MNN/source/shape/ShapeReduction.cpp

79 lines
2.7 KiB
C++
Raw Permalink Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeReduction.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
2020-11-05 16:41:56 +08:00
#include "shape/SizeComputer.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
2020-11-05 16:41:56 +08:00
static int _getRealAxis(int axis, int n) {
if (axis < 0) {
return axis + n;
}
return axis;
}
2019-04-17 10:49:11 +08:00
class ReductionComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size() || 2 == inputs.size());
2019-04-17 10:49:11 +08:00
MNN_ASSERT(1 == outputs.size());
auto output = outputs[0];
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
auto reduce = op->main_as_ReductionParam();
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
output->buffer().type = inputs[0]->buffer().type;
if (nullptr == reduce->dim() && inputs.size() == 1) {
2023-10-18 10:31:02 +08:00
if (reduce->keepDims()) {
output->buffer().dimensions = inputs[0]->dimensions();
for (int i = 0; i < inputs[0]->dimensions(); i++) {
output->setLength(i, 1);
}
} else {
output->buffer().dimensions = 0;
}
2019-04-17 10:49:11 +08:00
return true;
}
2022-09-30 10:02:52 +08:00
uint8_t reduceMask[MNN_MAX_TENSOR_DIM];
::memset(reduceMask, 0, sizeof(uint8_t) * MNN_MAX_TENSOR_DIM);
if (nullptr != reduce->dim()) {
for (int i = 0; i < reduce->dim()->size(); ++i) {
2022-09-30 10:02:52 +08:00
reduceMask[_getRealAxis(reduce->dim()->data()[i], inputs[0]->dimensions())] = 1;
}
} else {
auto input1 = inputs[1];
auto size = input1->elementSize();
auto dims = input1->host<int32_t>();
for (int i = 0; i < size; ++i) {
2022-09-30 10:02:52 +08:00
reduceMask[_getRealAxis(dims[i], inputs[0]->dimensions())] = 1;
}
2019-04-17 10:49:11 +08:00
}
auto input = inputs[0];
const int inputDimensions = input->dimensions();
2022-09-30 10:02:52 +08:00
int offset = 0;
2019-04-17 10:49:11 +08:00
for (int i = 0; i < inputDimensions; ++i) {
2022-09-30 10:02:52 +08:00
if (1 == reduceMask[i]) {
if (reduce->keepDims()) {
output->buffer().dim[offset].extent = 1;
offset++;
}
continue;
2019-04-17 10:49:11 +08:00
}
2022-09-30 10:02:52 +08:00
output->buffer().dim[offset].extent = input->length(i);
offset++;
2019-04-17 10:49:11 +08:00
}
2022-09-30 10:02:52 +08:00
output->buffer().dimensions = offset;
2019-04-17 10:49:11 +08:00
return true;
}
};
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
REGISTER_SHAPE_INPUTS(ReductionComputer, OpType_Reduction, {1});
2019-04-17 10:49:11 +08:00
} // namespace MNN