spring-framework/spring-framework-reference/src/validation.xml

1683 lines
83 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN"
"http://www.oasis-open.org/docbook/xml/4.4/docbookx.dtd">
<chapter id="validation">
<title>Validation, Data Binding, and Type Conversion</title>
<section id="validation-introduction">
<title>Introduction</title>
<para>There are pros and cons for considering validation as business logic,
and Spring offers a design for validation (and data binding) that
does not exclude either one of them. Specifically validation should not be
tied to the web tier, should be easy to localize and it should be
possible to plug in any validator available. Considering the above, Spring
has come up with a <interfacename>Validator</interfacename> interface that
is both basic and eminently usable in every layer of an application.</para>
<para>Data binding is useful for allowing user input to be dynamically
bound to the domain model of an application (or whatever objects you use
to process user input). Spring provides the so-called
<interfacename>DataBinder</interfacename> to do exactly that. The
<interfacename>Validator</interfacename> and the
<interfacename>DataBinder</interfacename> make up the <literal>validation</literal> package,
which is primarily used in but not limited to the MVC framework.</para>
<para>The <interfacename>BeanWrapper</interfacename> is a fundamental concept in the
Spring Framework and is used in a lot of places. However, you probably
will not have the need to use the <interfacename>BeanWrapper</interfacename> directly. Because this
is reference documentation however, we felt that some explanation might be
in order. We will explain the <interfacename>BeanWrapper</interfacename> in this chapter since, if you were
going to use it at all, you would most likely do so when trying to bind data to objects.</para>
<para>Spring's DataBinder and the lower-level BeanWrapper both use PropertyEditors to parse and format property values.
The <interfacename>PropertyEditor</interfacename> concept is part of the JavaBeans specification, and is also explained in this chapter.
Spring 3 introduces a "core.convert" package that provides a general type conversion facility, as well as a higher-level "format" package for formatting UI field values.
These new packages may be used as simpler alternatives to PropertyEditors, and will also be discussed in this chapter.</para>
</section>
<section id="validator">
<title>Validation using Spring's <interfacename>Validator</interfacename> interface</title>
<para>Spring's features a <interfacename>Validator</interfacename> interface that you can
use to validate objects. The <interfacename>Validator</interfacename> interface works using
an <interfacename>Errors</interfacename> object so that while validating, validators can report
validation failures to the <interfacename>Errors</interfacename> object.</para>
<para>Let's consider a small data object:</para>
<programlisting language="java"><![CDATA[
public class Person {
private String name;
private int age;
]]><lineannotation>// the usual getters and setters...</lineannotation><![CDATA[
}]]></programlisting>
<para>We're going to provide validation behavior for the <classname>Person</classname>
class by implementing the following two methods of the
<interfacename>org.springframework.validation.Validator</interfacename> interface:
<itemizedlist spacing="compact">
<listitem>
<para><methodname>supports(Class)</methodname> - Can this
<interfacename>Validator</interfacename> validate instances of the supplied
<classname>Class</classname>?</para>
</listitem>
<listitem>
<para><methodname>validate(Object, org.springframework.validation.Errors)</methodname> -
validates the given object and in case of validation errors, registers
those with the given <interfacename>Errors</interfacename> object</para>
</listitem>
</itemizedlist>
</para>
<para>
Implementing a <interfacename>Validator</interfacename> is fairly straightforward,
especially when you know of the <classname>ValidationUtils</classname> helper class
that the Spring Framework also provides.</para>
<programlisting language="java"><![CDATA[public class PersonValidator implements Validator {
]]><lineannotation>/**
* This <interfacename>Validator</interfacename> validates <emphasis role="bold">just</emphasis> <classname>Person</classname> instances
*/</lineannotation><![CDATA[
public boolean supports(Class clazz) {
return Person.class.equals(clazz);
}
public void validate(Object obj, Errors e) {
ValidationUtils.rejectIfEmpty(e, "name", "name.empty");
Person p = (Person) obj;
if (p.getAge() < 0) {
e.rejectValue("age", "negativevalue");
} else if (p.getAge() > 110) {
e.rejectValue("age", "too.darn.old");
}
}
}]]></programlisting>
<para>As you can see, the <literal>static</literal> <methodname>rejectIfEmpty(..)</methodname>
method on the <classname>ValidationUtils</classname> class is used to reject the
<literal>'name'</literal> property if it is <literal>null</literal> or the empty string.
Have a look at the Javadoc for the <classname>ValidationUtils</classname> class to see
what functionality it provides besides the example shown previously.</para>
<para>While it is certainly possible to implement a single
<interfacename>Validator</interfacename> class to validate each of the nested objects
in a rich object, it may be better to encapsulate the validation logic for each nested
class of object in its own <interfacename>Validator</interfacename> implementation. A
simple example of a <emphasis>'rich'</emphasis> object would be a
<classname>Customer</classname> that is composed of two <classname>String</classname>
properties (a first and second name) and a complex <classname>Address</classname> object.
<classname>Address</classname> objects may be used independently of
<classname>Customer</classname> objects, and so a distinct
<classname>AddressValidator</classname> has been implemented. If you want your
<classname>CustomerValidator</classname> to reuse the logic contained within the
<classname>AddressValidator</classname> class without recourse to copy-n-paste you can
dependency-inject or instantiate an <classname>AddressValidator</classname> within your
<classname>CustomerValidator</classname>, and use it like so:</para>
<programlisting language="java"><![CDATA[public class CustomerValidator implements Validator {
private final Validator addressValidator;
public CustomerValidator(Validator addressValidator) {
if (addressValidator == null) {
throw new IllegalArgumentException("The supplied [Validator] is required and must not be null.");
}
if (!addressValidator.supports(Address.class)) {
throw new IllegalArgumentException(
"The supplied [Validator] must support the validation of [Address] instances.");
}
this.addressValidator = addressValidator;
}
]]><lineannotation>/**
* This <interfacename>Validator</interfacename> validates <classname>Customer</classname> instances, and any subclasses of <classname>Customer</classname> too
*/</lineannotation><![CDATA[
public boolean supports(Class clazz) {
return Customer.class.isAssignableFrom(clazz);
}
public void validate(Object target, Errors errors) {
ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName", "field.required");
ValidationUtils.rejectIfEmptyOrWhitespace(errors, "surname", "field.required");
Customer customer = (Customer) target;
try {
errors.pushNestedPath("address");
ValidationUtils.invokeValidator(this.addressValidator, customer.getAddress(), errors);
} finally {
errors.popNestedPath();
}
}
}]]></programlisting>
<para>Validation errors are reported to the <interfacename>Errors</interfacename>
object passed to the validator. In case of Spring Web MVC you can use
<literal>&lt;spring:bind/&gt;</literal> tag to inspect the error messages, but
of course you can also inspect the errors object yourself. More information about
the methods it offers can be found from the Javadoc.</para>
</section>
<section id="validation-conversion">
<title>Resolving codes to error messages</title>
<para>We've talked about databinding and validation. Outputting messages corresponding to
validation errors is the last thing we need to discuss. In the example we've shown
above, we rejected the <literal>name</literal> and the <literal>age</literal> field.
If we're going to output the error messages by using a <interfacename>MessageSource</interfacename>,
we will do so using the error code we've given when rejecting the field ('name' and 'age'
in this case). When you call (either directly, or indirectly, using for example the
<classname>ValidationUtils</classname> class) <literal>rejectValue</literal> or one of
the other <literal>reject</literal> methods from the <interfacename>Errors</interfacename>
interface, the underlying implementation will not only register the code you've
passed in, but also a number of additional error codes. What error codes it registers
is determined by the <interfacename>MessageCodesResolver</interfacename> that is used.
By default, the <classname>DefaultMessageCodesResolver</classname> is used, which for example
not only registers a message with the code you gave, but also messages that include the
field name you passed to the reject method. So in case you reject a field using
<literal>rejectValue("age", "too.darn.old")</literal>, apart from the
<literal>too.darn.old</literal> code, Spring will also register
<literal>too.darn.old.age</literal> and <literal>too.darn.old.age.int</literal>
(so the first will include the field name and the second will include the type of the
field); this is done as a convenience to aid developers in targeting error
messages and suchlike.</para>
<para>More information on the <interfacename>MessageCodesResolver</interfacename> and the default
strategy can be found online with the Javadocs for
<ulink url="http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/validation/MessageCodesResolver.html">MessageCodesResolver</ulink>
and
<ulink url="http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/validation/DefaultMessageCodesResolver.html">DefaultMessageCodesResolver</ulink>
respectively.</para>
</section>
<section id="beans-beans">
<title>Bean manipulation and the <interfacename>BeanWrapper</interfacename></title>
<para>The <literal>org.springframework.beans</literal> package adheres to
the JavaBeans standard provided by Sun. A JavaBean is simply a class with
a default no-argument constructor, which follows a naming convention
where (by way of an example) a property named <literal>bingoMadness</literal> would have a setter
method <methodname>setBingoMadness(..)</methodname> and a getter method <methodname>getBingoMadness()</methodname>.
