@WebAppConfiguration
// detects "WacTests-context.xml" in the same package
// or static nested @Configuration classes
@ContextConfiguration
class WacTests {
//...
}
----
If you annotate a test class with `@WebAppConfiguration` without specifying a resource
base path, the resource path effectively defaults to `file:src/main/webapp`. Similarly,
if you declare `@ContextConfiguration` without specifying resource `locations`, component
`classes`, or context `initializers`, Spring tries to detect the presence of your
configuration by using conventions (that is, `WacTests-context.xml` in the same package
as the `WacTests` class or static nested `@Configuration` classes).
The following example shows how to explicitly declare a resource base path with
`@WebAppConfiguration` and an XML resource location with `@ContextConfiguration`:
.Default resource semantics
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// file system resource
@WebAppConfiguration("webapp")
// classpath resource
@ContextConfiguration("/spring/test-servlet-config.xml")
class WacTests {
//...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// file system resource
@WebAppConfiguration("webapp")
// classpath resource
@ContextConfiguration("/spring/test-servlet-config.xml")
class WacTests {
//...
}
----
The important thing to note here is the different semantics for paths with these two
annotations. By default, `@WebAppConfiguration` resource paths are file system based,
whereas `@ContextConfiguration` resource locations are classpath based.
The following example shows that we can override the default resource semantics for both
annotations by specifying a Spring resource prefix:
.Explicit resource semantics
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// classpath resource
@WebAppConfiguration("classpath:test-web-resources")
// file system resource
@ContextConfiguration("file:src/main/webapp/WEB-INF/servlet-config.xml")
class WacTests {
//...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// classpath resource
@WebAppConfiguration("classpath:test-web-resources")
// file system resource
@ContextConfiguration("file:src/main/webapp/WEB-INF/servlet-config.xml")
class WacTests {
//...
}
----
Contrast the comments in this example with the previous example.
[[testcontext-ctx-management-web-mocks]]
=== Working with Web Mocks
To provide comprehensive web testing support, the TestContext framework has a
`ServletTestExecutionListener` that is enabled by default. When testing against a
`WebApplicationContext`, this <<testcontext-key-abstractions, `TestExecutionListener`>>
sets up default thread-local state by using Spring Web's `RequestContextHolder` before
each test method and creates a `MockHttpServletRequest`, a `MockHttpServletResponse`, and
a `ServletWebRequest` based on the base resource path configured with
`@WebAppConfiguration`. `ServletTestExecutionListener` also ensures that the
`MockHttpServletResponse` and `ServletWebRequest` can be injected into the test instance,
and, once the test is complete, it cleans up thread-local state.
Once you have a `WebApplicationContext` loaded for your test, you might find that you
need to interact with the web mocks -- for example, to set up your test fixture or to
perform assertions after invoking your web component. The following example shows which
mocks can be autowired into your test instance. Note that the `WebApplicationContext` and
`MockServletContext` are both cached across the test suite, whereas the other mocks are
managed per test method by the `ServletTestExecutionListener`.
.Injecting mocks
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitWebConfig
class WacTests {
@Autowired
WebApplicationContext wac; // cached
@Autowired
MockServletContext servletContext; // cached
@Autowired
MockHttpSession session;
@Autowired
MockHttpServletRequest request;
@Autowired
MockHttpServletResponse response;
@Autowired
ServletWebRequest webRequest;
//...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitWebConfig
class WacTests {
@Autowired
lateinit var wac: WebApplicationContext // cached
@Autowired
lateinit var servletContext: MockServletContext // cached
@Autowired
lateinit var session: MockHttpSession
@Autowired
lateinit var request: MockHttpServletRequest
@Autowired
lateinit var response: MockHttpServletResponse
@Autowired
lateinit var webRequest: ServletWebRequest
//...
}
----
[[testcontext-ctx-management-caching]]
=== Context Caching
Once the TestContext framework loads an `ApplicationContext` (or `WebApplicationContext`)
for a test, that context is cached and reused for all subsequent tests that declare the
same unique context configuration within the same test suite. To understand how caching
works, it is important to understand what is meant by "`unique`" and "`test suite.`"
An `ApplicationContext` can be uniquely identified by the combination of configuration
parameters that is used to load it. Consequently, the unique combination of configuration
parameters is used to generate a key under which the context is cached. The TestContext
framework uses the following configuration parameters to build the context cache key:
* `locations` (from `@ContextConfiguration`)
* `classes` (from `@ContextConfiguration`)
* `contextInitializerClasses` (from `@ContextConfiguration`)
* `contextCustomizers` (from `ContextCustomizerFactory`) this includes
`@DynamicPropertySource` methods as well as various features from Spring Boot's
testing support such as `@MockBean` and `@SpyBean`.
* `contextLoader` (from `@ContextConfiguration`)
* `parent` (from `@ContextHierarchy`)
* `activeProfiles` (from `@ActiveProfiles`)
* `propertySourceLocations` (from `@TestPropertySource`)
* `propertySourceProperties` (from `@TestPropertySource`)
* `resourceBasePath` (from `@WebAppConfiguration`)
For example, if `TestClassA` specifies `{"app-config.xml", "test-config.xml"}` for the
`locations` (or `value`) attribute of `@ContextConfiguration`, the TestContext framework
loads the corresponding `ApplicationContext` and stores it in a `static` context cache
under a key that is based solely on those locations. So, if `TestClassB` also defines
`{"app-config.xml", "test-config.xml"}` for its locations (either explicitly or
implicitly through inheritance) but does not define `@WebAppConfiguration`, a different
`ContextLoader`, different active profiles, different context initializers, different
test property sources, or a different parent context, then the same `ApplicationContext`
is shared by both test classes. This means that the setup cost for loading an application
context is incurred only once (per test suite), and subsequent test execution is much
faster.
.Test suites and forked processes
[NOTE]
====
The Spring TestContext framework stores application contexts in a static cache. This
means that the context is literally stored in a `static` variable. In other words, if
tests run in separate processes, the static cache is cleared between each test
execution, which effectively disables the caching mechanism.
To benefit from the caching mechanism, all tests must run within the same process or test
suite. This can be achieved by executing all tests as a group within an IDE. Similarly,
when executing tests with a build framework such as Ant, Maven, or Gradle, it is
important to make sure that the build framework does not fork between tests. For example,
if the
https://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html#forkMode[`forkMode`]
for the Maven Surefire plug-in is set to `always` or `pertest`, the TestContext framework
cannot cache application contexts between test classes, and the build process runs
significantly more slowly as a result.
====
The size of the context cache is bounded with a default maximum size of 32. Whenever the
maximum size is reached, a least recently used (LRU) eviction policy is used to evict and
close stale contexts. You can configure the maximum size from the command line or a build
script by setting a JVM system property named `spring.test.context.cache.maxSize`. As an
alternative, you can set the same property via the
<<appendix.adoc#appendix-spring-properties,`SpringProperties`>> mechanism.
Since having a large number of application contexts loaded within a given test suite can
cause the suite to take an unnecessarily long time to run, it is often beneficial to
know exactly how many contexts have been loaded and cached. To view the statistics for
the underlying context cache, you can set the log level for the
`org.springframework.test.context.cache` logging category to `DEBUG`.
In the unlikely case that a test corrupts the application context and requires reloading
(for example, by modifying a bean definition or the state of an application object), you
can annotate your test class or test method with `@DirtiesContext` (see the discussion of
`@DirtiesContext` in <<spring-testing-annotation-dirtiescontext, Spring Testing
Annotations>>). This instructs Spring to remove the context from the cache and rebuild
the application context before running the next test that requires the same application
context. Note that support for the `@DirtiesContext` annotation is provided by the
`DirtiesContextBeforeModesTestExecutionListener` and the
`DirtiesContextTestExecutionListener`, which are enabled by default.
.ApplicationContext lifecycle and console logging
[NOTE]
====
When you need to debug a test executed with the Spring TestContext Framework, it can be
useful to analyze the console output (that is, output to the `SYSOUT` and `SYSERR`
streams). Some build tools and IDEs are able to associate console output with a given
test; however, some console output cannot be easily associated with a given test.
With regard to console logging triggered by the Spring Framework itself or by components
registered in the `ApplicationContext`, it is important to understand the lifecycle of an
`ApplicationContext` that has been loaded by the Spring TestContext Framework within a
test suite.
The `ApplicationContext` for a test is typically loaded when an instance of the test
class is being prepared -- for example, to perform dependency injection into `@Autowired`
fields of the test instance. This means that any console logging triggered during the
initialization of the `ApplicationContext` typically cannot be associated with an
individual test method. However, if the context is closed immediately before the
execution of a test method according to <<spring-testing-annotation-dirtiescontext>>
semantics, a new instance of the context will be loaded just prior to execution of the
test method. In the latter scenario, an IDE or build tool may potentially associate
console logging with the individual test method.
The `ApplicationContext` for a test can be closed via one of the following scenarios.
* The context is closed according to `@DirtiesContext` semantics.
* The context is closed because it has been automatically evicted from the cache
according to the LRU eviction policy.
* The context is closed via a JVM shutdown hook when the JVM for the test suite
terminates.
If the context is closed according to `@DirtiesContext` semantics after a particular test
method, an IDE or build tool may potentially associate console logging with the
individual test method. If the context is closed according to `@DirtiesContext` semantics
after a test class, any console logging triggered during the shutdown of the
`ApplicationContext` cannot be associated with an individual test method. Similarly, any
console logging triggered during the shutdown phase via a JVM shutdown hook cannot be
associated with an individual test method.
When a Spring `ApplicationContext` is closed via a JVM shutdown hook, callbacks executed
during the shutdown phase are executed on a thread named `SpringContextShutdownHook`. So,
if you wish to disable console logging triggered when the `ApplicationContext` is closed
via a JVM shutdown hook, you may be able to register a custom filter with your logging
framework that allows you to ignore any logging initiated by that thread.
====
[[testcontext-ctx-management-ctx-hierarchies]]
=== Context Hierarchies
When writing integration tests that rely on a loaded Spring `ApplicationContext`, it is
often sufficient to test against a single context. However, there are times when it is
beneficial or even necessary to test against a hierarchy of `ApplicationContext`
instances. For example, if you are developing a Spring MVC web application, you typically
have a root `WebApplicationContext` loaded by Spring's `ContextLoaderListener` and a
child `WebApplicationContext` loaded by Spring's `DispatcherServlet`. This results in a
parent-child context hierarchy where shared components and infrastructure configuration
are declared in the root context and consumed in the child context by web-specific
components. Another use case can be found in Spring Batch applications, where you often
have a parent context that provides configuration for shared batch infrastructure and a
child context for the configuration of a specific batch job.
