Most Resource Server support is collected into `spring-security-oauth2-resource-server`.
However, the support for decoding and verifying JWTs is in `spring-security-oauth2-jose`, meaning that both are necessary in order to have a working resource server that supports JWT-encoded Bearer Tokens.
When using https://spring.io/projects/spring-boot[Spring Boot], configuring an application as a resource server consists of two basic steps.
First, include the needed dependencies and second, indicate the location of the authorization server.
=== Specifying the Authorization Server
In a Spring Boot application, to specify which authorization server to use, simply do:
[source,yml]
----
spring:
security:
oauth2:
resourceserver:
jwt:
issuer-uri: https://idp.example.com/issuer
----
Where `https://idp.example.com/issuer` is the value contained in the `iss` claim for JWT tokens that the authorization server will issue.
Resource Server will use this property to further self-configure, discover the authorization server's public keys, and subsequently validate incoming JWTs.
[NOTE]
To use the `issuer-uri` property, it must also be true that one of `https://idp.example.com/issuer/.well-known/openid-configuration`, `https://idp.example.com/.well-known/openid-configuration/issuer`, or `https://idp.example.com/.well-known/oauth-authorization-server/issuer` is a supported endpoint for the authorization server.
This endpoint is referred to as a https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig[Provider Configuration] endpoint or a https://tools.ietf.org/html/rfc8414#section-3[Authorization Server Metadata] endpoint.
And that's it!
=== Startup Expectations
When this property and these dependencies are used, Resource Server will automatically configure itself to validate JWT-encoded Bearer Tokens.
It achieves this through a deterministic startup process:
1. Hit the Provider Configuration or Authorization Server Metadata endpoint, processing the response for the `jwks_url` property
2. Configure the validation strategy to query `jwks_url` for valid public keys
3. Configure the validation strategy to validate each JWTs `iss` claim against `https://idp.example.com`.
A consequence of this process is that the authorization server must be up and receiving requests in order for Resource Server to successfully start up.
[NOTE]
If the authorization server is down when Resource Server queries it (given appropriate timeouts), then startup will fail.
=== Runtime Expectations
Once the application is started up, Resource Server will attempt to process any request containing an `Authorization: Bearer` header:
[source,html]
----
GET / HTTP/1.1
Authorization: Bearer some-token-value # Resource Server will process this
----
So long as this scheme is indicated, Resource Server will attempt to process the request according to the Bearer Token specification.
Given a well-formed JWT, Resource Server will:
1. Validate its signature against a public key obtained from the `jwks_url` endpoint during startup and matched against the JWTs header
2. Validate the JWTs `exp` and `nbf` timestamps and the JWTs `iss` claim, and
3. Map each scope to an authority with the prefix `SCOPE_`.
[NOTE]
As the authorization server makes available new keys, Spring Security will automatically rotate the keys used to validate the JWT tokens.
The resulting `Authentication#getPrincipal`, by default, is a Spring Security `Jwt` object, and `Authentication#getName` maps to the JWT's `sub` property, if one is present.
From here, consider jumping to:
<<webflux-oauth2resourceserver-jwt-jwkseturi,How to Configure without Tying Resource Server startup to an authorization server's availability>>
<<webflux-oauth2resourceserver-jwt-sansboot,How to Configure without Spring Boot>>
[[webflux-oauth2resourceserver-jwt-jwkseturi]]
=== Specifying the Authorization Server JWK Set Uri Directly
If the authorization server doesn't support any configuration endpoints, or if Resource Server must be able to start up independently from the authorization server, then the `jwk-set-uri` can be supplied as well:
The JWK Set uri is not standardized, but can typically be found in the authorization server's documentation
Consequently, Resource Server will not ping the authorization server at startup.
We still specify the `issuer-uri` so that Resource Server still validates the `iss` claim on incoming JWTs.
[NOTE]
This property can also be supplied directly on the <<webflux-oauth2resourceserver-jwt-jwkseturi-dsl,DSL>>.
[[webflux-oauth2resourceserver-jwt-sansboot]]
=== Overriding or Replacing Boot Auto Configuration
There are two ``@Bean``s that Spring Boot generates on Resource Server's behalf.
The first is a `SecurityWebFilterChain` that configures the app as a resource server. When including `spring-security-oauth2-jose`, this `SecurityWebFilterChain` looks like:
Calling `{security-api-url}org/springframework/security/oauth2/jwt/ReactiveJwtDecoders.html#fromIssuerLocation-java.lang.String-[ReactiveJwtDecoders#fromIssuerLocation]` is what invokes the Provider Configuration or Authorization Server Metadata endpoint in order to derive the JWK Set Uri.
If the application doesn't expose a `ReactiveJwtDecoder` bean, then Spring Boot will expose the above default one.
And its configuration can be overridden using `jwkSetUri()` or replaced using `decoder()`.
An authorization server's JWK Set Uri can be configured <<webflux-oauth2resourceserver-jwt-jwkseturi,as a configuration property>> or it can be supplied in the DSL:
By default, `NimbusReactiveJwtDecoder`, and hence Resource Server, will only trust and verify tokens using `RS256`.
You can customize this via <<webflux-oauth2resourceserver-jwt-boot-algorithm,Spring Boot>> or <<webflux-oauth2resourceserver-jwt-decoder-builder,the NimbusJwtDecoder builder>>.
Simpler than backing a Resource Server with a JWK Set endpoint is to hard-code an RSA public key.
The public key can be provided via <<webflux-oauth2resourceserver-jwt-decoder-public-key-boot,Spring Boot>> or by <<webflux-oauth2resourceserver-jwt-decoder-public-key-builder,Using a Builder>>.
A JWT that is issued from an OAuth 2.0 Authorization Server will typically either have a `scope` or `scp` attribute, indicating the scopes (or authorities) it's been granted, for example:
`{ ..., "scope" : "messages contacts"}`
When this is the case, Resource Server will attempt to coerce these scopes into a list of granted authorities, prefixing each scope with the string "SCOPE_".
This means that to protect an endpoint or method with a scope derived from a JWT, the corresponding expressions should include this prefix:
For more flexibility, the DSL supports entirely replacing the converter with any class that implements `Converter<Jwt, Mono<AbstractAuthenticationToken>>`:
Using <<webflux-oauth2resourceserver-jwt-minimalconfiguration,minimal Spring Boot configuration>>, indicating the authorization server's issuer uri, Resource Server will default to verifying the `iss` claim as well as the `exp` and `nbf` timestamp claims.
In circumstances where validation needs to be customized, Resource Server ships with two standard validators and also accepts custom `OAuth2TokenValidator` instances.
JWT's typically have a window of validity, with the start of the window indicated in the `nbf` claim and the end indicated in the `exp` claim.
However, every server can experience clock drift, which can cause tokens to appear expired to one server, but not to another.
This can cause some implementation heartburn as the number of collaborating servers increases in a distributed system.
Resource Server uses `JwtTimestampValidator` to verify a token's validity window, and it can be configured with a `clockSkew` to alleviate the above problem: