1087 lines
33 KiB
Plaintext
1087 lines
33 KiB
Plaintext
[[webflux-fn]]
|
|
= Functional Endpoints
|
|
[.small]#xref:web/webmvc-functional.adoc[See equivalent in the Servlet stack]#
|
|
|
|
Spring WebFlux includes WebFlux.fn, a lightweight functional programming model in which functions
|
|
are used to route and handle requests and contracts are designed for immutability.
|
|
It is an alternative to the annotation-based programming model but otherwise runs on
|
|
the same xref:web/webflux/reactive-spring.adoc[Reactive Core] foundation.
|
|
|
|
|
|
|
|
|
|
[[webflux-fn-overview]]
|
|
== Overview
|
|
[.small]#xref:web/webmvc-functional.adoc#webmvc-fn-overview[See equivalent in the Servlet stack]#
|
|
|
|
In WebFlux.fn, an HTTP request is handled with a `HandlerFunction`: a function that takes
|
|
`ServerRequest` and returns a delayed `ServerResponse` (i.e. `Mono<ServerResponse>`).
|
|
Both the request and the response object have immutable contracts that offer JDK 8-friendly
|
|
access to the HTTP request and response.
|
|
`HandlerFunction` is the equivalent of the body of a `@RequestMapping` method in the
|
|
annotation-based programming model.
|
|
|
|
Incoming requests are routed to a handler function with a `RouterFunction`: a function that
|
|
takes `ServerRequest` and returns a delayed `HandlerFunction` (i.e. `Mono<HandlerFunction>`).
|
|
When the router function matches, a handler function is returned; otherwise an empty Mono.
|
|
`RouterFunction` is the equivalent of a `@RequestMapping` annotation, but with the major
|
|
difference that router functions provide not just data, but also behavior.
|
|
|
|
`RouterFunctions.route()` provides a router builder that facilitates the creation of routers,
|
|
as the following example shows:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
import static org.springframework.http.MediaType.APPLICATION_JSON;
|
|
import static org.springframework.web.reactive.function.server.RequestPredicates.*;
|
|
import static org.springframework.web.reactive.function.server.RouterFunctions.route;
|
|
|
|
PersonRepository repository = ...
|
|
PersonHandler handler = new PersonHandler(repository);
|
|
|
|
RouterFunction<ServerResponse> route = route() <1>
|
|
.GET("/person/{id}", accept(APPLICATION_JSON), handler::getPerson)
|
|
.GET("/person", accept(APPLICATION_JSON), handler::listPeople)
|
|
.POST("/person", handler::createPerson)
|
|
.build();
|
|
|
|
|
|
public class PersonHandler {
|
|
|
|
// ...
|
|
|
|
public Mono<ServerResponse> listPeople(ServerRequest request) {
|
|
// ...
|
|
}
|
|
|
|
public Mono<ServerResponse> createPerson(ServerRequest request) {
|
|
// ...
|
|
}
|
|
|
|
public Mono<ServerResponse> getPerson(ServerRequest request) {
|
|
// ...
|
|
}
|
|
}
|
|
----
|
|
<1> Create router using `route()`.
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
val repository: PersonRepository = ...
|
|
val handler = PersonHandler(repository)
|
|
|
|
val route = coRouter { // <1>
|
|
accept(APPLICATION_JSON).nest {
|
|
GET("/person/{id}", handler::getPerson)
|
|
GET("/person", handler::listPeople)
|
|
}
|
|
POST("/person", handler::createPerson)
|
|
}
|
|
|
|
|
|
class PersonHandler(private val repository: PersonRepository) {
|
|
|
|
// ...
|
|
|
|
suspend fun listPeople(request: ServerRequest): ServerResponse {
|
|
// ...
|
|
}
|
|
|
|
suspend fun createPerson(request: ServerRequest): ServerResponse {
|
|
// ...
|
|
}
|
|
|
|
suspend fun getPerson(request: ServerRequest): ServerResponse {
|
|
// ...
|
|
}
|
|
}
|
|
----
|
|
<1> Create router using Coroutines router DSL; a Reactive alternative is also available via `router { }`.
|
|
======
|
|
|
|
One way to run a `RouterFunction` is to turn it into an `HttpHandler` and install it
|
|
through one of the built-in xref:web/webflux/reactive-spring.adoc#webflux-httphandler[server adapters]:
|
|
|
|
* `RouterFunctions.toHttpHandler(RouterFunction)`
|
|
* `RouterFunctions.toHttpHandler(RouterFunction, HandlerStrategies)`
|
|
|
|
Most applications can run through the WebFlux Java configuration, see xref:web/webflux-functional.adoc#webflux-fn-running[Running a Server].
|
|
|
|
|
|
|
|
|
|
[[webflux-fn-handler-functions]]
|
|
== HandlerFunction
|
|
[.small]#xref:web/webmvc-functional.adoc#webmvc-fn-handler-functions[See equivalent in the Servlet stack]#
|
|
|
|
`ServerRequest` and `ServerResponse` are immutable interfaces that offer JDK 8-friendly
|
|
access to the HTTP request and response.
|
|
Both request and response provide {reactive-streams-site}[Reactive Streams] back pressure
|
|
against the body streams.
|
|
The request body is represented with a Reactor `Flux` or `Mono`.
|
|
The response body is represented with any Reactive Streams `Publisher`, including `Flux` and `Mono`.
|
|
For more on that, see xref:web-reactive.adoc#webflux-reactive-libraries[Reactive Libraries].
|
|
|
|
|
|
|
|
[[webflux-fn-request]]
|
|
=== ServerRequest
|
|
|
|
`ServerRequest` provides access to the HTTP method, URI, headers, and query parameters,
|
|
while access to the body is provided through the `body` methods.
|
|
|
|
The following example extracts the request body to a `Mono<String>`:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java]
|
|
----
|
|
Mono<String> string = request.bodyToMono(String.class);
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin]
|
|
----
|
|
val string = request.awaitBody<String>()
|
|
----
|
|
======
|
|
|
|
|
|
The following example extracts the body to a `Flux<Person>` (or a `Flow<Person>` in Kotlin),
|
|
where `Person` objects are decoded from some serialized form, such as JSON or XML:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java]
|
|
----
|
|
Flux<Person> people = request.bodyToFlux(Person.class);
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin]
|
|
----
|
|
val people = request.bodyToFlow<Person>()
|
|
----
|
|
======
|
|
|
|
The preceding examples are shortcuts that use the more general `ServerRequest.body(BodyExtractor)`,
|
|
which accepts the `BodyExtractor` functional strategy interface. The utility class
|
|
`BodyExtractors` provides access to a number of instances. For example, the preceding examples can
|
|
also be written as follows:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java]
|
|
----
|
|
Mono<String> string = request.body(BodyExtractors.toMono(String.class));
|
|
Flux<Person> people = request.body(BodyExtractors.toFlux(Person.class));
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin]
|
|
----
|
|
val string = request.body(BodyExtractors.toMono(String::class.java)).awaitSingle()
|
|
val people = request.body(BodyExtractors.toFlux(Person::class.java)).asFlow()
|
|
----
|
|
======
|
|
|
|
The following example shows how to access form data:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java]
|
|
----
|
|
Mono<MultiValueMap<String, String>> map = request.formData();
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin]
|
|
----
|
|
val map = request.awaitFormData()
|
|
----
|
|
======
|
|
|
|
The following example shows how to access multipart data as a map:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java]
|
|
----
|
|
Mono<MultiValueMap<String, Part>> map = request.multipartData();
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin]
|
|
----
|
|
val map = request.awaitMultipartData()
|
|
----
|
|
======
|
|
|
|
The following example shows how to access multipart data, one at a time, in streaming fashion:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
Flux<PartEvent> allPartEvents = request.bodyToFlux(PartEvent.class);
|
|
allPartsEvents.windowUntil(PartEvent::isLast)
|
|
.concatMap(p -> p.switchOnFirst((signal, partEvents) -> {
|
|
if (signal.hasValue()) {
|
|
PartEvent event = signal.get();
|
|
if (event instanceof FormPartEvent formEvent) {
|
|
String value = formEvent.value();
|
|
// handle form field
|
|
}
|
|
else if (event instanceof FilePartEvent fileEvent) {
|
|
String filename = fileEvent.filename();
|
|
Flux<DataBuffer> contents = partEvents.map(PartEvent::content);
|
|
// handle file upload
|
|
}
|
|
else {
|
|
return Mono.error(new RuntimeException("Unexpected event: " + event));
|
|
}
|
|
}
|
|
else {
|
|
return partEvents; // either complete or error signal
|
|
}
|
|
}));
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
val parts = request.bodyToFlux<PartEvent>()
|
|
allPartsEvents.windowUntil(PartEvent::isLast)
|
|
.concatMap {
|
|
it.switchOnFirst { signal, partEvents ->
|
|
if (signal.hasValue()) {
|
|
val event = signal.get()
|
|
if (event is FormPartEvent) {
|
|
val value: String = event.value();
|
|
// handle form field
|
|
} else if (event is FilePartEvent) {
|
|
val filename: String = event.filename();
|
|
val contents: Flux<DataBuffer> = partEvents.map(PartEvent::content);
|
|
// handle file upload
|
|
} else {
|
|
return Mono.error(RuntimeException("Unexpected event: " + event));
|
|
}
|
|
} else {
|
|
return partEvents; // either complete or error signal
|
|
}
|
|
}
|
|
}
|
|
}
|
|
----
|
|
======
|
|
|
|
Note that the body contents of the `PartEvent` objects must be completely consumed, relayed, or released to avoid memory leaks.
|
|
|
|
[[webflux-fn-response]]
|
|
=== ServerResponse
|
|
|
|
`ServerResponse` provides access to the HTTP response and, since it is immutable, you can use
|
|
a `build` method to create it. You can use the builder to set the response status, to add response
|
|
headers, or to provide a body. The following example creates a 200 (OK) response with JSON
|
|
content:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java]
|
|
----
|
|
Mono<Person> person = ...
|
|
ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).body(person, Person.class);
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin]
|
|
----
|
|
val person: Person = ...
|
|
ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).bodyValue(person)
|
|
----
|
|
======
|
|
|
|
The following example shows how to build a 201 (CREATED) response with a `Location` header and no body:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java]
|
|
----
|
|
URI location = ...
|
|
ServerResponse.created(location).build();
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin]
|
|
----
|
|
val location: URI = ...
|
|
ServerResponse.created(location).build()
|
|
----
|
|
======
|
|
|
|
Depending on the codec used, it is possible to pass hint parameters to customize how the
|
|
body is serialized or deserialized. For example, to specify a {baeldung-blog}/jackson-json-view-annotation[Jackson JSON view]:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java]
|
|
----
|
|
ServerResponse.ok().hint(Jackson2CodecSupport.JSON_VIEW_HINT, MyJacksonView.class).body(...);
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin]
|
|
----
|
|
ServerResponse.ok().hint(Jackson2CodecSupport.JSON_VIEW_HINT, MyJacksonView::class.java).body(...)
|
|
----
|
|
======
|
|
|
|
|
|
[[webflux-fn-handler-classes]]
|
|
=== Handler Classes
|
|
|
|
We can write a handler function as a lambda, as the following example shows:
|
|
|
|
--
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
HandlerFunction<ServerResponse> helloWorld =
|
|
request -> ServerResponse.ok().bodyValue("Hello World");
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
val helloWorld = HandlerFunction<ServerResponse> { ServerResponse.ok().bodyValue("Hello World") }
|
|
----
|
|
======
|
|
--
|
|
|
|
That is convenient, but in an application we need multiple functions, and multiple inline
|
|
lambda's can get messy.
|
|
Therefore, it is useful to group related handler functions together into a handler class, which
|
|
has a similar role as `@Controller` in an annotation-based application.
|
|
For example, the following class exposes a reactive `Person` repository:
|
|
|
|
--
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
import static org.springframework.http.MediaType.APPLICATION_JSON;
|
|
import static org.springframework.web.reactive.function.server.ServerResponse.ok;
|
|
|
|
public class PersonHandler {
|
|
|
|
private final PersonRepository repository;
|
|
|
|
public PersonHandler(PersonRepository repository) {
|
|
this.repository = repository;
|
|
}
|
|
|
|
public Mono<ServerResponse> listPeople(ServerRequest request) { // <1>
|
|
Flux<Person> people = repository.allPeople();
|
|
return ok().contentType(APPLICATION_JSON).body(people, Person.class);
|
|
}
|
|
|
|
public Mono<ServerResponse> createPerson(ServerRequest request) { // <2>
|
|
Mono<Person> person = request.bodyToMono(Person.class);
|
|
return ok().build(repository.savePerson(person));
|
|
}
|
|
|
|
public Mono<ServerResponse> getPerson(ServerRequest request) { // <3>
|
|
int personId = Integer.valueOf(request.pathVariable("id"));
|
|
return repository.getPerson(personId)
|
|
.flatMap(person -> ok().contentType(APPLICATION_JSON).bodyValue(person))
|
|
.switchIfEmpty(ServerResponse.notFound().build());
|
|
}
|
|
}
|
|
----
|
|
<1> `listPeople` is a handler function that returns all `Person` objects found in the repository as
|
|
JSON.
|
|
<2> `createPerson` is a handler function that stores a new `Person` contained in the request body.
|
|
Note that `PersonRepository.savePerson(Person)` returns `Mono<Void>`: an empty `Mono` that emits
|
|
a completion signal when the person has been read from the request and stored. So we use the
|
|
`build(Publisher<Void>)` method to send a response when that completion signal is received (that is,
|
|
when the `Person` has been saved).
|
|
<3> `getPerson` is a handler function that returns a single person, identified by the `id` path
|
|
variable. We retrieve that `Person` from the repository and create a JSON response, if it is
|
|
found. If it is not found, we use `switchIfEmpty(Mono<T>)` to return a 404 Not Found response.