You can write integration tests that use context hierarchies by declaring context
configuration with the `@ContextHierarchy` annotation, either on an individual test class
or within a test class hierarchy. If a context hierarchy is declared on multiple classes
within a test class hierarchy, you can also merge or override the context configuration
for a specific, named level in the context hierarchy. When merging configuration for a
given level in the hierarchy, the configuration resource type (that is, XML configuration
files or component classes) must be consistent. Otherwise, it is perfectly acceptable to
have different levels in a context hierarchy configured using different resource types.
The remaining JUnit Jupiter based examples in this section show common configuration
scenarios for integration tests that require the use of context hierarchies.
**Single test class with context hierarchy**
--
`ControllerIntegrationTests` represents a typical integration testing scenario for a
Spring MVC web application by declaring a context hierarchy that consists of two levels,
one for the root `WebApplicationContext` (loaded by using the `TestAppConfig`
`@Configuration` class) and one for the dispatcher servlet `WebApplicationContext`
(loaded by using the `WebConfig` `@Configuration` class). The `WebApplicationContext`
that is autowired into the test instance is the one for the child context (that is, the
lowest context in the hierarchy). The following listing shows this configuration scenario:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
@WebAppConfiguration
@ContextHierarchy({
@ContextConfiguration(classes = TestAppConfig.class),
@ContextConfiguration(classes = WebConfig.class)
})
class ControllerIntegrationTests {
@Autowired
WebApplicationContext wac;
// ...
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
@WebAppConfiguration
@ContextHierarchy(
ContextConfiguration(classes = [TestAppConfig::class]),
ContextConfiguration(classes = [WebConfig::class]))
class ControllerIntegrationTests {
@Autowired
lateinit var wac: WebApplicationContext
// ...
}
----
--
**Class hierarchy with implicit parent context**
--
The test classes in this example define a context hierarchy within a test class
hierarchy. `AbstractWebTests` declares the configuration for a root
`WebApplicationContext` in a Spring-powered web application. Note, however, that
`AbstractWebTests` does not declare `@ContextHierarchy`. Consequently, subclasses of
`AbstractWebTests` can optionally participate in a context hierarchy or follow the
standard semantics for `@ContextConfiguration`. `SoapWebServiceTests` and
`RestWebServiceTests` both extend `AbstractWebTests` and define a context hierarchy by
using `@ContextHierarchy`. The result is that three application contexts are loaded (one
for each declaration of `@ContextConfiguration`), and the application context loaded
based on the configuration in `AbstractWebTests` is set as the parent context for each of
the contexts loaded for the concrete subclasses. The following listing shows this
configuration scenario:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
@WebAppConfiguration
@ContextConfiguration("file:src/main/webapp/WEB-INF/applicationContext.xml")
public abstract class AbstractWebTests {}
@ContextHierarchy(@ContextConfiguration("/spring/soap-ws-config.xml"))
public class SoapWebServiceTests extends AbstractWebTests {}
@ContextHierarchy(@ContextConfiguration("/spring/rest-ws-config.xml"))
public class RestWebServiceTests extends AbstractWebTests {}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
@WebAppConfiguration
@ContextConfiguration("file:src/main/webapp/WEB-INF/applicationContext.xml")
abstract class AbstractWebTests
@ContextHierarchy(ContextConfiguration("/spring/soap-ws-config.xml"))
class SoapWebServiceTests : AbstractWebTests()
@ContextHierarchy(ContextConfiguration("/spring/rest-ws-config.xml"))
class RestWebServiceTests : AbstractWebTests()
----
--
**Class hierarchy with merged context hierarchy configuration**
--
The classes in this example show the use of named hierarchy levels in order to merge the
configuration for specific levels in a context hierarchy. `BaseTests` defines two levels
in the hierarchy, `parent` and `child`. `ExtendedTests` extends `BaseTests` and instructs
the Spring TestContext Framework to merge the context configuration for the `child`
hierarchy level, by ensuring that the names declared in the `name` attribute in
`@ContextConfiguration` are both `child`. The result is that three application contexts
are loaded: one for `/app-config.xml`, one for `/user-config.xml`, and one for
`{"/user-config.xml", "/order-config.xml"}`. As with the previous example, the
application context loaded from `/app-config.xml` is set as the parent context for the
contexts loaded from `/user-config.xml` and `{"/user-config.xml", "/order-config.xml"}`.
The following listing shows this configuration scenario:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
@ContextHierarchy({
@ContextConfiguration(name = "parent", locations = "/app-config.xml"),
@ContextConfiguration(name = "child", locations = "/user-config.xml")
})
class BaseTests {}
@ContextHierarchy(
@ContextConfiguration(name = "child", locations = "/order-config.xml")
)
class ExtendedTests extends BaseTests {}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
@ContextHierarchy(
ContextConfiguration(name = "parent", locations = ["/app-config.xml"]),
ContextConfiguration(name = "child", locations = ["/user-config.xml"]))
open class BaseTests {}
@ContextHierarchy(
ContextConfiguration(name = "child", locations = ["/order-config.xml"])
)
class ExtendedTests : BaseTests() {}
----
--
**Class hierarchy with overridden context hierarchy configuration**
--
In contrast to the previous example, this example demonstrates how to override the
configuration for a given named level in a context hierarchy by setting the
`inheritLocations` flag in `@ContextConfiguration` to `false`. Consequently, the
application context for `ExtendedTests` is loaded only from `/test-user-config.xml` and
has its parent set to the context loaded from `/app-config.xml`. The following listing
shows this configuration scenario:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
@ContextHierarchy({
@ContextConfiguration(name = "parent", locations = "/app-config.xml"),
@ContextConfiguration(name = "child", locations = "/user-config.xml")
})
class BaseTests {}
@ContextHierarchy(
@ContextConfiguration(
name = "child",
locations = "/test-user-config.xml",
inheritLocations = false
))
class ExtendedTests extends BaseTests {}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
@ContextHierarchy(
ContextConfiguration(name = "parent", locations = ["/app-config.xml"]),
ContextConfiguration(name = "child", locations = ["/user-config.xml"]))
open class BaseTests {}
@ContextHierarchy(
ContextConfiguration(
name = "child",
locations = ["/test-user-config.xml"],
inheritLocations = false
))
class ExtendedTests : BaseTests() {}
----
.Dirtying a context within a context hierarchy
NOTE: If you use `@DirtiesContext` in a test whose context is configured as part of a
context hierarchy, you can use the `hierarchyMode` flag to control how the context cache
is cleared. For further details, see the discussion of `@DirtiesContext` in
<<spring-testing-annotation-dirtiescontext, Spring Testing Annotations>> and the
{api-spring-framework}/test/annotation/DirtiesContext.html[`@DirtiesContext`] javadoc.
--
[[testcontext-fixture-di]]
== Dependency Injection of Test Fixtures
When you use the `DependencyInjectionTestExecutionListener` (which is configured by
default), the dependencies of your test instances are injected from beans in the
application context that you configured with `@ContextConfiguration` or related
annotations. You may use setter injection, field injection, or both, depending on
which annotations you choose and whether you place them on setter methods or fields.
If you are using JUnit Jupiter you may also optionally use constructor injection
(see <<testcontext-junit-jupiter-di>>). For consistency with Spring's annotation-based
injection support, you may also use Spring's `@Autowired` annotation or the `@Inject`
annotation from JSR-330 for field and setter injection.
TIP: For testing frameworks other than JUnit Jupiter, the TestContext framework does not
participate in instantiation of the test class. Thus, the use of `@Autowired` or
`@Inject` for constructors has no effect for test classes.
NOTE: Although field injection is discouraged in production code, field injection is
actually quite natural in test code. The rationale for the difference is that you will
never instantiate your test class directly. Consequently, there is no need to be able to
invoke a `public` constructor or setter method on your test class.
Because `@Autowired` is used to perform <<core.adoc#beans-factory-autowire, autowiring by
type>>, if you have multiple bean definitions of the same type, you cannot rely on this
approach for those particular beans. In that case, you can use `@Autowired` in
conjunction with `@Qualifier`. You can also choose to use `@Inject` in conjunction with
`@Named`. Alternatively, if your test class has access to its `ApplicationContext`, you
can perform an explicit lookup by using (for example) a call to
`applicationContext.getBean("titleRepository", TitleRepository.class)`.
If you do not want dependency injection applied to your test instances, do not annotate
fields or setter methods with `@Autowired` or `@Inject`. Alternatively, you can disable
dependency injection altogether by explicitly configuring your class with
`@TestExecutionListeners` and omitting `DependencyInjectionTestExecutionListener.class`
from the list of listeners.
Consider the scenario of testing a `HibernateTitleRepository` class, as outlined in the
<<integration-testing-goals, Goals>> section. The next two code listings demonstrate the
use of `@Autowired` on fields and setter methods. The application context configuration
is presented after all sample code listings.
[NOTE]
====
The dependency injection behavior in the following code listings is not specific to JUnit
Jupiter. The same DI techniques can be used in conjunction with any supported testing
framework.
The following examples make calls to static assertion methods, such as `assertNotNull()`,
but without prepending the call with `Assertions`. In such cases, assume that the method
was properly imported through an `import static` declaration that is not shown in the
example.