For more information about JavaBeans and the specification, please refer
to Sun's website ( <ulink url="http://java.sun.com/products/javabeans/">java.sun.com/products/javabeans</ulink>).</para>
<para>One quite important class in the beans package is the
<interfacename>BeanWrapper</interfacename> interface and its corresponding
implementation (<classname>BeanWrapperImpl</classname>). As quoted from the
Javadoc, the <interfacename>BeanWrapper</interfacename> offers functionality to set and get property
values (individually or in bulk), get property descriptors, and to query
properties to determine if they are readable or writable. Also, the
<interfacename>BeanWrapper</interfacename> offers support for nested properties, enabling the setting of
properties on sub-properties to an unlimited depth. Then, the <interfacename>BeanWrapper</interfacename>
supports the ability to add standard JavaBeans
<interfacename>PropertyChangeListeners</interfacename> and
<interfacename>VetoableChangeListeners</interfacename>, without the need for
supporting code in the target class. Last but not least, the <interfacename>BeanWrapper</interfacename>
provides support for the setting of indexed properties. The <interfacename>BeanWrapper</interfacename>
usually isn't used by application code directly, but by the
<interfacename>DataBinder</interfacename> and the
<interfacename>BeanFactory</interfacename>.</para>
<para>The way the <interfacename>BeanWrapper</interfacename> works is partly indicated by its name:
<emphasis>it wraps a bean</emphasis> to perform actions on that bean, like
setting and retrieving properties.</para>
<section id="beans-beans-conventions">
<title>Setting and getting basic and nested properties</title>
<para>Setting and getting properties is done using the
<literal>setPropertyValue(s)</literal> and
<literal>getPropertyValue(s)</literal> methods that both come with a
couple of overloaded variants. They're all described in more detail in
the Javadoc Spring comes with. What's important to know is that there
are a couple of conventions for indicating properties of an object. A
couple of examples:</para>
<table id="beans-beans-conventions-properties-tbl">
<title>Examples of properties</title>
<tgroup cols="2">
<colspec colname="c1" colwidth="1*" />
<colspec colname="c2" colwidth="3*" />
<thead>
<row>
<entry>Expression</entry>
<entry>Explanation</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>name</literal></entry>
<entry>Indicates the property <literal>name</literal>
corresponding to the methods <methodname>getName()</methodname> or
<methodname>isName()</methodname> and
<methodname>setName(..)</methodname></entry>
</row>
<row>
<entry><literal>account.name</literal></entry>
<entry>Indicates the nested property <literal>name</literal>
of the property <literal>account</literal> corresponding e.g.
to the methods <literal>getAccount().setName()</literal> or
<literal>getAccount().getName()</literal></entry>
</row>
<row>
<entry><literal>account[2]</literal></entry>
<entry>Indicates the <emphasis>third</emphasis> element of the
indexed property <literal>account</literal>. Indexed
properties can be of type <literal>array</literal>,
<literal>list</literal> or other <emphasis>naturally
ordered</emphasis> collection</entry>
</row>
<row>
<entry><literal>account[COMPANYNAME]</literal></entry>
<entry>Indicates the value of the map entry indexed by the key
<emphasis>COMPANYNAME</emphasis> of the Map property
<literal>account</literal></entry>
</row>
</tbody>
</tgroup>
</table>
<para>Below you'll find some examples of working with the <interfacename>BeanWrapper</interfacename> to
get and set properties.</para>
<para><emphasis>(This next section is not vitally important to you if you're not
planning to work with the <interfacename>BeanWrapper</interfacename> directly. If you're
just using the <interfacename>DataBinder</interfacename> and the
<interfacename>BeanFactory</interfacename> and their out-of-the-box implementation, you
should skip ahead to the section about
<interfacename>PropertyEditors</interfacename>.)</emphasis></para>
<para>Consider the following two classes:</para>
<programlisting language="java"><![CDATA[public class Company {
private String name;
private Employee managingDirector;
public String getName() {
return this.name;
}
public void setName(String name) {
this.name = name;
}
public Employee getManagingDirector() {
return this.managingDirector;
}
public void setManagingDirector(Employee managingDirector) {
this.managingDirector = managingDirector;
}
}]]></programlisting>
<programlisting language="java"><![CDATA[public class Employee {
private String name;
private float salary;
public String getName() {
return this.name;
}
public void setName(String name) {
this.name = name;
}
public float getSalary() {
return salary;
}
public void setSalary(float salary) {
this.salary = salary;
}
}]]></programlisting>
<para>The following code snippets show some examples of how to retrieve
and manipulate some of the properties of instantiated
<literal>Companies</literal> and <literal>Employees</literal>:</para>
<programlisting language="java"><![CDATA[BeanWrapper company = BeanWrapperImpl(new Company());
]]><lineannotation>// setting the company name..</lineannotation><![CDATA[
company.setPropertyValue("name", "Some Company Inc.");
]]><lineannotation>// ... can also be done like this:</lineannotation><![CDATA[
PropertyValue value = new PropertyValue("name", "Some Company Inc.");
company.setPropertyValue(value);
]]><lineannotation>// ok, let's create the director and tie it to the company:</lineannotation><![CDATA[
BeanWrapper jim = BeanWrapperImpl(new Employee());
jim.setPropertyValue("name", "Jim Stravinsky");
company.setPropertyValue("managingDirector", jim.getWrappedInstance());
]]><lineannotation>// retrieving the salary of the managingDirector through the company</lineannotation><![CDATA[
Float salary = (Float) company.getPropertyValue("managingDirector.salary");]]></programlisting>
</section>
<section id="beans-beans-conversion">
<title>Built-in <interface>PropertyEditor</interface> implementations</title>
<para>Spring uses the concept of <literal>PropertyEditors</literal> to effect the conversion
between an <classname>Object</classname> and a <classname>String</classname>. If you think about it,
it sometimes might be handy to be able to represent properties in a different way than the object itself.
For example, a <classname>Date</classname> can be represented in a human readable way (as the
<classname>String</classname> '<literal>2007-14-09</literal>'), while we're still able to convert the
human readable form back to the original date (or even better: convert any date entered in a human readable
form, back to <classname>Date</classname> objects). This behavior can be achieved by
<emphasis>registering custom editors</emphasis>, of type <interfacename>java.beans.PropertyEditor</interfacename>.
Registering custom editors on a <interfacename>BeanWrapper</interfacename> or alternately in a specific IoC
container as mentioned in the previous chapter, gives it the knowledge of how to convert properties to the
desired type. Read more about <interfacename>PropertyEditors</interfacename> in the Javadoc of the
<literal>java.beans</literal> package provided by Sun.</para>
<para>A couple of examples where property editing is used in Spring:
<itemizedlist spacing="compact">
<listitem>
<para><emphasis>setting properties on beans</emphasis> is done
using <literal>PropertyEditors</literal>. When mentioning
<literal>java.lang.String</literal> as the value of a property of
some bean you're declaring in XML file, Spring will (if the setter
of the corresponding property has a <classname>Class</classname>-parameter) use the
<classname>ClassEditor</classname> to try to resolve the parameter to
a <classname>Class</classname> object.</para>
</listitem>
<listitem>
<para><emphasis>parsing HTTP request parameters</emphasis> in
Spring's MVC framework is done using all kinds of <literal>PropertyEditors</literal>
that you can manually bind in all subclasses of the
<classname>CommandController</classname>.</para>
</listitem>
</itemizedlist>
</para>
<para>Spring has a number of built-in <literal>PropertyEditors</literal> to make life easy.
Each of those is listed below and they are all located in the
<literal>org.springframework.beans.propertyeditors</literal> package. Most, but not all (as indicated below),
are registered by default by <classname>BeanWrapperImpl</classname>. Where the property editor is configurable
in some fashion, you can of course still register your own variant to override the default one:</para>
<table id="beans-beans-property-editors-tbl">
<title>Built-in <literal>PropertyEditors</literal></title>
<tgroup cols="2">
<colspec colname="c1" colwidth="3*" />
<colspec colname="c2" colwidth="5*" />
<thead>
<row>
<entry>Class</entry>
<entry>Explanation</entry>
</row>
</thead>
<tbody>
<row>
<entry><classname>ByteArrayPropertyEditor</classname></entry>
<entry>Editor for byte arrays. Strings will simply be
converted to their corresponding byte representations.