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
class PersonHandler(private val repository: PersonRepository) {
|
|
|
|
suspend fun listPeople(request: ServerRequest): ServerResponse { // <1>
|
|
val people: Flow<Person> = repository.allPeople()
|
|
return ok().contentType(APPLICATION_JSON).bodyAndAwait(people);
|
|
}
|
|
|
|
suspend fun createPerson(request: ServerRequest): ServerResponse { // <2>
|
|
val person = request.awaitBody<Person>()
|
|
repository.savePerson(person)
|
|
return ok().buildAndAwait()
|
|
}
|
|
|
|
suspend fun getPerson(request: ServerRequest): ServerResponse { // <3>
|
|
val personId = request.pathVariable("id").toInt()
|
|
return repository.getPerson(personId)?.let { ok().contentType(APPLICATION_JSON).bodyValueAndAwait(it) }
|
|
?: ServerResponse.notFound().buildAndAwait()
|
|
|
|
}
|
|
}
|
|
----
|
|
<1> `listPeople` is a handler function that returns all `Person` objects found in the repository as
|
|
JSON.
|
|
<2> `createPerson` is a handler function that stores a new `Person` contained in the request body.
|
|
Note that `PersonRepository.savePerson(Person)` is a suspending function with no return type.
|
|
<3> `getPerson` is a handler function that returns a single person, identified by the `id` path
|
|
variable. We retrieve that `Person` from the repository and create a JSON response, if it is
|
|
found. If it is not found, we return a 404 Not Found response.
|
|
======
|
|
--
|
|
|
|
|
|
[[webflux-fn-handler-validation]]
|
|
=== Validation
|
|
|
|
A functional endpoint can use Spring's xref:web/webmvc/mvc-config/validation.adoc[validation facilities] to
|
|
apply validation to the request body. For example, given a custom Spring
|
|
xref:web/webmvc/mvc-config/validation.adoc[Validator] implementation for a `Person`:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
public class PersonHandler {
|
|
|
|
private final Validator validator = new PersonValidator(); // <1>
|
|
|
|
// ...
|
|
|
|
public Mono<ServerResponse> createPerson(ServerRequest request) {
|
|
Mono<Person> person = request.bodyToMono(Person.class).doOnNext(this::validate); // <2>
|
|
return ok().build(repository.savePerson(person));
|
|
}
|
|
|
|
private void validate(Person person) {
|
|
Errors errors = new BeanPropertyBindingResult(person, "person");
|
|
validator.validate(person, errors);
|
|
if (errors.hasErrors()) {
|
|
throw new ServerWebInputException(errors.toString()); // <3>
|
|
}
|
|
}
|
|
}
|
|
----
|
|
<1> Create `Validator` instance.
|
|
<2> Apply validation.
|
|
<3> Raise exception for a 400 response.
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
class PersonHandler(private val repository: PersonRepository) {
|
|
|
|
private val validator = PersonValidator() // <1>
|
|
|
|
// ...
|
|
|
|
suspend fun createPerson(request: ServerRequest): ServerResponse {
|
|
val person = request.awaitBody<Person>()
|
|
validate(person) // <2>
|
|
repository.savePerson(person)
|
|
return ok().buildAndAwait()
|
|
}
|
|
|
|
private fun validate(person: Person) {
|
|
val errors: Errors = BeanPropertyBindingResult(person, "person");
|
|
validator.validate(person, errors);
|
|
if (errors.hasErrors()) {
|
|
throw ServerWebInputException(errors.toString()) // <3>
|
|
}
|
|
}
|
|
}
|
|
----
|
|
<1> Create `Validator` instance.
|
|
<2> Apply validation.
|
|
<3> Raise exception for a 400 response.
|
|
======
|
|
|
|
Handlers can also use the standard bean validation API (JSR-303) by creating and injecting
|
|
a global `Validator` instance based on `LocalValidatorFactoryBean`.
|
|
See xref:core/validation/beanvalidation.adoc[Spring Validation].
|
|
|
|
|
|
|
|
[[webflux-fn-router-functions]]
|
|
== `RouterFunction`
|
|
[.small]#xref:web/webmvc-functional.adoc#webmvc-fn-router-functions[See equivalent in the Servlet stack]#
|
|
|
|
Router functions are used to route the requests to the corresponding `HandlerFunction`.
|
|
Typically, you do not write router functions yourself, but rather use a method on the
|
|
`RouterFunctions` utility class to create one.
|
|
`RouterFunctions.route()` (no parameters) provides you with a fluent builder for creating a router
|
|
function, whereas `RouterFunctions.route(RequestPredicate, HandlerFunction)` offers a direct way
|
|
to create a router.