====
The first code listing shows a JUnit Jupiter based implementation of the test class that
uses `@Autowired` for field injection:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")
class HibernateTitleRepositoryTests {
// this instance will be dependency injected by type
@Autowired
HibernateTitleRepository titleRepository;
@Test
void findById() {
Title title = titleRepository.findById(new Long(10));
assertNotNull(title);
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")
class HibernateTitleRepositoryTests {
// this instance will be dependency injected by type
@Autowired
lateinit var titleRepository: HibernateTitleRepository
@Test
fun findById() {
val title = titleRepository.findById(10)
assertNotNull(title)
}
}
----
Alternatively, you can configure the class to use `@Autowired` for setter injection, as
follows:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ExtendWith(SpringExtension.class)
// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")
class HibernateTitleRepositoryTests {
// this instance will be dependency injected by type
HibernateTitleRepository titleRepository;
@Autowired
void setTitleRepository(HibernateTitleRepository titleRepository) {
this.titleRepository = titleRepository;
}
@Test
void findById() {
Title title = titleRepository.findById(new Long(10));
assertNotNull(title);
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ExtendWith(SpringExtension::class)
// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")
class HibernateTitleRepositoryTests {
// this instance will be dependency injected by type
lateinit var titleRepository: HibernateTitleRepository
@Autowired
fun setTitleRepository(titleRepository: HibernateTitleRepository) {
this.titleRepository = titleRepository
}
@Test
fun findById() {
val title = titleRepository.findById(10)
assertNotNull(title)
}
}
----
The preceding code listings use the same XML context file referenced by the
`@ContextConfiguration` annotation (that is, `repository-config.xml`). The following
shows this configuration:
[source,xml,indent=0,subs="verbatim,quotes"]
----
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">
<!-- this bean will be injected into the HibernateTitleRepositoryTests class -->
<bean id="titleRepository" class="com.foo.repository.hibernate.HibernateTitleRepository">
<property name="sessionFactory" ref="sessionFactory"/>
</bean>
<bean id="sessionFactory" class="org.springframework.orm.hibernate5.LocalSessionFactoryBean">
<!-- configuration elided for brevity -->
</bean>
</beans>
----
[NOTE]
=====
If you are extending from a Spring-provided test base class that happens to use
`@Autowired` on one of its setter methods, you might have multiple beans of the affected
type defined in your application context (for example, multiple `DataSource` beans). In
such a case, you can override the setter method and use the `@Qualifier` annotation to
indicate a specific target bean, as follows (but make sure to delegate to the overridden
method in the superclass as well):
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// ...
@Autowired
@Override
public void setDataSource(@Qualifier("myDataSource") DataSource dataSource) {
super.setDataSource(dataSource);
}
// ...
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// ...
@Autowired
override fun setDataSource(@Qualifier("myDataSource") dataSource: DataSource) {
super.setDataSource(dataSource)
}
// ...
----
The specified qualifier value indicates the specific `DataSource` bean to inject,
narrowing the set of type matches to a specific bean. Its value is matched against
`<qualifier>` declarations within the corresponding `<bean>` definitions. The bean name
is used as a fallback qualifier value, so you can effectively also point to a specific
bean by name there (as shown earlier, assuming that `myDataSource` is the bean `id`).
=====
[[testcontext-web-scoped-beans]]
== Testing Request- and Session-scoped Beans
Spring has supported <<core#beans-factory-scopes-other, Request- and session-scoped
beans>> since the early years, and you can test your request-scoped and session-scoped
beans by following these steps:
* Ensure that a `WebApplicationContext` is loaded for your test by annotating your test
class with `@WebAppConfiguration`.
* Inject the mock request or session into your test instance and prepare your test
fixture as appropriate.
* Invoke your web component that you retrieved from the configured
`WebApplicationContext` (with dependency injection).
* Perform assertions against the mocks.
The next code snippet shows the XML configuration for a login use case. Note that the
`userService` bean has a dependency on a request-scoped `loginAction` bean. Also, the
`LoginAction` is instantiated by using <<core.adoc#expressions, SpEL expressions>> that
retrieve the username and password from the current HTTP request. In our test, we want to
configure these request parameters through the mock managed by the TestContext framework.
The following listing shows the configuration for this use case:
.Request-scoped bean configuration
[source,xml,indent=0]
----
<beans>
<bean id="userService" class="com.example.SimpleUserService"
c:loginAction-ref="loginAction"/>
<bean id="loginAction" class="com.example.LoginAction"
c:username="#{request.getParameter('user')}"
c:password="#{request.getParameter('pswd')}"
scope="request">
<aop:scoped-proxy/>
</bean>
</beans>
----
In `RequestScopedBeanTests`, we inject both the `UserService` (that is, the subject under
test) and the `MockHttpServletRequest` into our test instance. Within our
`requestScope()` test method, we set up our test fixture by setting request parameters in
the provided `MockHttpServletRequest`. When the `loginUser()` method is invoked on our
`userService`, we are assured that the user service has access to the request-scoped
`loginAction` for the current `MockHttpServletRequest` (that is, the one in which we just
set parameters). We can then perform assertions against the results based on the known
inputs for the username and password. The following listing shows how to do so:
.Request-scoped bean test
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitWebConfig
class RequestScopedBeanTests {
@Autowired UserService userService;
@Autowired MockHttpServletRequest request;
@Test
void requestScope() {
request.setParameter("user", "enigma");
request.setParameter("pswd", "$pr!ng");
LoginResults results = userService.loginUser();
// assert results
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitWebConfig
class RequestScopedBeanTests {
@Autowired lateinit var userService: UserService
@Autowired lateinit var request: MockHttpServletRequest
@Test
fun requestScope() {
request.setParameter("user", "enigma")
request.setParameter("pswd", "\$pr!ng")
val results = userService.loginUser()
// assert results
}
}
----
The following code snippet is similar to the one we saw earlier for a request-scoped
bean. However, this time, the `userService` bean has a dependency on a session-scoped
`userPreferences` bean. Note that the `UserPreferences` bean is instantiated by using a
SpEL expression that retrieves the theme from the current HTTP session. In our test, we
need to configure a theme in the mock session managed by the TestContext framework. The
following example shows how to do so:
.Session-scoped bean configuration
[source,xml,indent=0,subs="verbatim,quotes"]
----
<beans>
<bean id="userService" class="com.example.SimpleUserService"
c:userPreferences-ref="userPreferences" />
<bean id="userPreferences" class="com.example.UserPreferences"
c:theme="#{session.getAttribute('theme')}"
scope="session">
<aop:scoped-proxy/>
</bean>
</beans>
----
In `SessionScopedBeanTests`, we inject the `UserService` and the `MockHttpSession` into
our test instance. Within our `sessionScope()` test method, we set up our test fixture by
setting the expected `theme` attribute in the provided `MockHttpSession`. When the
`processUserPreferences()` method is invoked on our `userService`, we are assured that
the user service has access to the session-scoped `userPreferences` for the current
`MockHttpSession`, and we can perform assertions against the results based on the
configured theme. The following example shows how to do so:
.Session-scoped bean test
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitWebConfig
class SessionScopedBeanTests {
@Autowired UserService userService;
@Autowired MockHttpSession session;
@Test
void sessionScope() throws Exception {
session.setAttribute("theme", "blue");
Results results = userService.processUserPreferences();
// assert results
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitWebConfig
class SessionScopedBeanTests {
@Autowired lateinit var userService: UserService
@Autowired lateinit var session: MockHttpSession
@Test
fun sessionScope() {
session.setAttribute("theme", "blue")
val results = userService.processUserPreferences()
// assert results
}
}
----
[[testcontext-tx]]
== Transaction Management
In the TestContext framework, transactions are managed by the
`TransactionalTestExecutionListener`, which is configured by default, even if you do not
explicitly declare `@TestExecutionListeners` on your test class. To enable support for
transactions, however, you must configure a `PlatformTransactionManager` bean in the
`ApplicationContext` that is loaded with `@ContextConfiguration` semantics (further
details are provided later). In addition, you must declare Spring's `@Transactional`
annotation either at the class or the method level for your tests.
[[testcontext-tx-test-managed-transactions]]
=== Test-managed Transactions
Test-managed transactions are transactions that are managed declaratively by using the
`TransactionalTestExecutionListener` or programmatically by using `TestTransaction`
(described later). You should not confuse such transactions with Spring-managed
transactions (those managed directly by Spring within the `ApplicationContext` loaded for
tests) or application-managed transactions (those managed programmatically within
application code that is invoked by tests). Spring-managed and application-managed
transactions typically participate in test-managed transactions. However, you should use
caution if Spring-managed or application-managed transactions are configured with any
propagation type other than `REQUIRED` or `SUPPORTS` (see the discussion on
<<data-access.adoc#tx-propagation, transaction propagation>> for details).
.Preemptive timeouts and test-managed transactions
[WARNING]
====
Caution must be taken when using any form of preemptive timeouts from a testing framework
in conjunction with Spring's test-managed transactions.
Specifically, Springs testing support binds transaction state to the current thread (via
a `java.lang.ThreadLocal` variable) _before_ the current test method is invoked. If a
testing framework invokes the current test method in a new thread in order to support a
preemptive timeout, any actions performed within the current test method will _not_ be
invoked within the test-managed transaction. Consequently, the result of any such actions
will not be rolled back with the test-managed transaction. On the contrary, such actions
will be committed to the persistent store -- for example, a relational database -- even
though the test-managed transaction is properly rolled back by Spring.
Situations in which this can occur include but are not limited to the following.
* JUnit 4's `@Test(timeout = ...)` support and `TimeOut` rule
* JUnit Jupiter's `assertTimeoutPreemptively(...)` methods in the
`org.junit.jupiter.api.Assertions` class
* TestNG's `@Test(timeOut = ...)` support
====
[[testcontext-tx-enabling-transactions]]
=== Enabling and Disabling Transactions
Annotating a test method with `@Transactional` causes the test to be run within a
transaction that is, by default, automatically rolled back after completion of the test.
If a test class is annotated with `@Transactional`, each test method within that class
hierarchy runs within a transaction. Test methods that are not annotated with
`@Transactional` (at the class or method level) are not run within a transaction. Note
that `@Transactional` is not supported on test lifecycle methods — for example, methods
annotated with JUnit Jupiter's `@BeforeAll`, `@BeforeEach`, etc. Furthermore, tests that
are annotated with `@Transactional` but have the `propagation` attribute set to
`NOT_SUPPORTED` or `NEVER` are not run within a transaction.
[[testcontext-tx-attribute-support]]
.`@Transactional` attribute support
|===
|Attribute |Supported for test-managed transactions
|`value` and `transactionManager` |yes
|`propagation` |only `Propagation.NOT_SUPPORTED` and `Propagation.NEVER` are supported
|`isolation` |no
|`timeout` |no
|`readOnly` |no
|`rollbackFor` and `rollbackForClassName` |no: use `TestTransaction.flagForRollback()` instead
|`noRollbackFor` and `noRollbackForClassName` |no: use `TestTransaction.flagForCommit()` instead
|===
[TIP]
====
Method-level lifecycle methods — for example, methods annotated with JUnit Jupiter's
`@BeforeEach` or `@AfterEach` — are run within a test-managed transaction. On the other
hand, suite-level and class-level lifecycle methods — for example, methods annotated with
JUnit Jupiter's `@BeforeAll` or `@AfterAll` and methods annotated with TestNG's
`@BeforeSuite`, `@AfterSuite`, `@BeforeClass`, or `@AfterClass` — are _not_ run within a
test-managed transaction.
If you need to run code in a suite-level or class-level lifecycle method within a
transaction, you may wish to inject a corresponding `PlatformTransactionManager` into
your test class and then use that with a `TransactionTemplate` for programmatic
transaction management.