Registered by default by <classname>BeanWrapperImpl</classname>.</entry>
</row>
<row>
<entry><classname>ClassEditor</classname></entry>
<entry>Parses Strings representing classes to actual classes
and the other way around. When a class is not found, an
<classname>IllegalArgumentException</classname> is thrown. Registered by default by
<classname>BeanWrapperImpl</classname>.</entry>
</row>
<row>
<entry><classname>CustomBooleanEditor</classname></entry>
<entry>Customizable property editor for <classname>Boolean</classname> properties.
Registered by default by <classname>BeanWrapperImpl</classname>, but, can be
overridden by registering custom instance of it as custom
editor.</entry>
</row>
<row>
<entry><classname>CustomCollectionEditor</classname></entry>
<entry>Property editor for Collections, converting any source
<interfacename>Collection</interfacename> to a given target <interfacename>Collection</interfacename> type.</entry>
</row>
<row>
<entry><classname>CustomDateEditor</classname></entry>
<entry>Customizable property editor for java.util.Date,
supporting a custom DateFormat. NOT registered by default. Must
be user registered as needed with appropriate format.</entry>
</row>
<row>
<entry><classname>CustomNumberEditor</classname></entry>
<entry>Customizable property editor for any Number subclass
like <classname>Integer</classname>, <classname>Long</classname>,
<classname>Float</classname>, <classname>Double</classname>. Registered
by default by <classname>BeanWrapperImpl</classname>, but can be
overridden by registering custom instance of it as a custom editor.</entry>
</row>
<row>
<entry><classname>FileEditor</classname></entry>
<entry>Capable of resolving Strings to
<classname>java.io.File</classname> objects. Registered by default by
<classname>BeanWrapperImpl</classname>. </entry>
</row>
<row>
<entry><classname>InputStreamEditor</classname></entry>
<entry>One-way property editor, capable of taking a text
string and producing (via an intermediate <classname>ResourceEditor</classname> and
<interfacename>Resource</interfacename>) an
<interfacename>InputStream</interfacename>, so <interfacename>InputStream</interfacename>
properties may be directly set as Strings. Note that the default usage
will not close the <interfacename>InputStream</interfacename> for
you! Registered by default by <classname>BeanWrapperImpl</classname>.</entry>
</row>
<row>
<entry><classname>LocaleEditor</classname></entry>
<entry>Capable of resolving Strings to
<classname>Locale</classname> objects and vice versa (the String
format is [language]_[country]_[variant], which is the same
thing the toString() method of Locale provides). Registered by
default by <classname>BeanWrapperImpl</classname>.</entry>
</row>
<row>
<entry><classname>PatternEditor</classname></entry>
<entry>Capable of resolving Strings to JDK 1.5
<classname>Pattern</classname> objects and vice versa.</entry>
</row>
<row>
<entry><classname>PropertiesEditor</classname></entry>
<entry>Capable of converting Strings (formatted using the
format as defined in the Javadoc for the java.lang.Properties
class) to <classname>Properties</classname> objects. Registered by
default by <classname>BeanWrapperImpl</classname>.</entry>
</row>
<row>
<entry><classname>StringTrimmerEditor</classname></entry>
<entry>Property editor that trims Strings. Optionally allows
transforming an empty string into a <literal>null</literal> value. NOT
registered by default; must be user registered as needed.</entry>
</row>
<row>
<entry><classname>URLEditor</classname></entry>
<entry>Capable of resolving a String representation of a URL
to an actual <classname>URL</classname> object. Registered by
default by <classname>BeanWrapperImpl</classname>.</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
Spring uses the <interfacename>java.beans.PropertyEditorManager</interfacename> to set
the search path for property editors that might be needed. The search path also includes
<literal>sun.bean.editors</literal>, which includes
<interfacename>PropertyEditor</interfacename> implementations for types such as
<classname>Font</classname>, <classname>Color</classname>, and most of the primitive types.
Note also that the standard JavaBeans infrastructure will automatically discover
<interfacename>PropertyEditor</interfacename> classes (without you having to register them
explicitly) if they are in the same package as the class they handle, and have the same name
as that class, with <literal>'Editor'</literal> appended; for example, one could have the
following class and package structure, which would be sufficient for the
<classname>FooEditor</classname> class to be recognized and used as the
<interfacename>PropertyEditor</interfacename> for <classname>Foo</classname>-typed
properties.
</para>
<programlisting><![CDATA[com
chank
pop
Foo
FooEditor ]]><lineannotation>// the <interfacename>PropertyEditor</interfacename> for the <classname>Foo</classname> class</lineannotation></programlisting>
<para>Note that you can also use the standard <interfacename>BeanInfo</interfacename> JavaBeans
mechanism here as well (described
<ulink url="http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html">in not-amazing-detail here</ulink>).
Find below an example of using the <interfacename>BeanInfo</interfacename> mechanism for
explicitly registering one or more <interfacename>PropertyEditor</interfacename> instances
with the properties of an associated class.</para>
<programlisting><![CDATA[com
chank
pop
Foo
FooBeanInfo ]]><lineannotation>// the <interfacename>BeanInfo</interfacename> for the <classname>Foo</classname> class</lineannotation></programlisting>
<para>
Here is the Java source code for the referenced <classname>FooBeanInfo</classname> class. This
would associate a <classname>CustomNumberEditor</classname> with the <literal>age</literal>
property of the <classname>Foo</classname> class.
</para>
<programlisting language="java"><![CDATA[public class FooBeanInfo extends SimpleBeanInfo {
public PropertyDescriptor[] getPropertyDescriptors() {
try {
final PropertyEditor numberPE = new CustomNumberEditor(Integer.class, true);
PropertyDescriptor ageDescriptor = new PropertyDescriptor("age", Foo.class) {
public PropertyEditor createPropertyEditor(Object bean) {
return numberPE;
};
};
return new PropertyDescriptor[] { ageDescriptor };
}
catch (IntrospectionException ex) {
throw new Error(ex.toString());
}
}
}]]></programlisting>
<section id="beans-beans-conversion-customeditor-registration">
<title>Registering additional custom <interfacename>PropertyEditors</interfacename></title>
<para>When setting bean properties as a string value, a Spring IoC container
ultimately uses standard JavaBeans <literal>PropertyEditors</literal> to convert these
Strings to the complex type of the property. Spring pre-registers a number
of custom <literal>PropertyEditors</literal> (for example, to convert a classname expressed
as a string into a real <classname>Class</classname> object). Additionally, Java's standard
JavaBeans <interfacename>PropertyEditor</interfacename> lookup mechanism allows a
<classname>PropertyEditor</classname> for a class simply to be named appropriately and
placed in the same package as the class it provides support for, to be found automatically.</para>
<para>If there is a need to register other custom <literal>PropertyEditors</literal>, there
are several mechanisms available. The most manual approach, which is not normally convenient or
recommended, is to simply use the <methodname>registerCustomEditor()</methodname> method of the
<interfacename>ConfigurableBeanFactory</interfacename> interface, assuming you have a
<interfacename>BeanFactory</interfacename> reference. Another, slightly more convenient, mechanism is to use
a special bean factory post-processor called <classname>CustomEditorConfigurer</classname>.
Although bean factory post-processors can be used with <interfacename>BeanFactory</interfacename>
implementations, the <classname>CustomEditorConfigurer</classname> has a nested property setup, so it is
strongly recommended that it is used with the <interfacename>ApplicationContext</interfacename>, where
it may be deployed in similar fashion to any other bean, and automatically detected and applied.</para>
<para>Note that all bean factories and application contexts automatically use a number of built-in property
editors, through their use of something called a <interfacename>BeanWrapper</interfacename> to handle
property conversions. The standard property editors that the <interfacename>BeanWrapper</interfacename>
registers are listed in <link linkend="beans-beans-conversion">the previous section</link>. Additionally,
<literal>ApplicationContexts</literal> also override or add an additional number of editors
to handle resource lookups in a manner appropriate to the specific application context type.</para>
<para>Standard JavaBeans <interfacename>PropertyEditor</interfacename> instances are used to convert
property values expressed as strings to the actual complex type of the property.