|
|
|
|
Generally, it is recommended to use the `route()` builder, as it provides
|
|
convenient short-cuts for typical mapping scenarios without requiring hard-to-discover
|
|
static imports.
|
|
For instance, the router function builder offers the method `GET(String, HandlerFunction)` to create a mapping for GET requests; and `POST(String, HandlerFunction)` for POSTs.
|
|
|
|
Besides HTTP method-based mapping, the route builder offers a way to introduce additional
|
|
predicates when mapping to requests.
|
|
For each HTTP method there is an overloaded variant that takes a `RequestPredicate` as a
|
|
parameter, though which additional constraints can be expressed.
|
|
|
|
|
|
[[webflux-fn-predicates]]
|
|
=== Predicates
|
|
|
|
You can write your own `RequestPredicate`, but the `RequestPredicates` utility class
|
|
offers commonly used implementations, based on the request path, HTTP method, content-type,
|
|
and so on.
|
|
The following example uses a request predicate to create a constraint based on the `Accept`
|
|
header:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
RouterFunction<ServerResponse> route = RouterFunctions.route()
|
|
.GET("/hello-world", accept(MediaType.TEXT_PLAIN),
|
|
request -> ServerResponse.ok().bodyValue("Hello World")).build();
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
val route = coRouter {
|
|
GET("/hello-world", accept(TEXT_PLAIN)) {
|
|
ServerResponse.ok().bodyValueAndAwait("Hello World")
|
|
}
|
|
}
|
|
----
|
|
======
|
|
|
|
You can compose multiple request predicates together by using:
|
|
|
|
* `RequestPredicate.and(RequestPredicate)` -- both must match.
|
|
* `RequestPredicate.or(RequestPredicate)` -- either can match.
|
|
|
|
Many of the predicates from `RequestPredicates` are composed.
|
|
For example, `RequestPredicates.GET(String)` is composed from `RequestPredicates.method(HttpMethod)`
|
|
and `RequestPredicates.path(String)`.
|
|
The example shown above also uses two request predicates, as the builder uses
|
|
`RequestPredicates.GET` internally, and composes that with the `accept` predicate.
|
|
|
|
|
|
|
|
[[webflux-fn-routes]]
|
|
=== Routes
|
|
|
|
Router functions are evaluated in order: if the first route does not match, the
|
|
second is evaluated, and so on.
|
|
Therefore, it makes sense to declare more specific routes before general ones.
|
|
This is also important when registering router functions as Spring beans, as will
|
|
be described later.
|
|
Note that this behavior is different from the annotation-based programming model, where the
|
|
"most specific" controller method is picked automatically.
|
|
|
|
When using the router function builder, all defined routes are composed into one
|
|
`RouterFunction` that is returned from `build()`.
|
|
There are also other ways to compose multiple router functions together:
|
|
|
|
* `add(RouterFunction)` on the `RouterFunctions.route()` builder
|
|
* `RouterFunction.and(RouterFunction)`
|
|
* `RouterFunction.andRoute(RequestPredicate, HandlerFunction)` -- shortcut for
|
|
`RouterFunction.and()` with nested `RouterFunctions.route()`.
|
|
|
|
The following example shows the composition of four routes:
|
|
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
import static org.springframework.http.MediaType.APPLICATION_JSON;
|
|
import static org.springframework.web.reactive.function.server.RequestPredicates.*;
|
|
|
|
PersonRepository repository = ...
|
|
PersonHandler handler = new PersonHandler(repository);
|
|
|
|
RouterFunction<ServerResponse> otherRoute = ...
|
|
|
|
RouterFunction<ServerResponse> route = route()
|
|
.GET("/person/{id}", accept(APPLICATION_JSON), handler::getPerson) // <1>
|
|
.GET("/person", accept(APPLICATION_JSON), handler::listPeople) // <2>
|
|
.POST("/person", handler::createPerson) // <3>
|
|
.add(otherRoute) // <4>
|
|
.build();
|
|
----
|
|
<1> pass:q[`GET /person/{id}`] with an `Accept` header that matches JSON is routed to
|
|
`PersonHandler.getPerson`
|
|
<2> `GET /person` with an `Accept` header that matches JSON is routed to
|
|
`PersonHandler.listPeople`
|
|
<3> `POST /person` with no additional predicates is mapped to
|
|
`PersonHandler.createPerson`, and
|
|
<4> `otherRoute` is a router function that is created elsewhere, and added to the route built.