====
Note that <<testcontext-support-classes-junit4,
`AbstractTransactionalJUnit4SpringContextTests`>> and
<<testcontext-support-classes-testng, `AbstractTransactionalTestNGSpringContextTests`>>
are preconfigured for transactional support at the class level.
The following example demonstrates a common scenario for writing an integration test for
a Hibernate-based `UserRepository`:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig(TestConfig.class)
@Transactional
class HibernateUserRepositoryTests {
@Autowired
HibernateUserRepository repository;
@Autowired
SessionFactory sessionFactory;
JdbcTemplate jdbcTemplate;
@Autowired
void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);
}
@Test
void createUser() {
// track initial state in test database:
final int count = countRowsInTable("user");
User user = new User(...);
repository.save(user);
// Manual flush is required to avoid false positive in test
sessionFactory.getCurrentSession().flush();
assertNumUsers(count + 1);
}
private int countRowsInTable(String tableName) {
return JdbcTestUtils.countRowsInTable(this.jdbcTemplate, tableName);
}
private void assertNumUsers(int expected) {
assertEquals("Number of rows in the [user] table.", expected, countRowsInTable("user"));
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig(TestConfig::class)
@Transactional
class HibernateUserRepositoryTests {
@Autowired
lateinit var repository: HibernateUserRepository
@Autowired
lateinit var sessionFactory: SessionFactory
lateinit var jdbcTemplate: JdbcTemplate
@Autowired
fun setDataSource(dataSource: DataSource) {
this.jdbcTemplate = JdbcTemplate(dataSource)
}
@Test
fun createUser() {
// track initial state in test database:
val count = countRowsInTable("user")
val user = User()
repository.save(user)
// Manual flush is required to avoid false positive in test
sessionFactory.getCurrentSession().flush()
assertNumUsers(count + 1)
}
private fun countRowsInTable(tableName: String): Int {
return JdbcTestUtils.countRowsInTable(jdbcTemplate, tableName)
}
private fun assertNumUsers(expected: Int) {
assertEquals("Number of rows in the [user] table.", expected, countRowsInTable("user"))
}
}
----
As explained in <<testcontext-tx-rollback-and-commit-behavior>>, there is no need to
clean up the database after the `createUser()` method runs, since any changes made to the
database are automatically rolled back by the `TransactionalTestExecutionListener`.
[[testcontext-tx-rollback-and-commit-behavior]]
=== Transaction Rollback and Commit Behavior
By default, test transactions will be automatically rolled back after completion of the
test; however, transactional commit and rollback behavior can be configured declaratively
via the `@Commit` and `@Rollback` annotations. See the corresponding entries in the
<<integration-testing-annotations, annotation support>> section for further details.
[[testcontext-tx-programmatic-tx-mgt]]
=== Programmatic Transaction Management
You can interact with test-managed transactions programmatically by using the static
methods in `TestTransaction`. For example, you can use `TestTransaction` within test
methods, before methods, and after methods to start or end the current test-managed
transaction or to configure the current test-managed transaction for rollback or commit.
Support for `TestTransaction` is automatically available whenever the
`TransactionalTestExecutionListener` is enabled.
The following example demonstrates some of the features of `TestTransaction`. See the
javadoc for {api-spring-framework}/test/context/transaction/TestTransaction.html[`TestTransaction`]
for further details.
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@ContextConfiguration(classes = TestConfig.class)
public class ProgrammaticTransactionManagementTests extends
AbstractTransactionalJUnit4SpringContextTests {
@Test
public void transactionalTest() {
// assert initial state in test database:
assertNumUsers(2);
deleteFromTables("user");
// changes to the database will be committed!
TestTransaction.flagForCommit();
TestTransaction.end();
assertFalse(TestTransaction.isActive());
assertNumUsers(0);
TestTransaction.start();
// perform other actions against the database that will
// be automatically rolled back after the test completes...
}
protected void assertNumUsers(int expected) {
assertEquals("Number of rows in the [user] table.", expected, countRowsInTable("user"));
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@ContextConfiguration(classes = [TestConfig::class])
class ProgrammaticTransactionManagementTests : AbstractTransactionalJUnit4SpringContextTests() {
@Test
fun transactionalTest() {
// assert initial state in test database:
assertNumUsers(2)
deleteFromTables("user")
// changes to the database will be committed!
TestTransaction.flagForCommit()
TestTransaction.end()
assertFalse(TestTransaction.isActive())
assertNumUsers(0)
TestTransaction.start()
// perform other actions against the database that will
// be automatically rolled back after the test completes...
}
protected fun assertNumUsers(expected: Int) {
assertEquals("Number of rows in the [user] table.", expected, countRowsInTable("user"))
}
}
----
[[testcontext-tx-before-and-after-tx]]
=== Running Code Outside of a Transaction
Occasionally, you may need to run certain code before or after a transactional test
method but outside the transactional context -- for example, to verify the initial
database state prior to running your test or to verify expected transactional commit
behavior after your test runs (if the test was configured to commit the transaction).
`TransactionalTestExecutionListener` supports the `@BeforeTransaction` and
`@AfterTransaction` annotations for exactly such scenarios. You can annotate any `void`
method in a test class or any `void` default method in a test interface with one of these
annotations, and the `TransactionalTestExecutionListener` ensures that your before
transaction method or after transaction method runs at the appropriate time.
TIP: Any before methods (such as methods annotated with JUnit Jupiter's `@BeforeEach`)
and any after methods (such as methods annotated with JUnit Jupiter's `@AfterEach`) are
run within a transaction. In addition, methods annotated with `@BeforeTransaction` or
`@AfterTransaction` are not run for test methods that are not configured to run within a
transaction.
[[testcontext-tx-mgr-config]]
=== Configuring a Transaction Manager
`TransactionalTestExecutionListener` expects a `PlatformTransactionManager` bean to be
defined in the Spring `ApplicationContext` for the test. If there are multiple instances
of `PlatformTransactionManager` within the test's `ApplicationContext`, you can declare a
qualifier by using `@Transactional("myTxMgr")` or `@Transactional(transactionManager =
"myTxMgr")`, or `TransactionManagementConfigurer` can be implemented by an
`@Configuration` class. Consult the
{api-spring-framework}/test/context/transaction/TestContextTransactionUtils.html#retrieveTransactionManager-org.springframework.test.context.TestContext-java.lang.String-[javadoc
for `TestContextTransactionUtils.retrieveTransactionManager()`] for details on the
algorithm used to look up a transaction manager in the test's `ApplicationContext`.
[[testcontext-tx-annotation-demo]]
=== Demonstration of All Transaction-related Annotations
The following JUnit Jupiter based example displays a fictitious integration testing
scenario that highlights all transaction-related annotations. The example is not intended
to demonstrate best practices but rather to demonstrate how these annotations can be
used. See the <<integration-testing-annotations, annotation support>> section for further
information and configuration examples. <<testcontext-executing-sql-declaratively-tx,
Transaction management for `@Sql`>> contains an additional example that uses `@Sql` for
declarative SQL script execution with default transaction rollback semantics. The
following example shows the relevant annotations:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig
@Transactional(transactionManager = "txMgr")
@Commit
class FictitiousTransactionalTest {
@BeforeTransaction
void verifyInitialDatabaseState() {
// logic to verify the initial state before a transaction is started
}
@BeforeEach
void setUpTestDataWithinTransaction() {
// set up test data within the transaction
}
@Test
// overrides the class-level @Commit setting
@Rollback
void modifyDatabaseWithinTransaction() {
// logic which uses the test data and modifies database state
}
@AfterEach
void tearDownWithinTransaction() {
// run "tear down" logic within the transaction
}
@AfterTransaction
void verifyFinalDatabaseState() {
// logic to verify the final state after transaction has rolled back
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig
@Transactional(transactionManager = "txMgr")
@Commit
class FictitiousTransactionalTest {
@BeforeTransaction
fun verifyInitialDatabaseState() {
// logic to verify the initial state before a transaction is started
}
@BeforeEach
fun setUpTestDataWithinTransaction() {
// set up test data within the transaction
}
@Test
// overrides the class-level @Commit setting
@Rollback
fun modifyDatabaseWithinTransaction() {
// logic which uses the test data and modifies database state
}
@AfterEach
fun tearDownWithinTransaction() {
// run "tear down" logic within the transaction
}
@AfterTransaction
fun verifyFinalDatabaseState() {
// logic to verify the final state after transaction has rolled back
}
}
----
[[testcontext-tx-false-positives]]
.Avoid false positives when testing ORM code
[NOTE]
=====
When you test application code that manipulates the state of a Hibernate session or JPA
persistence context, make sure to flush the underlying unit of work within test methods
that run that code. Failing to flush the underlying unit of work can produce false
positives: Your test passes, but the same code throws an exception in a live, production
environment. Note that this applies to any ORM framework that maintains an in-memory unit
of work. In the following Hibernate-based example test case, one method demonstrates a
false positive, and the other method correctly exposes the results of flushing the
session:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// ...
@Autowired
SessionFactory sessionFactory;
@Transactional
@Test // no expected exception!
public void falsePositive() {
updateEntityInHibernateSession();
// False positive: an exception will be thrown once the Hibernate
// Session is finally flushed (i.e., in production code)
}
@Transactional
@Test(expected = ...)
public void updateWithSessionFlush() {
updateEntityInHibernateSession();
// Manual flush is required to avoid false positive in test
sessionFactory.getCurrentSession().flush();
}
// ...
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// ...
@Autowired
lateinit var sessionFactory: SessionFactory
@Transactional
@Test // no expected exception!
fun falsePositive() {
updateEntityInHibernateSession()
// False positive: an exception will be thrown once the Hibernate
// Session is finally flushed (i.e., in production code)
}
@Transactional
@Test(expected = ...)
fun updateWithSessionFlush() {
updateEntityInHibernateSession()
// Manual flush is required to avoid false positive in test
sessionFactory.getCurrentSession().flush()
}
// ...
----
The following example shows matching methods for JPA:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// ...
@PersistenceContext
EntityManager entityManager;
@Transactional
@Test // no expected exception!
public void falsePositive() {
updateEntityInJpaPersistenceContext();
// False positive: an exception will be thrown once the JPA
// EntityManager is finally flushed (i.e., in production code)
}
@Transactional
@Test(expected = ...)
public void updateWithEntityManagerFlush() {
updateEntityInJpaPersistenceContext();
// Manual flush is required to avoid false positive in test
entityManager.flush();
}
// ...
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// ...