<classname>CustomEditorConfigurer</classname>, a bean factory post-processor, may be used to conveniently
add support for additional <interfacename>PropertyEditor</interfacename> instances to an
<interfacename>ApplicationContext</interfacename>.</para>
<para>Consider a user class <classname>ExoticType</classname>, and another class
<classname>DependsOnExoticType</classname> which needs <classname>ExoticType</classname> set as a property:</para>
<programlisting language="java"><![CDATA[package example;
public class ExoticType {
private String name;
public ExoticType(String name) {
this.name = name;
}
}
public class DependsOnExoticType {
private ExoticType type;
public void setType(ExoticType type) {
this.type = type;
}
}]]></programlisting>
<para>When things are properly set up, we want to be able to assign the type property as a string, which a
<interfacename>PropertyEditor</interfacename> will behind the scenes convert into an actual
<classname>ExoticType</classname> instance:</para>
<programlisting language="xml"><![CDATA[<bean id="sample" class="example.DependsOnExoticType">
<property name="type" value="aNameForExoticType"/>
</bean>]]></programlisting>
<para>The <interfacename>PropertyEditor</interfacename> implementation could look similar to this:</para>
<programlisting language="java"><lineannotation>// converts string representation to <classname>ExoticType</classname> object</lineannotation><![CDATA[
package example;
public class ExoticTypeEditor extends PropertyEditorSupport {
private String format;
public void setFormat(String format) {
this.format = format;
}
public void setAsText(String text) {
if (format != null && format.equals("upperCase")) {
text = text.toUpperCase();
}
ExoticType type = new ExoticType(text);
setValue(type);
}
}]]></programlisting>
<para>Finally, we use <classname>CustomEditorConfigurer</classname> to register the new
<interfacename>PropertyEditor</interfacename> with the <interfacename>ApplicationContext</interfacename>,
which will then be able to use it as needed:</para>
<programlisting language="xml"><![CDATA[<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
<property name="customEditors">
<map>
<entry key="example.ExoticType">
<bean class="example.ExoticTypeEditor">
<property name="format" value="upperCase"/>
</bean>
</entry>
</map>
</property>
</bean>]]></programlisting>
<section id="beans-beans-conversion-customeditor-registration-per">
<title>Using <interfacename>PropertyEditorRegistrars</interfacename></title>
<para>Another mechanism for registering property editors with the Spring container is to create and use
a <interfacename>PropertyEditorRegistrar</interfacename>. This interface is particularly useful when you
need to use the same set of property editors in several different situations: write a corresponding
registrar and reuse that in each case. <literal>PropertyEditorRegistrars</literal> work in conjunction
with an interface called <interfacename>PropertyEditorRegistry</interfacename>, an interface
that is implemented by the Spring <interfacename>BeanWrapper</interfacename> (and
<interfacename>DataBinder</interfacename>). <literal>PropertyEditorRegistrars</literal> are particularly
convenient when used in conjunction with the <classname>CustomEditorConfigurer</classname>
(introduced <link linkend="beans-beans-conversion-customeditor-registration">here</link>), which exposes a
property called <methodname>setPropertyEditorRegistrars(..)</methodname>:
<literal>PropertyEditorRegistrars</literal> added to a <classname>CustomEditorConfigurer</classname> in this
fashion can easily be shared with <interfacename>DataBinder</interfacename> and Spring MVC
<interfacename>Controllers</interfacename>. Furthermore, it avoids the need for synchronization on custom
editors: a <interfacename>PropertyEditorRegistrar</interfacename> is expected to create fresh
<interfacename>PropertyEditor</interfacename> instances for each bean creation attempt.</para>
<para>Using a <interfacename>PropertyEditorRegistrar</interfacename> is perhaps best illustrated with an
example. First off, you need to create your own <interfacename>PropertyEditorRegistrar</interfacename>
implementation:</para>
<programlisting language="java"><![CDATA[package com.foo.editors.spring;
public final class CustomPropertyEditorRegistrar implements PropertyEditorRegistrar {
public void registerCustomEditors(PropertyEditorRegistry registry) {
]]><lineannotation>// it is expected that new <interfacename>PropertyEditor</interfacename> instances are created</lineannotation><![CDATA[
registry.registerCustomEditor(ExoticType.class, new ExoticTypeEditor());
]]><lineannotation>// you could register as many custom property editors as are required here...</lineannotation><![CDATA[
}
}]]></programlisting>
<para>See also the <classname>org.springframework.beans.support.ResourceEditorRegistrar</classname> for an
example <interfacename>PropertyEditorRegistrar</interfacename> implementation. Notice how in its
implementation of the <methodname>registerCustomEditors(..)</methodname> method it creates new instances
of each property editor.</para>
<para>Next we configure a <classname>CustomEditorConfigurer</classname> and inject an
instance of our <classname>CustomPropertyEditorRegistrar</classname> into it:</para>
<programlisting language="xml"><![CDATA[<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
<property name="propertyEditorRegistrars">
<list>
<ref bean="customPropertyEditorRegistrar"/>
</list>
</property>
</bean>
<bean id="customPropertyEditorRegistrar" class="com.foo.editors.spring.CustomPropertyEditorRegistrar"/>]]></programlisting>
<para>Finally, and in a bit of a departure from the focus of this chapter, for those of you using
<link linkend="mvc">Spring's MVC web framework</link>, using <interfacename>PropertyEditorRegistrars</interfacename>
in conjunction with data-binding <interfacename>Controllers</interfacename> (such as
<classname>SimpleFormController</classname>) can be very convenient. Find below an example of using a
<interfacename>PropertyEditorRegistrar</interfacename> in the implementation of an <methodname>initBinder(..)</methodname>
method:</para>
<programlisting language="java"><![CDATA[public final class RegisterUserController extends SimpleFormController {
private final PropertyEditorRegistrar customPropertyEditorRegistrar;
public RegisterUserController(PropertyEditorRegistrar propertyEditorRegistrar) {
this.customPropertyEditorRegistrar = propertyEditorRegistrar;
}
protected void initBinder(HttpServletRequest request, ServletRequestDataBinder binder) throws Exception {
]]><emphasis role="bold">this.customPropertyEditorRegistrar.registerCustomEditors(binder);</emphasis><![CDATA[
}
]]><lineannotation>// other methods to do with registering a <classname>User</classname></lineannotation><![CDATA[
}]]></programlisting>
<para>This style of <interfacename>PropertyEditor</interfacename> registration can lead to concise code (the
implementation of <methodname>initBinder(..)</methodname> is just one line long!), and allows common
<interfacename>PropertyEditor</interfacename> registration code to be encapsulated in a class and then
shared amongst as many <interfacename>Controllers</interfacename> as needed.</para>
</section>
</section>
</section>
</section>
<section id="core.convert">
<title>Spring 3 Type Conversion</title>
<para>
Spring 3 introduces a <filename>core.convert</filename> package that provides a general type conversion system.
The system defines an API to implement type conversion logic, as well as an API to execute type conversions at runtime.
Within a Spring container, if configured, this system can be used as an alternative to PropertyEditors to convert externalized bean property value strings to required property types.
The public API may also be used anywhere in your application where type conversion is needed.
</para>
<section id="core-convert-Converter-API">
<title>Converter API</title>
<para>
The API to implement type conversion logic is simple and strongly typed:
</para>
<programlisting language="java"><![CDATA[
package org.springframework.core.converter;
public interface Converter<S, T> {
T convert(S source);
}]]></programlisting>
<para>
To create your own Converter, simply implement the interface above.
Parameterize S as the type you are converting from, and T as the type you are converting to.
For each call to convert(S), the source argument is guaranteed to be NOT null.
Your Converter may throw any Exception if conversion fails.
An IllegalArgumentException should be thrown to report an invalid source value.
Take care to ensure your Converter implementation is thread-safe.
</para>
<para>
Several converter implementations are provided in the <filename>core.convert.converters</filename> package as a convenience.
These include converters from Strings to Numbers and other common types.
Consider <classname>StringToInteger</classname> as an example Converter implementation:
</para>
<programlisting language="java">package org.springframework.core.convert.converters;
public class StringToInteger implements Converter&lt;String, Integer&gt; {
public Integer convert(String source) {
return Integer.valueOf(source);
}
}</programlisting>
</section>
<section id="core-convert-ConverterFactory-SPI">
<title>ConverterFactory</title>
<para>
When you need to centralize the conversion logic for an entire class hierarchy, for example, when converting from String to java.lang.Enum objects, implement a <interfacename>ConverterFactory</interfacename>ConverterFactory:
</para>
<programlisting language="java"><![CDATA[
package org.springframework.core.converter;
public interface ConverterFactory<S, R> {
<T extends R> Converter<S, T> getConverter(Class<T> targetType);
}]]></programlisting>
<para>
Parameterize S to be type you are converting from and R to be base type defining the <emphasis>range</emphasis> of classes you can convert to.