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
import org.springframework.http.MediaType.APPLICATION_JSON
|
|
|
|
val repository: PersonRepository = ...
|
|
val handler = PersonHandler(repository);
|
|
|
|
val otherRoute: RouterFunction<ServerResponse> = coRouter { }
|
|
|
|
val route = coRouter {
|
|
GET("/person/{id}", accept(APPLICATION_JSON), handler::getPerson) // <1>
|
|
GET("/person", accept(APPLICATION_JSON), handler::listPeople) // <2>
|
|
POST("/person", handler::createPerson) // <3>
|
|
}.and(otherRoute) // <4>
|
|
----
|
|
<1> pass:q[`GET /person/{id}`] with an `Accept` header that matches JSON is routed to
|
|
`PersonHandler.getPerson`
|
|
<2> `GET /person` with an `Accept` header that matches JSON is routed to
|
|
`PersonHandler.listPeople`
|
|
<3> `POST /person` with no additional predicates is mapped to
|
|
`PersonHandler.createPerson`, and
|
|
<4> `otherRoute` is a router function that is created elsewhere, and added to the route built.
|
|
======
|
|
|
|
|
|
[[nested-routes]]
|
|
=== Nested Routes
|
|
|
|
It is common for a group of router functions to have a shared predicate, for instance a
|
|
shared path. In the example above, the shared predicate would be a path predicate that
|
|
matches `/person`, used by three of the routes. When using annotations, you would remove
|
|
this duplication by using a type-level `@RequestMapping` annotation that maps to
|
|
`/person`. In WebFlux.fn, path predicates can be shared through the `path` method on the
|
|
router function builder. For instance, the last few lines of the example above can be
|
|
improved in the following way by using nested routes:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
RouterFunction<ServerResponse> route = route()
|
|
.path("/person", builder -> builder // <1>
|
|
.GET("/{id}", accept(APPLICATION_JSON), handler::getPerson)
|
|
.GET(accept(APPLICATION_JSON), handler::listPeople)
|
|
.POST(handler::createPerson))
|
|
.build();
|
|
----
|
|
<1> Note that second parameter of `path` is a consumer that takes the router builder.
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
val route = coRouter { // <1>
|
|
"/person".nest {
|
|
GET("/{id}", accept(APPLICATION_JSON), handler::getPerson)
|
|
GET(accept(APPLICATION_JSON), handler::listPeople)
|
|
POST(handler::createPerson)
|
|
}
|
|
}
|
|
----
|
|
<1> Create router using Coroutines router DSL; a Reactive alternative is also available via `router { }`.
|
|
======
|
|
|
|
Though path-based nesting is the most common, you can nest on any kind of predicate by using
|
|
the `nest` method on the builder.
|
|
The above still contains some duplication in the form of the shared `Accept`-header predicate.
|
|
We can further improve by using the `nest` method together with `accept`:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
RouterFunction<ServerResponse> route = route()
|
|
.path("/person", b1 -> b1
|
|
.nest(accept(APPLICATION_JSON), b2 -> b2
|
|
.GET("/{id}", handler::getPerson)
|
|
.GET(handler::listPeople))
|
|
.POST(handler::createPerson))
|
|
.build();
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
val route = coRouter {
|
|
"/person".nest {
|
|
accept(APPLICATION_JSON).nest {
|
|
GET("/{id}", handler::getPerson)
|
|
GET(handler::listPeople)
|
|
POST(handler::createPerson)
|
|
}
|
|
}
|
|
}
|
|
----
|
|
======
|
|
|
|
|
|
[[webflux-fn-serving-resources]]
|
|
== Serving Resources
|
|
|
|
WebFlux.fn provides built-in support for serving resources.
|
|
|
|
NOTE: In addition to the capabilities described below, it is possible to implement even more flexible resource handling thanks to
|
|
{spring-framework-api}++/web/reactive/function/server/RouterFunctions.html#resources(java.util.function.Function)++[`RouterFunctions#resource(java.util.function.Function)`].
|
|
|
|
[[webflux-fn-resource]]
|
|
=== Redirecting to a resource
|
|
|
|
It is possible to redirect requests matching a specified predicate to a resource. This can be useful, for example,
|
|
for handling redirects in Single Page Applications.
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
ClassPathResource index = new ClassPathResource("static/index.html");
|
|
List<String> extensions = List.of("js", "css", "ico", "png", "jpg", "gif");
|
|
RequestPredicate spaPredicate = path("/api/**").or(path("/error")).or(pathExtension(extensions::contains)).negate();
|
|
RouterFunction<ServerResponse> redirectToIndex = route()
|
|
.resource(spaPredicate, index)
|
|
.build();
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
val redirectToIndex = router {
|
|
val index = ClassPathResource("static/index.html")
|
|
val extensions = listOf("js", "css", "ico", "png", "jpg", "gif")
|
|
val spaPredicate = !(path("/api/**") or path("/error") or
|
|
pathExtension(extensions::contains))
|
|
resource(spaPredicate, index)
|
|
}
|
|
----
|
|
======
|
|
|
|
[[webflux-fn-resources]]
|
|
=== Serving resources from a root location
|
|
|
|
It is also possible to route requests that match a given pattern to resources relative to a given root location.