@PersistenceContext
lateinit var entityManager:EntityManager
@Transactional
@Test // no expected exception!
fun falsePositive() {
updateEntityInJpaPersistenceContext()
// False positive: an exception will be thrown once the JPA
// EntityManager is finally flushed (i.e., in production code)
}
@Transactional
@Test(expected = ...)
void updateWithEntityManagerFlush() {
updateEntityInJpaPersistenceContext()
// Manual flush is required to avoid false positive in test
entityManager.flush()
}
// ...
----
=====
[[testcontext-tx-orm-lifecycle-callbacks]]
.Testing ORM entity lifecycle callbacks
[NOTE]
=====
Similar to the note about avoiding <<testcontext-tx-false-positives, false positives>>
when testing ORM code, if your application makes use of entity lifecycle callbacks (also
known as entity listeners), make sure to flush the underlying unit of work within test
methods that run that code. Failing to _flush_ or _clear_ the underlying unit of work can
result in certain lifecycle callbacks not being invoked.
For example, when using JPA, `@PostPersist`, `@PreUpdate`, and `@PostUpdate` callbacks
will not be called unless `entityManager.flush()` is invoked after an entity has been
saved or updated. Similarly, if an entity is already attached to the current unit of work
(associated with the current persistence context), an attempt to reload the entity will
not result in a `@PostLoad` callback unless `entityManager.clear()` is invoked before the
attempt to reload the entity.
The following example shows how to flush the `EntityManager` to ensure that
`@PostPersist` callbacks are invoked when an entity is persisted. An entity listener with
a `@PostPersist` callback method has been registered for the `Person` entity used in the
example.
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// ...
@Autowired
JpaPersonRepository repo;
@PersistenceContext
EntityManager entityManager;
@Transactional
@Test
void savePerson() {
// EntityManager#persist(...) results in @PrePersist but not @PostPersist
repo.save(new Person("Jane"));
// Manual flush is required for @PostPersist callback to be invoked
entityManager.flush();
// Test code that relies on the @PostPersist callback
// having been invoked...
}
// ...
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// ...
@Autowired
lateinit var repo: JpaPersonRepository
@PersistenceContext
lateinit var entityManager: EntityManager
@Transactional
@Test
fun savePerson() {
// EntityManager#persist(...) results in @PrePersist but not @PostPersist
repo.save(Person("Jane"))
// Manual flush is required for @PostPersist callback to be invoked
entityManager.flush()
// Test code that relies on the @PostPersist callback
// having been invoked...
}
// ...
----
See
https://github.com/spring-projects/spring-framework/blob/main/spring-test/src/test/java/org/springframework/test/context/junit/jupiter/orm/JpaEntityListenerTests.java[JpaEntityListenerTests]
in the Spring Framework test suite for working examples using all JPA lifecycle callbacks.
=====
[[testcontext-executing-sql]]
== Executing SQL Scripts
When writing integration tests against a relational database, it is often beneficial to
run SQL scripts to modify the database schema or insert test data into tables. The
`spring-jdbc` module provides support for _initializing_ an embedded or existing database
by executing SQL scripts when the Spring `ApplicationContext` is loaded. See
<<data-access.adoc#jdbc-embedded-database-support, Embedded database support>> and
<<data-access.adoc#jdbc-embedded-database-dao-testing, Testing data access logic with an
embedded database>> for details.
Although it is very useful to initialize a database for testing _once_ when the
`ApplicationContext` is loaded, sometimes it is essential to be able to modify the
database _during_ integration tests. The following sections explain how to run SQL
scripts programmatically and declaratively during integration tests.
[[testcontext-executing-sql-programmatically]]
=== Executing SQL scripts programmatically
Spring provides the following options for executing SQL scripts programmatically within
integration test methods.
* `org.springframework.jdbc.datasource.init.ScriptUtils`
* `org.springframework.jdbc.datasource.init.ResourceDatabasePopulator`
* `org.springframework.test.context.junit4.AbstractTransactionalJUnit4SpringContextTests`
* `org.springframework.test.context.testng.AbstractTransactionalTestNGSpringContextTests`
`ScriptUtils` provides a collection of static utility methods for working with SQL
scripts and is mainly intended for internal use within the framework. However, if you
require full control over how SQL scripts are parsed and run, `ScriptUtils` may suit
your needs better than some of the other alternatives described later. See the
{api-spring-framework}/jdbc/datasource/init/ScriptUtils.html[javadoc] for individual
methods in `ScriptUtils` for further details.
`ResourceDatabasePopulator` provides an object-based API for programmatically populating,
initializing, or cleaning up a database by using SQL scripts defined in external
resources. `ResourceDatabasePopulator` provides options for configuring the character
encoding, statement separator, comment delimiters, and error handling flags used when
parsing and running the scripts. Each of the configuration options has a reasonable
default value. See the
{api-spring-framework}/jdbc/datasource/init/ResourceDatabasePopulator.html[javadoc] for
details on default values. To run the scripts configured in a
`ResourceDatabasePopulator`, you can invoke either the `populate(Connection)` method to
run the populator against a `java.sql.Connection` or the `execute(DataSource)` method
to run the populator against a `javax.sql.DataSource`. The following example
specifies SQL scripts for a test schema and test data, sets the statement separator to
`@@`, and run the scripts against a `DataSource`:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@Test
void databaseTest() {
ResourceDatabasePopulator populator = new ResourceDatabasePopulator();
populator.addScripts(
new ClassPathResource("test-schema.sql"),
new ClassPathResource("test-data.sql"));
populator.setSeparator("@@");
populator.execute(this.dataSource);
// run code that uses the test schema and data
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@Test
fun databaseTest() {
val populator = ResourceDatabasePopulator()
populator.addScripts(
ClassPathResource("test-schema.sql"),
ClassPathResource("test-data.sql"))
populator.setSeparator("@@")
populator.execute(dataSource)
// run code that uses the test schema and data
}
----
Note that `ResourceDatabasePopulator` internally delegates to `ScriptUtils` for parsing
and running SQL scripts. Similarly, the `executeSqlScript(..)` methods in
<<testcontext-support-classes-junit4, `AbstractTransactionalJUnit4SpringContextTests`>>
and <<testcontext-support-classes-testng, `AbstractTransactionalTestNGSpringContextTests`>>
internally use a `ResourceDatabasePopulator` to run SQL scripts. See the Javadoc for the
various `executeSqlScript(..)` methods for further details.
[[testcontext-executing-sql-declaratively]]
=== Executing SQL scripts declaratively with @Sql
In addition to the aforementioned mechanisms for running SQL scripts programmatically,
you can declaratively configure SQL scripts in the Spring TestContext Framework.
Specifically, you can declare the `@Sql` annotation on a test class or test method to
configure individual SQL statements or the resource paths to SQL scripts that should be
run against a given database before or after an integration test method. Support for
`@Sql` is provided by the `SqlScriptsTestExecutionListener`, which is enabled by default.
NOTE: Method-level `@Sql` declarations override class-level declarations by default. As
of Spring Framework 5.2, however, this behavior may be configured per test class or per
test method via `@SqlMergeMode`. See
<<testcontext-executing-sql-declaratively-script-merging>> for further details.
[[testcontext-executing-sql-declaratively-script-resources]]
==== Path Resource Semantics
Each path is interpreted as a Spring `Resource`. A plain path (for example,
`"schema.sql"`) is treated as a classpath resource that is relative to the package in
which the test class is defined. A path starting with a slash is treated as an absolute
classpath resource (for example, `"/org/example/schema.sql"`). A path that references a
URL (for example, a path prefixed with `classpath:`, `file:`, `http:`) is loaded by using
the specified resource protocol.
The following example shows how to use `@Sql` at the class level and at the method level
within a JUnit Jupiter based integration test class:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig
@Sql("/test-schema.sql")
class DatabaseTests {
@Test
void emptySchemaTest() {
// run code that uses the test schema without any test data
}
@Test
@Sql({"/test-schema.sql", "/test-user-data.sql"})
void userTest() {
// run code that uses the test schema and test data
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig
@Sql("/test-schema.sql")
class DatabaseTests {
@Test
fun emptySchemaTest() {
// run code that uses the test schema without any test data
}
@Test
@Sql("/test-schema.sql", "/test-user-data.sql")
fun userTest() {
// run code that uses the test schema and test data
}
}
----
[[testcontext-executing-sql-declaratively-script-detection]]
==== Default Script Detection
If no SQL scripts or statements are specified, an attempt is made to detect a `default`
script, depending on where `@Sql` is declared. If a default cannot be detected, an
`IllegalStateException` is thrown.
* Class-level declaration: If the annotated test class is `com.example.MyTest`, the
corresponding default script is `classpath:com/example/MyTest.sql`.
* Method-level declaration: If the annotated test method is named `testMethod()` and is
defined in the class `com.example.MyTest`, the corresponding default script is
`classpath:com/example/MyTest.testMethod.sql`.
[[testcontext-executing-sql-declaratively-multiple-annotations]]
==== Declaring Multiple `@Sql` Sets
If you need to configure multiple sets of SQL scripts for a given test class or test
method but with different syntax configuration, different error handling rules, or
different execution phases per set, you can declare multiple instances of `@Sql`. With
Java 8, you can use `@Sql` as a repeatable annotation. Otherwise, you can use the
`@SqlGroup` annotation as an explicit container for declaring multiple instances of
`@Sql`.
The following example shows how to use `@Sql` as a repeatable annotation with Java 8:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@Test
@Sql(scripts = "/test-schema.sql", config = @SqlConfig(commentPrefix = "`"))
@Sql("/test-user-data.sql")
void userTest() {
// run code that uses the test schema and test data
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// Repeatable annotations with non-SOURCE retention are not yet supported by Kotlin
----
In the scenario presented in the preceding example, the `test-schema.sql` script uses a
different syntax for single-line comments.
The following example is identical to the preceding example, except that the `@Sql`
declarations are grouped together within `@SqlGroup`. With Java 8 and above, the use of
`@SqlGroup` is optional, but you may need to use `@SqlGroup` for compatibility with
other JVM languages such as Kotlin.