Then implement getConverter(Class&lt;T&gt;), where T is a subclass of R.
</para>
<para>
Consider the <classname>StringToEnum</classname> ConverterFactory as an example:
</para>
<programlisting language="java"><![CDATA[
public class StringToEnumFactory implements ConverterFactory<String, Enum> {
public <T extends Enum> Converter<String, T> getConverter(Class<T> targetType) {
return new StringToEnum(targetType);
}
private final class StringToEnum<T extends Enum> implements Converter<String, T> {
private Class<T> enumType;
public StringToEnum(Class<T> enumType) {
this.enumType = enumType;
}
public T convert(String source) {
return (T) Enum.valueOf(this.enumType, source.trim());
}
}
}]]></programlisting>
</section>
<section id="core-convert-ConversionService-API">
<title>ConversionService API</title>
<para>
The ConversionService defines a public API for executing type conversion logic at runtime.
Converters are often executed behind this facade interface:
</para>
<programlisting language="java"><![CDATA[
public interface ConversionService {
boolean canConvert(Class<?> sourceType, Class<?> targetType);
<T> T convert(Object source, Class<T> targetType);
}]]></programlisting>
<para>
Most ConversionService implementations also implement <interface>ConverterRegistry</interface>, which provides an SPI for registering converters.
Internally, a ConversionService implementation delegates to its registered Converters and ConverterFactories to carry out type conversion logic.
</para>
<para>
Two ConversionService implementations are provided with the system in the <filename>core.convert.support</filename> package.
<classname>GenericConversionService</classname> is a generic implementation designed to be explicitly configured, either programatically or declaratively as a Spring bean.
<classname>DefaultConversionService</classname> is a subclass that pre-registers the common Converters in the <filename>core.converter</filename> package as a convenience.
</para>
</section>
<section id="core-convert-Spring-config">
<title>Configuring a ConversionService</title>
<para>
A ConversionService is a stateless object designed to be instantiated at application startup, then shared between multiple threads.
In a Spring application, you typically configure a ConversionService instance per Spring container (or ApplicationContext).
That ConversionService will be picked up by Spring and then used whenever a type conversion needs to be performed by the framework.
You may also inject this ConversionService into any of your beans and invoke it directly.
</para>
<note>
<para>
If no ConversionService is registered with Spring, the original PropertyEditor-based system is used.
</para>
</note>
<para>
To register the DefaultConversionService with Spring, simply configure it as a bean with the id <code>conversionService</code>:
</para>
<programlisting language="xml"><![CDATA[
<bean id="conversionService" class="org.springframework.core.convert.support.DefaultConversionService" />]]>
</programlisting>
<para>
To override the default set of converters with your own custom converter(s), set the <code>converters</code> property:
</para>
<programlisting language="xml"><![CDATA[
<bean id="conversionService" class="org.springframework.core.convert.support.DefaultConversionService">
<property name="converters">
<list>
<bean class="example.MyCustomConverter" />
</list>
</property>
</bean>]]></programlisting>
</section>
<section id="core-convert-programmatic-usage">
<title>Using a ConversionService programatically</title>
<para>
To work with a ConversionService instance programatically, simply inject a reference to it like you would for any other bean:
</para>
<programlisting language="java"><![CDATA[
@Service
public class MyService {
@Autowired
public MyService(ConversionService conversionService) {
this.conversionService = conversionService;
}
public void doIt() {
this.conversionService.convert(...)
}
}]]></programlisting>
</section>
</section>
<section id="ui.format">
<title>Spring 3 Field Formatting</title>
<para>
<link linkend="core.convert"><filename>core.convert</filename></link> is a simple, general-purpose type conversion system.
It provides a strongly-typed Converter SPI for implementing <emphasis>one-way</emphasis> conversion logic from one type to another and is not limited to just converting Strings.
As discussed in the previous section, a Spring Container can be configured to use this system to bind bean property values.
In addition, both the Spring Expression Language (SpEL) and DataBinder can use this system to coerce values.
For example, when SpEL needs to coerce a <classname>Short</classname> to a <classname>Long</classname> to complete an <function>expression.setValue(Object bean, Object value)</function> attempt, the core.convert system performs the coercion.
</para>
<para>
Now consider the type conversion requirements of a typical client environment such as a web or desktop application.
In such environments, you typically convert <emphasis>from String</emphasis> to support the client postback process, as well as back <emphasis>to String</emphasis> to support the rendering process.
The more general <emphasis>core.convert</emphasis> Converter SPI does not address this specific common scenario directly.
To directly address this, Spring 3 introduces a conveient <emphasis>format</emphasis> SPI that provides a simple and robust alternative to PropertyEditors in a client environment.
</para>
<para>
In general, use the Converter SPI when you need to implement general-purpose type conversion logic.
Use Formatters when you're working in a client environment, such as an HTML form of a web application and need to apply String parsing, printing, and localization logic to form field values.
</para>
<section id="ui-format-Formatter-SPI">
<title>Formatter SPI</title>
<para>
The <literal>org.springframework.format</literal> SPI to implement field formatting logic is simple and strongly typed:
</para>
<programlisting language="java"><![CDATA[
public interface Printer<T> {
String print(T fieldValue, Locale locale);
}]]>
</programlisting>
<programlisting language="java"><![CDATA[
import java.text.ParseException;
public interface Parser<T> {
T parse(String clientValue, Locale locale) throws ParseException;
}]]>
</programlisting>
<programlisting language="java"><![CDATA[
public interface Formatter<T> extends Printer<T>, Parser<T> {
}]]>
</programlisting>
<para>
To create your own Formatter, simply implement the Formatter interface above.
Parameterize T to be the type of object you are formatting, for example, <classname>java.lang.BigDecimal</classname>.
Implement the <methodname>print</methodname> operation to print an instance of T for display in the client locale.
Implement the <methodname>parse</methodname> operation to parse an instance of T from the formatted representation returned from the client locale.
Your Formatter should throw a ParseException or IllegalArgumentException if a parse attempt fails.
Take care to ensure your Formatter implementation is thread-safe.
</para>
<para>
Several Formatter implementations are provided in <filename>format</filename>subpackages as a convenience.
The <filename>datetime</filename> package provides a DateFormatter to format java.util.Date objects with a java.text.DateFormat.
The <filename>number</filename> package provides a DecimalFormatter, IntegerFormatter, CurrencyFormatter, and PercentFormatter to format java.lang.Number objects using a java.text.NumberFormat.
The <filename>datetime.joda</filename> package provides comprehensive datetime formatting support based on the <ulink url="http://joda-time.sourceforge.net">Joda Time library</ulink>.
</para>
<para>
Consider <classname>DateFormatter</classname> as an example <interfacename>Formatter</interfacename> implementation:
</para>
<programlisting language="java"><![CDATA[
package org.springframework.format.datetime;
public final class DateFormatter implements Formatter<Date> {
private String pattern;
public DateFormatter(String pattern) {
this.pattern = pattern;
}
public String print(Date date, Locale locale) {
if (date == null) {
return "";
}
return getDateFormat(locale).format(date);
}
public Date parse(String formatted, Locale locale) throws ParseException {
if (formatted.length() == 0) {
return null;
}
return getDateFormat(locale).parse(formatted);
}
protected DateFormat getDateFormat(Locale locale) {
DateFormat dateFormat = new SimpleDateFormat(this.pattern, locale);
dateFormat.setLenient(false);
return dateFormat;
}
}]]></programlisting>
<para>
The Spring team welcomes community-driven Formatter contributions; see <ulink url="http://jira.springframework.org">http://jira.springframework.org</ulink> to contribute.
</para>
</section>
<section id="ui-format-CustomFormatAnnotations">
<title>Custom Format Annotations</title>
<para>
Field formatting can be triggered by annotating model properties.
To bind a custom annotation to a Formatter instance, implement AnnotationFormatterFactory:
</para>
<programlisting language="java"><![CDATA[
package org.springframework.format;
public interface AnnotationFormatterFactory<A extends Annotation> {
Set<Class<?>> getFieldTypes();
Printer<?> getPrinter(A annotation, Class<?> fieldType);
Parser<?> getParser(A annotation, Class<?> fieldType);
}]]></programlisting>
<para>
Parameterize A to be the field annotationType you wish to associate formatting logic with, for example <code>org.springframework.format.annotation.DateTimeFormat</code>.