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
Resource location = new FileUrlResource("public-resources/");
|
|
RouterFunction<ServerResponse> resources = RouterFunctions.resources("/resources/**", location);
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
val location = FileUrlResource("public-resources/")
|
|
val resources = router { resources("/resources/**", location) }
|
|
----
|
|
======
|
|
|
|
|
|
[[webflux-fn-running]]
|
|
== Running a Server
|
|
[.small]#xref:web/webmvc-functional.adoc#webmvc-fn-running[See equivalent in the Servlet stack]#
|
|
|
|
How do you run a router function in an HTTP server? A simple option is to convert a router
|
|
function to an `HttpHandler` by using one of the following:
|
|
|
|
* `RouterFunctions.toHttpHandler(RouterFunction)`
|
|
* `RouterFunctions.toHttpHandler(RouterFunction, HandlerStrategies)`
|
|
|
|
You can then use the returned `HttpHandler` with a number of server adapters by following
|
|
xref:web/webflux/reactive-spring.adoc#webflux-httphandler[HttpHandler] for server-specific instructions.
|
|
|
|
A more typical option, also used by Spring Boot, is to run with a
|
|
xref:web/webflux/dispatcher-handler.adoc[`DispatcherHandler`]-based setup through the
|
|
xref:web/webflux/dispatcher-handler.adoc#webflux-framework-config[WebFlux Config], which uses Spring configuration to declare the
|
|
components required to process requests. The WebFlux Java configuration declares the following
|
|
infrastructure components to support functional endpoints:
|
|
|
|
* `RouterFunctionMapping`: Detects one or more `RouterFunction<?>` beans in the Spring
|
|
configuration, xref:core/beans/annotation-config/autowired.adoc#beans-factory-ordered[orders them], combines them through
|
|
`RouterFunction.andOther`, and routes requests to the resulting composed `RouterFunction`.
|
|
* `HandlerFunctionAdapter`: Simple adapter that lets `DispatcherHandler` invoke
|
|
a `HandlerFunction` that was mapped to a request.
|
|
* `ServerResponseResultHandler`: Handles the result from the invocation of a
|
|
`HandlerFunction` by invoking the `writeTo` method of the `ServerResponse`.
|
|
|
|
The preceding components let functional endpoints fit within the `DispatcherHandler` request
|
|
processing lifecycle and also (potentially) run side by side with annotated controllers, if
|
|
any are declared. It is also how functional endpoints are enabled by the Spring Boot WebFlux
|
|
starter.
|
|
|
|
The following example shows a WebFlux Java configuration (see
|
|
xref:web/webflux/dispatcher-handler.adoc[DispatcherHandler] for how to run it):
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
@Configuration
|
|
@EnableWebFlux
|
|
public class WebConfig implements WebFluxConfigurer {
|
|
|
|
@Bean
|
|
public RouterFunction<?> routerFunctionA() {
|
|
// ...
|
|
}
|
|
|
|
@Bean
|
|
public RouterFunction<?> routerFunctionB() {
|
|
// ...
|
|
}
|
|
|
|
// ...
|
|
|
|
@Override
|
|
public void configureHttpMessageCodecs(ServerCodecConfigurer configurer) {
|
|
// configure message conversion...
|
|
}
|
|
|
|
@Override
|
|
public void addCorsMappings(CorsRegistry registry) {
|
|
// configure CORS...
|
|
}
|
|
|
|
@Override
|
|
public void configureViewResolvers(ViewResolverRegistry registry) {
|
|
// configure view resolution for HTML rendering...
|
|
}
|
|
}
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
@Configuration
|
|
@EnableWebFlux
|
|
class WebConfig : WebFluxConfigurer {
|
|
|
|
@Bean
|
|
fun routerFunctionA(): RouterFunction<*> {
|
|
// ...
|
|
}
|
|
|
|
@Bean
|
|
fun routerFunctionB(): RouterFunction<*> {
|
|
// ...
|
|
}
|
|
|
|
// ...
|
|
|
|
override fun configureHttpMessageCodecs(configurer: ServerCodecConfigurer) {
|
|
// configure message conversion...
|
|
}
|
|
|
|
override fun addCorsMappings(registry: CorsRegistry) {
|
|
// configure CORS...
|
|
}
|
|
|
|
override fun configureViewResolvers(registry: ViewResolverRegistry) {
|
|
// configure view resolution for HTML rendering...