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@Test
@SqlGroup({
@Sql(scripts = "/test-schema.sql", config = @SqlConfig(commentPrefix = "`")),
@Sql("/test-user-data.sql")
)}
void userTest() {
// run code that uses the test schema and test data
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@Test
@SqlGroup(
Sql("/test-schema.sql", config = SqlConfig(commentPrefix = "`")),
Sql("/test-user-data.sql"))
fun userTest() {
// Run code that uses the test schema and test data
}
----
[[testcontext-executing-sql-declaratively-script-execution-phases]]
==== Script Execution Phases
By default, SQL scripts are run before the corresponding test method. However, if
you need to run a particular set of scripts after the test method (for example, to clean
up database state), you can use the `executionPhase` attribute in `@Sql`, as the
following example shows:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@Test
@Sql(
scripts = "create-test-data.sql",
config = @SqlConfig(transactionMode = ISOLATED)
)
@Sql(
scripts = "delete-test-data.sql",
config = @SqlConfig(transactionMode = ISOLATED),
executionPhase = AFTER_TEST_METHOD
)
void userTest() {
// run code that needs the test data to be committed
// to the database outside of the test's transaction
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@Test
@SqlGroup(
Sql("create-test-data.sql",
config = SqlConfig(transactionMode = ISOLATED)),
Sql("delete-test-data.sql",
config = SqlConfig(transactionMode = ISOLATED),
executionPhase = AFTER_TEST_METHOD))
fun userTest() {
// run code that needs the test data to be committed
// to the database outside of the test's transaction
}
----
Note that `ISOLATED` and `AFTER_TEST_METHOD` are statically imported from
`Sql.TransactionMode` and `Sql.ExecutionPhase`, respectively.
[[testcontext-executing-sql-declaratively-script-configuration]]
==== Script Configuration with `@SqlConfig`
You can configure script parsing and error handling by using the `@SqlConfig` annotation.
When declared as a class-level annotation on an integration test class, `@SqlConfig`
serves as global configuration for all SQL scripts within the test class hierarchy. When
declared directly by using the `config` attribute of the `@Sql` annotation, `@SqlConfig`
serves as local configuration for the SQL scripts declared within the enclosing `@Sql`
annotation. Every attribute in `@SqlConfig` has an implicit default value, which is
documented in the javadoc of the corresponding attribute. Due to the rules defined for
annotation attributes in the Java Language Specification, it is, unfortunately, not
possible to assign a value of `null` to an annotation attribute. Thus, in order to
support overrides of inherited global configuration, `@SqlConfig` attributes have an
explicit default value of either `""` (for Strings), `{}` (for arrays), or `DEFAULT` (for
enumerations). This approach lets local declarations of `@SqlConfig` selectively override
individual attributes from global declarations of `@SqlConfig` by providing a value other
than `""`, `{}`, or `DEFAULT`. Global `@SqlConfig` attributes are inherited whenever
local `@SqlConfig` attributes do not supply an explicit value other than `""`, `{}`, or
`DEFAULT`. Explicit local configuration, therefore, overrides global configuration.
The configuration options provided by `@Sql` and `@SqlConfig` are equivalent to those
supported by `ScriptUtils` and `ResourceDatabasePopulator` but are a superset of those
provided by the `<jdbc:initialize-database/>` XML namespace element. See the javadoc of
individual attributes in {api-spring-framework}/test/context/jdbc/Sql.html[`@Sql`] and
{api-spring-framework}/test/context/jdbc/SqlConfig.html[`@SqlConfig`] for details.
[[testcontext-executing-sql-declaratively-tx]]
*Transaction management for `@Sql`*
By default, the `SqlScriptsTestExecutionListener` infers the desired transaction
semantics for scripts configured by using `@Sql`. Specifically, SQL scripts are run
without a transaction, within an existing Spring-managed transaction (for example, a
transaction managed by the `TransactionalTestExecutionListener` for a test annotated with
`@Transactional`), or within an isolated transaction, depending on the configured value
of the `transactionMode` attribute in `@SqlConfig` and the presence of a
`PlatformTransactionManager` in the test's `ApplicationContext`. As a bare minimum,
however, a `javax.sql.DataSource` must be present in the test's `ApplicationContext`.
If the algorithms used by `SqlScriptsTestExecutionListener` to detect a `DataSource` and
`PlatformTransactionManager` and infer the transaction semantics do not suit your needs,
you can specify explicit names by setting the `dataSource` and `transactionManager`
attributes of `@SqlConfig`. Furthermore, you can control the transaction propagation
behavior by setting the `transactionMode` attribute of `@SqlConfig` (for example, whether
scripts should be run in an isolated transaction). Although a thorough discussion of all
supported options for transaction management with `@Sql` is beyond the scope of this
reference manual, the javadoc for
{api-spring-framework}/test/context/jdbc/SqlConfig.html[`@SqlConfig`] and
{api-spring-framework}/test/context/jdbc/SqlScriptsTestExecutionListener.html[`SqlScriptsTestExecutionListener`]
provide detailed information, and the following example shows a typical testing scenario
that uses JUnit Jupiter and transactional tests with `@Sql`:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig(TestDatabaseConfig.class)
@Transactional
class TransactionalSqlScriptsTests {
final JdbcTemplate jdbcTemplate;
@Autowired
TransactionalSqlScriptsTests(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);
}
@Test
@Sql("/test-data.sql")
void usersTest() {
// verify state in test database:
assertNumUsers(2);
// run code that uses the test data...
}
int countRowsInTable(String tableName) {
return JdbcTestUtils.countRowsInTable(this.jdbcTemplate, tableName);
}
void assertNumUsers(int expected) {
assertEquals(expected, countRowsInTable("user"),
"Number of rows in the [user] table.");
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig(TestDatabaseConfig::class)
@Transactional
class TransactionalSqlScriptsTests @Autowired constructor(dataSource: DataSource) {
val jdbcTemplate: JdbcTemplate = JdbcTemplate(dataSource)
@Test
@Sql("/test-data.sql")
fun usersTest() {
// verify state in test database:
assertNumUsers(2)
// run code that uses the test data...
}
fun countRowsInTable(tableName: String): Int {
return JdbcTestUtils.countRowsInTable(jdbcTemplate, tableName)
}
fun assertNumUsers(expected: Int) {
assertEquals(expected, countRowsInTable("user"),
"Number of rows in the [user] table.")
}
}
----
Note that there is no need to clean up the database after the `usersTest()` method is
run, since any changes made to the database (either within the test method or within the
`/test-data.sql` script) are automatically rolled back by the
`TransactionalTestExecutionListener` (see <<testcontext-tx,transaction management>> for
details).
[[testcontext-executing-sql-declaratively-script-merging]]
==== Merging and Overriding Configuration with `@SqlMergeMode`
As of Spring Framework 5.2, it is possible to merge method-level `@Sql` declarations with
class-level declarations. For example, this allows you to provide the configuration for a
database schema or some common test data once per test class and then provide additional,
use case specific test data per test method. To enable `@Sql` merging, annotate either
your test class or test method with `@SqlMergeMode(MERGE)`. To disable merging for a
specific test method (or specific test subclass), you can switch back to the default mode
via `@SqlMergeMode(OVERRIDE)`. Consult the <<spring-testing-annotation-sqlmergemode,
`@SqlMergeMode` annotation documentation section>> for examples and further details.
[[testcontext-parallel-test-execution]]
== Parallel Test Execution
Spring Framework 5.0 introduced basic support for executing tests in parallel within a
single JVM when using the Spring TestContext Framework. In general, this means that most
test classes or test methods can be run in parallel without any changes to test code
or configuration.
TIP: For details on how to set up parallel test execution, see the documentation for your
testing framework, build tool, or IDE.
Keep in mind that the introduction of concurrency into your test suite can result in
unexpected side effects, strange runtime behavior, and tests that fail intermittently or
seemingly randomly. The Spring Team therefore provides the following general guidelines
for when not to run tests in parallel.
Do not run tests in parallel if the tests:
* Use Spring Framework's `@DirtiesContext` support.
* Use Spring Boot's `@MockBean` or `@SpyBean` support.
* Use JUnit 4's `@FixMethodOrder` support or any testing framework feature
that is designed to ensure that test methods run in a particular order. Note,
however, that this does not apply if entire test classes are run in parallel.
* Change the state of shared services or systems such as a database, message broker,
filesystem, and others. This applies to both embedded and external systems.
[TIP]
====
If parallel test execution fails with an exception stating that the `ApplicationContext`
for the current test is no longer active, this typically means that the
`ApplicationContext` was removed from the `ContextCache` in a different thread.
This may be due to the use of `@DirtiesContext` or due to automatic eviction from the
`ContextCache`. If `@DirtiesContext` is the culprit, you either need to find a way to
avoid using `@DirtiesContext` or exclude such tests from parallel execution. If the
maximum size of the `ContextCache` has been exceeded, you can increase the maximum size
of the cache. See the discussion on <<testcontext-ctx-management-caching, context caching>>
for details.
====
WARNING: Parallel test execution in the Spring TestContext Framework is only possible if
the underlying `TestContext` implementation provides a copy constructor, as explained in
the javadoc for {api-spring-framework}/test/context/TestContext.html[`TestContext`]. The
`DefaultTestContext` used in Spring provides such a constructor. However, if you use a
third-party library that provides a custom `TestContext` implementation, you need to
verify that it is suitable for parallel test execution.
[[testcontext-support-classes]]
== TestContext Framework Support Classes
This section describes the various classes that support the Spring TestContext Framework.
[[testcontext-junit4-runner]]
=== Spring JUnit 4 Runner
The Spring TestContext Framework offers full integration with JUnit 4 through a custom
runner (supported on JUnit 4.12 or higher). By annotating test classes with
`@RunWith(SpringJUnit4ClassRunner.class)` or the shorter `@RunWith(SpringRunner.class)`
variant, developers can implement standard JUnit 4-based unit and integration tests and
simultaneously reap the benefits of the TestContext framework, such as support for
loading application contexts, dependency injection of test instances, transactional test
method execution, and so on. If you want to use the Spring TestContext Framework with an
alternative runner (such as JUnit 4's `Parameterized` runner) or third-party runners
(such as the `MockitoJUnitRunner`), you can, optionally, use
<<testcontext-junit4-rules, Spring's support for JUnit rules>> instead.
The following code listing shows the minimal requirements for configuring a test class to
run with the custom Spring `Runner`:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@RunWith(SpringRunner.class)
@TestExecutionListeners({})
public class SimpleTest {
@Test
public void testMethod() {
// test logic...
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@RunWith(SpringRunner::class)
@TestExecutionListeners
class SimpleTest {
@Test
fun testMethod() {
// test logic...
}
}
----
In the preceding example, `@TestExecutionListeners` is configured with an empty list, to
disable the default listeners, which otherwise would require an `ApplicationContext` to
be configured through `@ContextConfiguration`.