Implement the <methodname>getFieldTypes</methodname> operation return the types of fields the annotation may be used on.
Implement the <methodname>getPrinter</methodname> operation to return the Printer to print the value of an annotated field.
Implement the <methodname>getParser</methodname> operation to return the Parser to parse the value of an annotated field.
Take care to ensure your AnnotationFormatterFactory implementation is thread-safe.
</para>
<para>
The example implementation below binds a @DecimalFormat instance to a Formatter instance.
This particular annotation allows the NumberFormat pattern to be configured.
</para>
<programlisting language="java"><![CDATA[
public class DecimalAnnotationFormatterFactory implements AnnotationFormatterFactory<DecimalFormat, Number> {
Formatter<Number> getFormatter(DecimalFormat annotation) {
DecimalFormatter formatter = DecimalFormatter();
formatter.setPattern(annotation.value());
return formatter;
}
}]]></programlisting>
<para>
Then, to trigger formatting, simply annotate a property with @DecimalFormat in your model:
</para>
<programlisting language="java"><![CDATA[
public class MyModel {
@DecimalFormat("#,###")
private BigDecimal decimal;
}]]></programlisting>
</section>
</section>
<section id="ui-format-FormatterRegistry-SPI">
<title>FormatterRegistry SPI</title>
<para>
Formatters can be registered in a FormatterRegistry.
A DataBinder uses this registry to resolve the Formatter to use for a specific field.
This allows you to configure default Formatting rules centrally, rather than duplicating such configuration across your UI Controllers.
For example, you might want to enforce that all Date fields are formatted a certain way, or fields with a specific annotation are formatted in a certain way.
With a shared FormatterRegistry, you define these rules once and they are applied whenever formatting is needed.
</para>
<para>
Review the FormatterRegistry SPI below:
</para>
<programlisting language="java"><![CDATA[
package org.springframework.format;
public interface FormatterRegistry {
void add(Formatter<?> formatter);
void add(AnnotationFormatterFactory<?, ?> factory);
}]]></programlisting>
<para>
As shown above, Formatters may be registered by field type or annotation.
<classname>GenericFormatterRegistry</classname> is the implementation suitable for use in most UI binding environments.
This implementation may be configured programatically or declaratively as a Spring bean.
</para>
</section>
<section id="ui-format-configuring-FormatterRegistry">
<title>Configuring a FormatterRegistry</title>
<para>
A FormatterRegistry is designed to be instantiated at application startup, then shared between multiple threads.
In a Spring MVC application, you configure a FormatterRegistry as a property of the WebBindingInitializer.
The FormatterRegistry will then be configured whenever a DataBinder is created by Spring MVC to bind and render model properties.
</para>
<note>
<para>
If no FormatterRegistry is configured, the original PropertyEditor-based system is used.
</para>
</note>
<para>
To register a FormatterRegistry with Spring MVC, simply configure it as a property of a custom WebBindingInitializer injected into the
Spring MVC AnnotationMethodHandlerAdapter:
</para>
<programlisting language="xml"><![CDATA[
<!-- Invokes Spring MVC @Controller methods -->
<bean class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<!-- Configures Spring MVC DataBinder instances -->
<bean class="org.springframework.web.bind.support.ConfigurableWebBindingInitializer">
<property name="formatterRegistry">
<bean class="org.springframework.format.support.GenericFormatterRegistry">
<property name="formatters">
<list>
<!-- Register Formatter beans here -->
</list>
</property>
<property name="annotationFormatterFactories">
<list>
<!-- Register any AnnotationFormatterFactory beans here -->
</list>
</property>
</bean>
</property>
</bean>
</property>
</bean>]]>
</programlisting>
<para>
When using the @Formatted annotation, no explicit Formatter or AnnotationFormatterFactory registration is required.
See the JavaDocs for GenericFormatterRegistry for more configuration options.
</para>
</section>
</section>
<section id="validation.beanvalidation">
<title>Spring 3 Validation</title>
<para>
Spring 3 introduces several enhancements to its validation support.
First, the JSR-303 Bean Validation API is now fully supported.
Second, when used programatically, Spring's DataBinder can now validate objects as well as bind to them.
Third, Spring MVC now has support for declaratively validating @Controller inputs.
</para>
<section id="validation.beanvalidation.overview">
<title>Overview of the JSR-303 Bean Validation API</title>
<para>
JSR-303 standardizes validation constraint declaration and metadata for the Java platform.
Using this API, you annotate domain model properties with declarative validation constraints and the runtime enforces them.
There are a number of built-in constraints you can can take advantage of.
You may also define your own custom constraints.
</para>
<para>
To illustrate, consider a simple Person model with two properties:
</para>
<programlisting language="java"><![CDATA[
public class Person {
private String name;
private int age;
}]]></programlisting>
<para>
JSR-303 allows you to define declarative validation constraints against such properties:
</para>
<programlisting language="java"><![CDATA[
public class Person {
@NotNull
@Max(64)
private String name;
@Min(0)
private int age;
}]]></programlisting>
<para>
When an instance of this class is validated by a JSR-303 Validator, these constraints will be enforced.
</para>
<para>
For general information on JSR-303, see the <ulink url="http://jcp.org/en/jsr/detail?id=303">Bean Validation Specification</ulink>.
For information on the specific capabilities of the default reference implementation, see the <ulink url="https://www.hibernate.org/412.html">Hibernate Validator</ulink> documentation.
To learn how to setup a JSR-303 implementation as a Spring bean, keep reading.
</para>
</section>
<section id="validation.beanvalidation.spring">
<title>Configuring a Bean Validation Implementation</title>
<para>
Spring provides full support for the JSR-303 Bean Validation API.
This includes convenient support for bootstrapping a JSR-303 implementation as a Spring bean.
This allows a <code>javax.validation.Validator</code> to be injected wherever validation is needed in your application.
</para>
<para>
Use the <classname>LocalValidatorFactoryBean</classname> to configure a default JSR-303 Validator as a Spring bean:
</para>
<programlisting language="xml"><![CDATA[
<bean id="validator" class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean" />]]>
</programlisting>
<para>
The basic configuration above will trigger JSR-303 to initialize using its default bootstrap mechanism.
A JSR-303 provider, such as Hibernate Validator, is expected to be present in the classpath and will be detected automatically.
</para>
<tip>
<title>Using LocalValidatorFactoryBean programmatically</title>
<para>If you choose to use <classname>LocalValidatorFactoryBean</classname>
programmatically i.e., by instantiating it directly make sure
you call its <literal>afterPropertiesSet()</literal> method. Otherwise, the
<classname>LocalValidatorFactoryBean</classname> will not be
initialized properly.</para>
</tip>
<section id="validation.beanvalidation.spring.inject">
<title>Injecting a Validator</title>
<para>
<classname>LocalValidatorFactoryBean</classname> implements both <code>javax.validation.Validator</code> and <code>org.springframework.validation.Validator</code>.
You may inject a reference to one of these two interfaces into beans that need to invoke validation logic.
</para>
<para>
Inject a reference to <code>javax.validation.Validator</code> if you prefer to work with the JSR-303 API directly:
</para>
<programlisting language="java">import javax.validation.Validator;
@Service
public class MyService {
@Autowired
private Validator validator;
</programlisting>
<para>
Inject a reference to <code>org.springframework.validation.Validator</code> if your bean requires the Spring Validation API:
</para>
<programlisting language="java"><![CDATA[
import org.springframework.validation.Validator;
@Service
public class MyService {
@Autowired
private Validator validator;
}]]></programlisting>
</section>
<section id="validation.beanvalidation.spring.constraints">
<title>Configuring Custom Constraints</title>
<para>
Each JSR-303 validation constraint consists of two parts.
First, a @Constraint annotation that declares the constraint and its configurable properties.
Second, an implementation of the <code>javax.validation.ConstraintValidator</code> interface that implements the constraint's behavior.
To associate a declaration with an implementation, each @Constraint annotation references a corresponding ValidationConstraint implementation class.
At runtime, a <code>ConstraintValidatorFactory</code> instantiates the referenced implementation when the constraint annotation is encountered in your domain model.
</para>
<para>
By default, the <classname>LocalValidatorFactoryBean</classname> configures a <code>SpringConstraintValidatorFactory</code> that uses Spring to create ConstraintValidator instances.