|
|
}
|
|
}
|
|
----
|
|
======
|
|
|
|
|
|
|
|
|
|
[[webflux-fn-handler-filter-function]]
|
|
== Filtering Handler Functions
|
|
[.small]#xref:web/webmvc-functional.adoc#webmvc-fn-handler-filter-function[See equivalent in the Servlet stack]#
|
|
|
|
You can filter handler functions by using the `before`, `after`, or `filter` methods on the routing
|
|
function builder.
|
|
With annotations, you can achieve similar functionality by using `@ControllerAdvice`, a `ServletFilter`, or both.
|
|
The filter will apply to all routes that are built by the builder.
|
|
This means that filters defined in nested routes do not apply to "top-level" routes.
|
|
For instance, consider the following example:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
RouterFunction<ServerResponse> route = route()
|
|
.path("/person", b1 -> b1
|
|
.nest(accept(APPLICATION_JSON), b2 -> b2
|
|
.GET("/{id}", handler::getPerson)
|
|
.GET(handler::listPeople)
|
|
.before(request -> ServerRequest.from(request) // <1>
|
|
.header("X-RequestHeader", "Value")
|
|
.build()))
|
|
.POST(handler::createPerson))
|
|
.after((request, response) -> logResponse(response)) // <2>
|
|
.build();
|
|
----
|
|
<1> The `before` filter that adds a custom request header is only applied to the two GET routes.
|
|
<2> The `after` filter that logs the response is applied to all routes, including the nested ones.
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
val route = router {
|
|
"/person".nest {
|
|
GET("/{id}", handler::getPerson)
|
|
GET("", handler::listPeople)
|
|
before { // <1>
|
|
ServerRequest.from(it)
|
|
.header("X-RequestHeader", "Value").build()
|
|
}
|
|
POST(handler::createPerson)
|
|
after { _, response -> // <2>
|
|
logResponse(response)
|
|
}
|
|
}
|
|
}
|
|
----
|
|
<1> The `before` filter that adds a custom request header is only applied to the two GET routes.
|
|
<2> The `after` filter that logs the response is applied to all routes, including the nested ones.
|
|
======
|
|
|
|
|
|
The `filter` method on the router builder takes a `HandlerFilterFunction`: a
|
|
function that takes a `ServerRequest` and `HandlerFunction` and returns a `ServerResponse`.
|
|
The handler function parameter represents the next element in the chain.
|
|
This is typically the handler that is routed to, but it can also be another
|
|
filter if multiple are applied.
|
|
|
|
Now we can add a simple security filter to our route, assuming that we have a `SecurityManager` that
|
|
can determine whether a particular path is allowed.
|
|
The following example shows how to do so:
|
|
|
|
[tabs]
|
|
======
|
|
Java::
|
|
+
|
|
[source,java,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
SecurityManager securityManager = ...
|
|
|
|
RouterFunction<ServerResponse> route = route()
|
|
.path("/person", b1 -> b1
|
|
.nest(accept(APPLICATION_JSON), b2 -> b2
|
|
.GET("/{id}", handler::getPerson)
|
|
.GET(handler::listPeople))
|
|
.POST(handler::createPerson))
|
|
.filter((request, next) -> {
|
|
if (securityManager.allowAccessTo(request.path())) {
|
|
return next.handle(request);
|
|
}
|
|
else {
|
|
return ServerResponse.status(UNAUTHORIZED).build();
|
|
}
|
|
})
|
|
.build();
|
|
----
|
|
|
|
Kotlin::
|
|
+
|
|
[source,kotlin,indent=0,subs="verbatim,quotes"]
|
|
----
|
|
val securityManager: SecurityManager = ...
|
|
|
|
val route = router {
|
|
("/person" and accept(APPLICATION_JSON)).nest {
|
|
GET("/{id}", handler::getPerson)
|
|
GET("", handler::listPeople)
|
|
POST(handler::createPerson)
|
|
filter { request, next ->
|
|
if (securityManager.allowAccessTo(request.path())) {
|
|
next(request)
|
|
}
|
|
else {
|
|
status(UNAUTHORIZED).build();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
----
|
|
======
|
|
|
|
The preceding example demonstrates that invoking the `next.handle(ServerRequest)` is optional.
|
|
We only let the handler function be run when access is allowed.
|
|
|
|
Besides using the `filter` method on the router function builder, it is possible to apply a
|
|
filter to an existing router function via `RouterFunction.filter(HandlerFilterFunction)`.
|
|
|
|
NOTE: CORS support for functional endpoints is provided through a dedicated
|
|
xref:web/webflux-cors.adoc#webflux-cors-webfilter[`CorsWebFilter`].
|