[[testcontext-junit4-rules]]
=== Spring JUnit 4 Rules
The `org.springframework.test.context.junit4.rules` package provides the following JUnit
4 rules (supported on JUnit 4.12 or higher):
* `SpringClassRule`
* `SpringMethodRule`
`SpringClassRule` is a JUnit `TestRule` that supports class-level features of the Spring
TestContext Framework, whereas `SpringMethodRule` is a JUnit `MethodRule` that supports
instance-level and method-level features of the Spring TestContext Framework.
In contrast to the `SpringRunner`, Spring's rule-based JUnit support has the advantage of
being independent of any `org.junit.runner.Runner` implementation and can, therefore, be
combined with existing alternative runners (such as JUnit 4's `Parameterized`) or
third-party runners (such as the `MockitoJUnitRunner`).
To support the full functionality of the TestContext framework, you must combine a
`SpringClassRule` with a `SpringMethodRule`. The following example shows the proper way
to declare these rules in an integration test:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// Optionally specify a non-Spring Runner via @RunWith(...)
@ContextConfiguration
public class IntegrationTest {
@ClassRule
public static final SpringClassRule springClassRule = new SpringClassRule();
@Rule
public final SpringMethodRule springMethodRule = new SpringMethodRule();
@Test
public void testMethod() {
// test logic...
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// Optionally specify a non-Spring Runner via @RunWith(...)
@ContextConfiguration
class IntegrationTest {
@Rule
val springMethodRule = SpringMethodRule()
@Test
fun testMethod() {
// test logic...
}
companion object {
@ClassRule
val springClassRule = SpringClassRule()
}
}
----
[[testcontext-support-classes-junit4]]
=== JUnit 4 Support Classes
The `org.springframework.test.context.junit4` package provides the following support
classes for JUnit 4-based test cases (supported on JUnit 4.12 or higher):
* `AbstractJUnit4SpringContextTests`
* `AbstractTransactionalJUnit4SpringContextTests`
`AbstractJUnit4SpringContextTests` is an abstract base test class that integrates the
Spring TestContext Framework with explicit `ApplicationContext` testing support in a
JUnit 4 environment. When you extend `AbstractJUnit4SpringContextTests`, you can access a
`protected` `applicationContext` instance variable that you can use to perform explicit
bean lookups or to test the state of the context as a whole.
`AbstractTransactionalJUnit4SpringContextTests` is an abstract transactional extension of
`AbstractJUnit4SpringContextTests` that adds some convenience functionality for JDBC
access. This class expects a `javax.sql.DataSource` bean and a
`PlatformTransactionManager` bean to be defined in the `ApplicationContext`. When you
extend `AbstractTransactionalJUnit4SpringContextTests`, you can access a `protected`
`jdbcTemplate` instance variable that you can use to run SQL statements to query the
database. You can use such queries to confirm database state both before and after
running database-related application code, and Spring ensures that such queries run in
the scope of the same transaction as the application code. When used in conjunction with
an ORM tool, be sure to avoid <<testcontext-tx-false-positives, false positives>>.
As mentioned in <<integration-testing-support-jdbc>>,
`AbstractTransactionalJUnit4SpringContextTests` also provides convenience methods that
delegate to methods in `JdbcTestUtils` by using the aforementioned `jdbcTemplate`.
Furthermore, `AbstractTransactionalJUnit4SpringContextTests` provides an
`executeSqlScript(..)` method for running SQL scripts against the configured `DataSource`.
TIP: These classes are a convenience for extension. If you do not want your test classes
to be tied to a Spring-specific class hierarchy, you can configure your own custom test
classes by using `@RunWith(SpringRunner.class)` or <<testcontext-junit4-rules, Spring's
JUnit rules>>.
[[testcontext-junit-jupiter-extension]]
=== SpringExtension for JUnit Jupiter
The Spring TestContext Framework offers full integration with the JUnit Jupiter testing
framework, introduced in JUnit 5. By annotating test classes with
`@ExtendWith(SpringExtension.class)`, you can implement standard JUnit Jupiter-based unit
and integration tests and simultaneously reap the benefits of the TestContext framework,
such as support for loading application contexts, dependency injection of test instances,
transactional test method execution, and so on.
Furthermore, thanks to the rich extension API in JUnit Jupiter, Spring provides the
following features above and beyond the feature set that Spring supports for JUnit 4 and
TestNG:
* Dependency injection for test constructors, test methods, and test lifecycle callback
methods. See <<testcontext-junit-jupiter-di>> for further details.
* Powerful support for link:https://junit.org/junit5/docs/current/user-guide/#extensions-conditions[conditional
test execution] based on SpEL expressions, environment variables, system properties,
and so on. See the documentation for `@EnabledIf` and `@DisabledIf` in
<<integration-testing-annotations-junit-jupiter>> for further details and examples.
* Custom composed annotations that combine annotations from Spring and JUnit Jupiter. See
the `@TransactionalDevTestConfig` and `@TransactionalIntegrationTest` examples in
<<integration-testing-annotations-meta>> for further details.
The following code listing shows how to configure a test class to use the
`SpringExtension` in conjunction with `@ContextConfiguration`:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// Instructs JUnit Jupiter to extend the test with Spring support.
@ExtendWith(SpringExtension.class)
// Instructs Spring to load an ApplicationContext from TestConfig.class
@ContextConfiguration(classes = TestConfig.class)
class SimpleTests {
@Test
void testMethod() {
// test logic...
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// Instructs JUnit Jupiter to extend the test with Spring support.
@ExtendWith(SpringExtension::class)
// Instructs Spring to load an ApplicationContext from TestConfig::class
@ContextConfiguration(classes = [TestConfig::class])
class SimpleTests {
@Test
fun testMethod() {
// test logic...
}
}
----
Since you can also use annotations in JUnit 5 as meta-annotations, Spring provides the
`@SpringJUnitConfig` and `@SpringJUnitWebConfig` composed annotations to simplify the
configuration of the test `ApplicationContext` and JUnit Jupiter.
The following example uses `@SpringJUnitConfig` to reduce the amount of configuration
used in the previous example:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// Instructs Spring to register the SpringExtension with JUnit
// Jupiter and load an ApplicationContext from TestConfig.class
@SpringJUnitConfig(TestConfig.class)
class SimpleTests {
@Test
void testMethod() {
// test logic...
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// Instructs Spring to register the SpringExtension with JUnit
// Jupiter and load an ApplicationContext from TestConfig.class
@SpringJUnitConfig(TestConfig::class)
class SimpleTests {
@Test
fun testMethod() {
// test logic...
}
}
----
Similarly, the following example uses `@SpringJUnitWebConfig` to create a
`WebApplicationContext` for use with JUnit Jupiter:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
// Instructs Spring to register the SpringExtension with JUnit
// Jupiter and load a WebApplicationContext from TestWebConfig.class
@SpringJUnitWebConfig(TestWebConfig.class)
class SimpleWebTests {
@Test
void testMethod() {
// test logic...
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
// Instructs Spring to register the SpringExtension with JUnit
// Jupiter and load a WebApplicationContext from TestWebConfig::class
@SpringJUnitWebConfig(TestWebConfig::class)
class SimpleWebTests {
@Test
fun testMethod() {
// test logic...
}
}
----
See the documentation for `@SpringJUnitConfig` and `@SpringJUnitWebConfig` in
<<integration-testing-annotations-junit-jupiter>> for further details.
[[testcontext-junit-jupiter-di]]
==== Dependency Injection with `SpringExtension`
`SpringExtension` implements the
link:https://junit.org/junit5/docs/current/user-guide/#extensions-parameter-resolution[`ParameterResolver`]
extension API from JUnit Jupiter, which lets Spring provide dependency injection for test
constructors, test methods, and test lifecycle callback methods.
Specifically, `SpringExtension` can inject dependencies from the test's
`ApplicationContext` into test constructors and methods that are annotated with
`@BeforeAll`, `@AfterAll`, `@BeforeEach`, `@AfterEach`, `@Test`, `@RepeatedTest`,
`@ParameterizedTest`, and others.
[[testcontext-junit-jupiter-di-constructor]]
===== Constructor Injection
If a specific parameter in a constructor for a JUnit Jupiter test class is of type
`ApplicationContext` (or a sub-type thereof) or is annotated or meta-annotated with
`@Autowired`, `@Qualifier`, or `@Value`, Spring injects the value for that specific
parameter with the corresponding bean or value from the test's `ApplicationContext`.
Spring can also be configured to autowire all arguments for a test class constructor if
the constructor is considered to be _autowirable_. A constructor is considered to be
autowirable if one of the following conditions is met (in order of precedence).
* The constructor is annotated with `@Autowired`.
* `@TestConstructor` is present or meta-present on the test class with the `autowireMode`
attribute set to `ALL`.
* The default _test constructor autowire mode_ has been changed to `ALL`.
See <<integration-testing-annotations-testconstructor>> for details on the use of
`@TestConstructor` and how to change the global _test constructor autowire mode_.
WARNING: If the constructor for a test class is considered to be _autowirable_, Spring
assumes the responsibility for resolving arguments for all parameters in the constructor.
Consequently, no other `ParameterResolver` registered with JUnit Jupiter can resolve
parameters for such a constructor.
[WARNING]
====
Constructor injection for test classes must not be used in conjunction with JUnit
Jupiter's `@TestInstance(PER_CLASS)` support if `@DirtiesContext` is used to close the
test's `ApplicationContext` before or after test methods.
The reason is that `@TestInstance(PER_CLASS)` instructs JUnit Jupiter to cache the test
instance between test method invocations. Consequently, the test instance will retain
references to beans that were originally injected from an `ApplicationContext` that has
been subsequently closed. Since the constructor for the test class will only be invoked
once in such scenarios, dependency injection will not occur again, and subsequent tests
will interact with beans from the closed `ApplicationContext` which may result in errors.
To use `@DirtiesContext` with "before test method" or "after test method" modes in
conjunction with `@TestInstance(PER_CLASS)`, one must configure dependencies from Spring
to be supplied via field or setter injection so that they can be re-injected between test
method invocations.
====
In the following example, Spring injects the `OrderService` bean from the
`ApplicationContext` loaded from `TestConfig.class` into the
`OrderServiceIntegrationTests` constructor.
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig(TestConfig.class)
class OrderServiceIntegrationTests {
private final OrderService orderService;
@Autowired
OrderServiceIntegrationTests(OrderService orderService) {
this.orderService = orderService;
}
// tests that use the injected OrderService
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig(TestConfig::class)
class OrderServiceIntegrationTests @Autowired constructor(private val orderService: OrderService){
// tests that use the injected OrderService
}
----
Note that this feature lets test dependencies be `final` and therefore immutable.