This allows your custom ConstraintValidators to benefit from dependency injection like any other Spring bean.
</para>
<para>
Shown below is an example of a custom @Constraint declaration, followed by an associated <code>ConstraintValidator</code> implementation that uses Spring for dependency injection:
</para>
<programlisting language="java"><![CDATA[
@Target({ElementType.METHOD, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy=MyConstraintValidator.class)
public @interface MyConstraint {
}]]></programlisting>
<programlisting language="java"><![CDATA[
import javax.validation.ConstraintValidator;
public class MyConstraintValidator implements ConstraintValidator {
@Autowired;
private Foo aDependency;
...
}]]></programlisting>
<para>
As you can see, a ConstraintValidator implementation may have its dependencies @Autowired like any other Spring bean.
</para>
</section>
<section id="validation.beanvalidation.spring.other">
<title>Additional Configuration Options</title>
<para>
The default <classname>LocalValidatorFactoryBean</classname> configuration should prove sufficient for most cases.
There are a number of other configuration options for various JSR-303 constructs, from message interpolation to traversal resolution.
See the JavaDocs of <classname>LocalValidatorFactoryBean</classname> more information on these options.
</para>
</section>
</section>
<section id="validation.binder">
<title>Configuring a DataBinder</title>
<para>
Since Spring 3, a DataBinder instance can be configured with a Validator.
Once configured, the Validator may be invoked by calling <code>binder.validate()</code>.
Any validation Errors are automatically added to the binder's BindingResult.
</para>
<para>
When working with the DataBinder programatically, this can be used to invoke validation logic after binding to a target object:
</para>
<programlisting language="java">Foo target = new Foo();
DataBinder binder = new DataBinder(target);
binder.setValidator(new FooValidator());
<lineannotation>// bind to the target object</lineannotation>
binder.bind(propertyValues);
<lineannotation>// validate the target object</lineannotation>
binder.validate();
<lineannotation>// get BindingResult that includes any validation errors</lineannotation>
BindingResult results = binder.getBindingResult();
</programlisting>
</section>
<section id="validation.mvc">
<title>Spring MVC 3 Validation</title>
<para>
Beginning with Spring 3, Spring MVC has the ability to automatically validate @Controller inputs.
In previous versions it was up to the developer to manually invoke validation logic.
</para>
<section id="validation.mvc.triggering">
<title>Triggering @Controller Input Validation</title>
<para>
To trigger validation of a @Controller input, simply annotate the input argument as @Valid:
</para>
<programlisting language="java">@Controller
public class MyController {
@RequestMapping("/foo", method=RequestMethod.POST)
public void processFoo(<emphasis role="bold">@Valid</emphasis> Foo foo) { <lineannotation>/* ... */</lineannotation> }
</programlisting>
<para>
Spring MVC will validate a @Valid object after binding so-long as an appropriate Validator has been configured.
</para>
<note>
<para>
The @Valid annotation is part of the standard JSR-303 Bean Validation API, and is not a Spring-specific construct.
</para>
</note>
</section>
<section id="validation.mvc.configuring">
<title>Configuring a Validator for use by Spring MVC</title>
<para>
The Validator instance invoked when a @Valid method argument is encountered may be configured in two ways.
First, you may call binder.setValidator(Validator) within a @Controller's @InitBinder callback.
This allows you to configure a Validator instance per @Controller class:
</para>
<programlisting language="java"><![CDATA[
@Controller
public class MyController {
@InitBinder
protected void initBinder(WebDataBinder binder) {
binder.setValidator(new FooValidator());
}
@RequestMapping("/foo", method=RequestMethod.POST)
public void processFoo(@Valid Foo foo) { ... }
}]]></programlisting>
<para>
Second, you may call setValidator(Validator) on the global WebBindingInitializer.
This allows you to configure a Validator instance across all @Controllers:
</para>
<programlisting language="xml"><![CDATA[
<!-- Invokes Spring MVC @Controller methods -->
<bean class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<!-- Configures Spring MVC DataBinder instances -->
<bean class="org.springframework.web.bind.support.ConfigurableWebBindingInitializer">
<property name="validator" ref="validator" />
</bean>
</property>
</bean>]]></programlisting>
</section>
<section id="validation.mvc.jsr303">
<title>Configuring a JSR-303 Validator for use by Spring MVC</title>
<para>
With JSR-303, the default <code>javax.validation.Validator</code> implementation is generic.
A single instance typically coordinates the validation of <emphasis>all</emphasis> application objects that declare validation constraints.
To configure such a general purpose Validator for use by Spring MVC, simply inject a <classname>LocalValidatorFactoryBean</classname> reference into the <code>WebBindingInitializer</code>.
</para>
<para>
A full configuration example showing injection of a JSR-303 backed Validator into Spring MVC is shown below:
</para>
<programlisting language="xml"><![CDATA[
<!-- Invokes Spring MVC @Controller methods -->
<bean class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<!-- Configures Spring MVC DataBinder instances -->
<bean class="org.springframework.web.bind.support.ConfigurableWebBindingInitializer">
<property name="validator" ref="validator" />
</bean>
</property>
</bean>
<!-- Creates the JSR-303 Validator -->
<bean id="validator" class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean" />]]></programlisting>
<para>
With this configuration, anytime a @Valid @Controller input is encountered, it will be validated by the JSR-303 provider.
JSR-303, in turn, will enforce any constraints declared against the input.
Any ConstaintViolations will automatically be exposed as errors in the BindingResult renderable by standard Spring MVC form tags.
</para>
</section>
</section>
</section>
<section id="org.springframework.mapping">
<title>Spring 3 Object Mapping</title>
<para>
There are scenarios, particularly in large message-oriented business applications, where object transformation is required.
For example, consider a complex Web Service where there is a separation between the data exchange model and the internal domain model used to structure business logic.
In cases like this, a general-purpose object-to-object mapping facility can be useful for automating the mapping between these disparate models.
Spring 3 introduces such a facility built on the <link linkend="expressions-intro">Spring Expression Language</link> (SpEL).
This facility is described in this section.
</para>
<section id="mapping-Mapping-API">
<title>Mapper API</title>
<para>
The API to implement object mapping logic is simple and strongly typed:
</para>
<programlisting language="java"><![CDATA[
package org.springframework.mapping;
public interface Mapper<S, T> {
T map(S source, T target);
}]]></programlisting>
<para>
To create your own Mapper, simply implement the interface above.
Parameterize S as the type you are mapping from, and T as the type you are mapping to.
The source and target arguments provided to you should never be null.
Your Mapper may throw any RuntimeException if mapping fails.
Take care to ensure your Mapper implementation is thread-safe.
</para>
<para>
Consider the following hand-coded Mapper example:
</para>
<programlisting language="java">
public class PersonDtoPersonMapper implements Mapper&lt;PersonDto, Person&gt; {
public Person map(PersonDto source, Person target) {
String[] names = source.getName().split(" ");
target.setFirstName(names[0]);
target.setLastName(names[1]);
return target;
}
}</programlisting>
<para>
In this trivial example, the Mapper maps the PersonDto's <literal>name</literal> property to the Person's <literal>firstName</literal> and <literal>lastName</literal> properties.
The fully mapped Person object is returned.
</para>
</section>
<section id="mapping.SpelMapper">
<title>General Purpose Object Mapper Implementation</title>
<para>
A general purpose object-to-object mapping system exists in the <classname>org.springframework.mapping.support</classname> package.
Built on the Spring Expression Language (SpEL), this system is capable of mapping between a variety of object types, including JavaBeans, Arrays, Collections, and Maps.
It can perform field-to-field, field-to-multi-field, multi-field-to-field, and conditional mappings.
It also can carry out type conversion and recursive mapping, which are often required with rich object models.
</para>
<section id="mapping.SpelMapper-usage">
<title>Usage</title>
<para>
To obtain a general purpose object Mapper with its default configuration, simply call <methodname>MappingFactory.getDefaultMapper()</methodname>.
Then invoke the Mapper by calling its <literal>map(Object, Object)</literal> operation:
</para>
<programlisting language="java"><![CDATA[
MappingFactory.defaultMapper().map(aSource, aTarget);]]>
</programlisting>
<para>
By default, the defaultMapper will map the fields on the source and target that have the same names.
If the field types differ, the mapping system will attempt a type conversion using Spring 3's <link linkend="core.convert">type conversion system</link>.
Nested bean properties are mapped recursively.
Any mapping failures will trigger a MappingException to be thrown.
If there are multiple failures, they will be collected and returned in the MappingException thrown to the caller.
</para>
<para>
To illustrate this default behavior, consider the following source object type:
</para>
<programlisting language="java"><![CDATA[
public class CreateAccountDto {
private String number;
private String name;
private AddressDto address;
public static class AddressDto {
private String street;
private String zip;
}
}]]></programlisting>
<para>
And the following target object type:
</para>
<programlisting language="java"><![CDATA[
public class Account {
private Long number;
private String name;
private Address address;
public static class Address {
private String street;
private String city
private String state;
private String zip;
}
}]]></programlisting>
<para>
Now mapped in the following service method:
</para>
<programlisting language="java"><![CDATA[
public void createAccount(CreateAccountDto dto) {
Account account = (Account) MapperFactory.getDefaultMapper().map(dto, new Account());
// work with the mapped account instance
}]]>
</programlisting>
<para>
In this example, the <literal>number</literal>, <literal>name</literal>, and <literal>address</literal> properties are automatically mapped since they are present on both the source and target objects.
The AccountDto's <literal>address</literal> property is a JavaBean, so its nested properties are also recursively mapped.
Recursively, the <literal>street</literal> and <literal>zip</literal> properties are automatically mapped since they are both present on the nested AddressDto and Address objects.
Nothing is mapped to the Address's <literal>city</literal> and <literal>state</literal> properties since these properties do not exist on the AddressDto source.
</para>
</section>
<section id="mapping.SpelMapper-Explicit">
<title>Registering Explicit Mappings</title>
<para>
When default mapping rules are not sufficient, explicit mapping rules can be registered by obtaining a <classname>MapperBuilder</classname> and using it to construct a <classname>Mapper</classname>.
Explicit mapping rules always override the default rule.
The MapperBuilder provides a fluent API for registering object-to-object Mapping rules:
</para>
<programlisting language="java"><![CDATA[
Mapper<PersonDto, Person> mapper =
MappingFactory.mappingBuilder(PersonDto.class, Person.class)
.addMapping(...)
.addMapping(...)
.getMapper();
]]>
</programlisting>
</section>
<section id="mapping.SpelMapper-Explicit-differentFieldNames">
<title>Mapping between two fields with different names</title>
<para>
Suppose you need to map <literal>AccountDto.name</literal> to <literal>Account.fullName</literal>.
Since these two field names are not the same, the default auto-mapping rule would not apply.
Handle a requirement like this by explicitly registering a mapping rule:
</para>
<programlisting language="java"><![CDATA[
builder.addMapping("name", "fullName")]]>
</programlisting>
<para>
In the example above, the <literal>name</literal> field will be mapped to the <literal>fullName</literal> field when the mapper is executed.
No default mapping will be performed for <literal>name</literal> since an explicit mapping rule has been configured for this field.
</para>
</section>
<section id="mapping.SpelMapper-Explicit-singleFieldToMultipleField">
<title>Mapping a single field to multiple fields</title>
<para>
Suppose you need to map <literal>PersonDto.name</literal> to <literal>Person.firstName</literal> and <literal>Person.lastName</literal>.
Handle a field-to-multi-field requirement like this by explicitly registering a mapping rule:
</para>
<programlisting language="java"><![CDATA[
builder.addMapping("name", new Mapper<String, Person>() {
public Person map(String name, Person person) {
String[] names = name.split(" ");
person.setFirstName(names[0]);
person.setLastName(names[1]);
return person;
}
});]]>
</programlisting>
<para>
In the example above, the first part of the <literal>name</literal> field will be mapped to the <literal>firstName</literal> field and the second part will be mapped to the <literal>lastName</literal> field.
No default mapping will be performed for <literal>name</literal> since an explicit mapping rule has been configured for this field.
</para>
</section>
<section id="mapping.SpelMapper-Explicit-multipleFieldsToField">
<title>Mapping multiple fields to a single field</title>
<para>
Suppose you need to map <literal>CreateAccountDto.activationDay</literal> and <literal>CreateAccountDto.activationTime</literal> to <literal>Account.activationDateTime</literal>.
Handle a multi-field-to-field requirement like this by explicitly registering a mapping rule:
</para>
<programlisting language="java"><![CDATA[
builder.addMapping(new String[] { "activationDay", "activationTime" }, new Mapper<CreateAccountDto, AccountDto>() {
public Account map(CreateAccountDto dto, Account account) {
DateTime dateTime = ISODateTimeFormat.dateTime().parseDateTime(
dto.getActivationDay() + "T" + dto.getActivationTime());
account.setActivationDateTime(dateTime);
return account;
}
});]]>
</programlisting>
<para>
In the example above, the <literal>activationDay</literal> and <literal>activationTime</literal> fields are mapped to the single <literal>activationDateTime</literal> field.
No default mapping is performed for <literal>activationDay</literal> or <literal>activationTime</literal> since an explicit mapping rule has been configured for these fields.
</para>
</section>
<section id="mapping.SpelMapper-Explicit-conditionalMappings">
<title>Mapping conditionally</title>
<para>
Suppose you need to map <literal>Map.countryCode</literal> to <literal>PhoneNumber.countryCode</literal> only if the source Map contains a international phone number.
Handle conditional mapping requirements like this by explicitly registering a mapping rule:
</para>
<programlisting language="java"><![CDATA[
builder.addConditionalMapping("countryCode", "international == 'true'");]]>
</programlisting>
<para>
In the example above, the <literal>countryCode</literal> field will only be mapped if the international field is 'true'.
<literal>international == 'true'</literal> is a boolean expression that must evaluate to true for the mapping to be executed.
No default mapping is performed for <literal>countryCode</literal> since an explicit mapping rule has been configured for this field.
</para>
</section>
<section id="mapping.SpelMapper-Explicit-forcing">
<title>Forcing Explicit Mappings</title>
<para>
You can force that <emphasis>all</emphasis> mapping rules be explicitly defined by disabling the "auto mapping" feature:
</para>
<programlisting language="java"><![CDATA[
builder.setAutoMappingEnabled(false);]]>
</programlisting>
</section>
<section id="mapping.SpelMapper-CustomConverter">
<title>Registering Custom Mapping Converters</title>
<para>
Sometimes you need to apply field specific type conversion or data transformation logic when mapping a value.
Do this by registering a converter with a Mapping:
</para>
<programlisting language="java"><![CDATA[
builder.addMapping("name", "fullName").setConverter() { new Converter<String, String>() {
public String convert(String value) {
// do transformation
// return transformed value
}
});]]>
</programlisting>
</section>
<section id="mapper.SpelMapper-IgnoringFields">
<title>Ignoring Fields</title>
<para>
Sometimes you need to exclude a specific field on a source object from being mapped.
Do this by marking one or more source fields as excluded:
</para>
<programlisting language="java"><![CDATA[
builder.setExcludedFields("name");]]>
</programlisting>
</section>
<section id="mapper.SpelMapper-CustomTypeConverters">
<title>Registering Custom Type Converters</title>
<para>
You may also register custom Converters to convert values between mapped fields of different types:
</para>
<programlisting language="java"><![CDATA[
builder.addConverter(new Converter<String, Date>() {
public Date convert(String value) {
// do conversion
// return transformed value
}
});]]>
</programlisting>
<para>
The example Converter above will be invoked anytime a String field is mapped to a Date field.
</para>
</section>
<section id="mapper.SpelMapper-CustomNestedMappers">
<title>Registering Custom Nested Mappers</title>
<para>
When mapping between two object graphs, you may find you need to register explicit mapping rules for nested bean properties.
Do this by adding a nested Mapper:
</para>
<programlisting language="java"><![CDATA[
builder.addNestedMapper(new Mapper<AddressDto, Address>() {
public Address map(AddressDto source, Address target) {
// do target bean mapping here
return target;
}
});]]>
</programlisting>
<para>
The example Mapper above will map nested AddressDto properties to nested Address properties.
This particular nested Mapper is "hand-coded", but it could have easily been another Mapper instance built by a MapperBuilder.
</para>
</section>
</section>
<section id="org.springframework.mapping-FurtherReading">
<title>Further Reading</title>
<para>
Consult the JavaDocs of <classname>MapperFactory</classname> and <classname>MapperBuilder</classname> in the <filename>org.springframework.mapping.support</filename> package for more information on the available configuration options.
</para>
<para>
Dozer is another general-purpose object mapper available in the open source Java community.
Check it out at <ulink url="http://dozer.sourceforge.net">dozer.sourceforge.net</ulink>.
</para>
</section>
</section>
</chapter>