If the `spring.test.constructor.autowire.mode` property is to `all` (see
<<integration-testing-annotations-testconstructor>>), we can omit the declaration of
`@Autowired` on the constructor in the previous example, resulting in the following.
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig(TestConfig.class)
class OrderServiceIntegrationTests {
private final OrderService orderService;
OrderServiceIntegrationTests(OrderService orderService) {
this.orderService = orderService;
}
// tests that use the injected OrderService
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig(TestConfig::class)
class OrderServiceIntegrationTests(val orderService:OrderService) {
// tests that use the injected OrderService
}
----
[[testcontext-junit-jupiter-di-method]]
===== Method Injection
If a parameter in a JUnit Jupiter test method or test lifecycle callback method is of
type `ApplicationContext` (or a sub-type thereof) or is annotated or meta-annotated with
`@Autowired`, `@Qualifier`, or `@Value`, Spring injects the value for that specific
parameter with the corresponding bean from the test's `ApplicationContext`.
In the following example, Spring injects the `OrderService` from the `ApplicationContext`
loaded from `TestConfig.class` into the `deleteOrder()` test method:
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig(TestConfig.class)
class OrderServiceIntegrationTests {
@Test
void deleteOrder(@Autowired OrderService orderService) {
// use orderService from the test's ApplicationContext
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig(TestConfig::class)
class OrderServiceIntegrationTests {
@Test
fun deleteOrder(@Autowired orderService: OrderService) {
// use orderService from the test's ApplicationContext
}
}
----
Due to the robustness of the `ParameterResolver` support in JUnit Jupiter, you can also
have multiple dependencies injected into a single method, not only from Spring but also
from JUnit Jupiter itself or other third-party extensions.
The following example shows how to have both Spring and JUnit Jupiter inject dependencies
into the `placeOrderRepeatedly()` test method simultaneously.
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig(TestConfig.class)
class OrderServiceIntegrationTests {
@RepeatedTest(10)
void placeOrderRepeatedly(RepetitionInfo repetitionInfo,
@Autowired OrderService orderService) {
// use orderService from the test's ApplicationContext
// and repetitionInfo from JUnit Jupiter
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig(TestConfig::class)
class OrderServiceIntegrationTests {
@RepeatedTest(10)
fun placeOrderRepeatedly(repetitionInfo:RepetitionInfo, @Autowired orderService:OrderService) {
// use orderService from the test's ApplicationContext
// and repetitionInfo from JUnit Jupiter
}
}
----
Note that the use of `@RepeatedTest` from JUnit Jupiter lets the test method gain access
to the `RepetitionInfo`.
[[testcontext-junit-jupiter-nested-test-configuration]]
==== `@Nested` test class configuration
The _Spring TestContext Framework_ has supported the use of test-related annotations on
`@Nested` test classes in JUnit Jupiter since Spring Framework 5.0; however, until Spring
Framework 5.3 class-level test configuration annotations were not _inherited_ from
enclosing classes like they are from superclasses.
Spring Framework 5.3 introduces first-class support for inheriting test class
configuration from enclosing classes, and such configuration will be inherited by
default. To change from the default `INHERIT` mode to `OVERRIDE` mode, you may annotate
an individual `@Nested` test class with
`@NestedTestConfiguration(EnclosingConfiguration.OVERRIDE)`. An explicit
`@NestedTestConfiguration` declaration will apply to the annotated test class as well as
any of its subclasses and nested classes. Thus, you may annotate a top-level test class
with `@NestedTestConfiguration`, and that will apply to all of its nested test classes
recursively.
In order to allow development teams to change the default to `OVERRIDE` for example,
for compatibility with Spring Framework 5.0 through 5.2 the default mode can be changed
globally via a JVM system property or a `spring.properties` file in the root of the
classpath. See the <<integration-testing-annotations-nestedtestconfiguration, "Changing
the default enclosing configuration inheritance mode">> note for details.
Although the following "Hello World" example is very simplistic, it shows how to declare
common configuration on a top-level class that is inherited by its `@Nested` test
classes. In this particular example, only the `TestConfig` configuration class is
inherited. Each nested test class provides its own set of active profiles, resulting in a
distinct `ApplicationContext` for each nested test class (see
<<testcontext-ctx-management-caching>> for details). Consult the list of
<<integration-testing-annotations-nestedtestconfiguration, supported annotations>> to see
which annotations can be inherited in `@Nested` test classes.
[source,java,indent=0,subs="verbatim,quotes",role="primary"]
.Java
----
@SpringJUnitConfig(TestConfig.class)
class GreetingServiceTests {
@Nested
@ActiveProfiles("lang_en")
class EnglishGreetings {
@Test
void hello(@Autowired GreetingService service) {
assertThat(service.greetWorld()).isEqualTo("Hello World");
}
}
@Nested
@ActiveProfiles("lang_de")
class GermanGreetings {
@Test
void hello(@Autowired GreetingService service) {
assertThat(service.greetWorld()).isEqualTo("Hallo Welt");
}
}
}
----
[source,kotlin,indent=0,subs="verbatim,quotes",role="secondary"]
.Kotlin
----
@SpringJUnitConfig(TestConfig::class)
class GreetingServiceTests {
@Nested
@ActiveProfiles("lang_en")
inner class EnglishGreetings {
@Test
fun hello(@Autowired service:GreetingService) {
assertThat(service.greetWorld()).isEqualTo("Hello World")
}
}
@Nested
@ActiveProfiles("lang_de")
inner class GermanGreetings {
@Test
fun hello(@Autowired service:GreetingService) {
assertThat(service.greetWorld()).isEqualTo("Hallo Welt")
}
}
}
----
[[testcontext-support-classes-testng]]
=== TestNG Support Classes
The `org.springframework.test.context.testng` package provides the following support
classes for TestNG based test cases:
* `AbstractTestNGSpringContextTests`
* `AbstractTransactionalTestNGSpringContextTests`
`AbstractTestNGSpringContextTests` is an abstract base test class that integrates the
Spring TestContext Framework with explicit `ApplicationContext` testing support in a
TestNG environment. When you extend `AbstractTestNGSpringContextTests`, you can access a
`protected` `applicationContext` instance variable that you can use to perform explicit
bean lookups or to test the state of the context as a whole.
`AbstractTransactionalTestNGSpringContextTests` is an abstract transactional extension of
`AbstractTestNGSpringContextTests` that adds some convenience functionality for JDBC
access. This class expects a `javax.sql.DataSource` bean and a
`PlatformTransactionManager` bean to be defined in the `ApplicationContext`. When you
extend `AbstractTransactionalTestNGSpringContextTests`, you can access a `protected`
`jdbcTemplate` instance variable that you can use to run SQL statements to query the
database. You can use such queries to confirm database state both before and after
running database-related application code, and Spring ensures that such queries run in
the scope of the same transaction as the application code. When used in conjunction with
an ORM tool, be sure to avoid <<testcontext-tx-false-positives, false positives>>.
As mentioned in <<integration-testing-support-jdbc>>,
`AbstractTransactionalTestNGSpringContextTests` also provides convenience methods that
delegate to methods in `JdbcTestUtils` by using the aforementioned `jdbcTemplate`.
Furthermore, `AbstractTransactionalTestNGSpringContextTests` provides an
`executeSqlScript(..)` method for running SQL scripts against the configured `DataSource`.
TIP: These classes are a convenience for extension. If you do not want your test classes
to be tied to a Spring-specific class hierarchy, you can configure your own custom test
classes by using `@ContextConfiguration`, `@TestExecutionListeners`, and so on and by
manually instrumenting your test class with a `TestContextManager`. See the source code
of `AbstractTestNGSpringContextTests` for an example of how to instrument your test class.
[[testcontext-aot]]
== Ahead of Time Support for Tests
This chapter covers Spring's Ahead of Time (AOT) support for integration tests using the
Spring TestContext Framework.
The testing support extends Spring's <<core.adoc#core.aot,core AOT support>> with the
following features.
* Build-time detection of all integration tests in the current project that use the
TestContext framework to load an `ApplicationContext`.
- Provides explicit support for test classes based on JUnit Jupiter and JUnit 4 as well
as implicit support for TestNG and other testing frameworks that use Spring's core
testing annotations -- as long as the tests are run using a JUnit Platform
`TestEngine` that is registered for the current project.
* Build-time AOT processing: each unique test `ApplicationContext` in the current project
will be <<core.adoc#core.aot.refresh,refreshed for AOT processing>>.
* Runtime AOT support: when executing in AOT runtime mode, a Spring integration test will
use an AOT-optimized `ApplicationContext` that participates transparently with the
<<testcontext-ctx-management-caching, context cache>>.
[WARNING]
====
The `@ContextHierarchy` annotation is currently not supported in AOT mode.
====
To provide test-specific runtime hints for use within a GraalVM native image, you have
the following options.
* Implement a custom
{api-spring-framework}/test/context/aot/TestRuntimeHintsRegistrar.html[`TestRuntimeHintsRegistrar`]
and register it globally via `META-INF/spring/aot.factories`.
* Implement a custom {api-spring-framework}/aot/hint/RuntimeHintsRegistrar.html[`RuntimeHintsRegistrar`]
and register it globally via `META-INF/spring/aot.factories` or locally on a test class
via {api-spring-framework}/context/annotation/ImportRuntimeHints.html[`@ImportRuntimeHints`].
* Annotate a test class with {api-spring-framework}/aot/hint/annotation/Reflective.html[`@Reflective`] or
{api-spring-framework}/aot/hint/annotation/RegisterReflectionForBinding.html[`@RegisterReflectionForBinding`].
* See <<core.adoc#core.aot.hints,Runtime Hints>> for details on Spring's core runtime hints
and annotation support.
[TIP]
====
The `TestRuntimeHintsRegistrar` API serves as a companion to the core
`RuntimeHintsRegistrar` API. If you need to register global hints for testing support
that are not specific to particular test classes, favor implementing
`RuntimeHintsRegistrar` over the test-specific API.
====
If you implement a custom `ContextLoader`, it must implement
{api-spring-framework}/test/context/aot/AotContextLoader.html[`AotContextLoader`] in
order to provide AOT build-time processing and AOT runtime execution support. Note,
however, that all context loader implementations provided by the Spring Framework and
Spring Boot already implement `AotContextLoader`.
If you implement a custom `TestExecutionListener`, it must implement
{api-spring-framework}/test/context/aot/AotTestExecutionListener.html[`AotTestExecutionListener`]
in order to participate in AOT processing. See the `SqlScriptsTestExecutionListener` in
the `spring-test` module for an example.